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’ Connectedness and compactness‘

Definition [Connected space] Let X be a topological space. A separation
of X is a pair of nonempty, disjoint, open subsets U,V C X such that
X =UUV. X is said to be disconnected if there exists a separation of X,

and connected otherwise.

Definition [Connected subset] Let X be a topological space. A subset

A C X is said to be connected if the subspace A is connected.
In equivalent terms, the subset A is disconnected if there exist open sets

U,V in X such that
ANU#0D, ANV #0,

(ANU)N(ANV)=0, ACUUV.

The sets U,V above are also considered a separation of A.
Example 1 [A simple disconnected subset] The subset

A={(z,y) eR*: 2 €[-3,1)U(2,5], y =0}

of R? is disconnected. Equivalently, the topological space A (endowed

with the subspace topology) is disconnected.
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Example 2 [A more interesting disconnected subset] The subset
O(n) ={X e M(n,R) : X*X =1,}
of M(n,R) is disconnected. Equivalently, the topological space O(n)

(endowed with the subspace topology) is disconnected.
Note that O(n) C {X € M(n,R) : det X = +1}. The open sets

U={XeMn,R) :detX <0} V={XeMnR):detX >0}

provide a separation of O(n).
(Remark that O(n) NU # 0 and O(n) NV # (; why ?7)

Proposition [Characterization of connectedness] A topological space
X is connected if and only if the only subsets of X that are both open and
closed are () and X.

Example 1 [Application of connectedness| Let X be a connected topo-
logical space and A : X — S(n,R) a continuous map. Thus, the map
x — A(z) assigns (continuously) a symmetric matrix to each point
in X. Suppose the polynomial equation

n

Z crA(z) =0

k=0

is satisfied for all z € X, where ¢, € R are fixed, real coefficients. Then,
the spectrum (set of eigenvalues, including multiplicities) of A(z) is
constant over x € X.

Proof: Pick a xg € X, let Ay = A(zo) and let

o = {M(Ap), Aa(Ag), ..., A\(Ag)}

denote its spectrum. We assume that the eigenvalues are ordered in
non-increasing order:

A(Ao) > Aa(Ao) > -+ = Au(Ao).



Define the subset
S={reX :o(Ax)) =0c(A0)}.

Note that S # 0 because xq € S. We will show that S is both open
and closed in X. Since X is connected, this establishes that S = X by
the previous proposition. To show that S s closed, let n; : X — R,
ni(x) = Ni(A(z)), fori = 1,2,...,n. That is, n;(x) computes the ith
ordered eigenvalue of A(x). Note that each n; is a continuous function
(composition of continuous maps). Thus, each subset S; = n; ' (X\i(Ag))
is closed in X . Since S = S1NSyN---N.S,, it follows that S is closed in
X. To show that S is open, we reason as follows. Let 21,22, ..., 2y, € C
be the distinct roots of the polynomial equation

p(z) = Z ezt = 0.
k=0

Note that, since p(A(z)) = 0, we have \;(A(z)) € {z1,22,...,2m} for
alli and v € X. Let
0 = min ’Zk — Zl|

k£l
be the minimum distance between the distinct roots. Thus, if z €
{z1,29, ..., 2m} and |z — z;| <9, then z = z;. The subset

U =n; " (Mi(Azy) — 6, Ai(Azy) +0))

is open in X (thanks to the continuity of n;). By the previous argument,
x € U; implies \i(A(x)) = N(A(zo)). Thus, the open subset U =
i, Ui is contained in S. But, also trivially, S C U. Thus, S =U.

Proposition [Characterization of connected subsets of R] A nonempty
subset of R is connected if and only if it is an interval.

Definition [Path connected space] Let X be a topological space and
p,q € X. A path in X from p to ¢ is a continuous map f : [0,1] — X such

that f(0) = p and f(1) =q.



We say that X is path connected if for every p,q € X there is a path in
X from p to q.

Theorem [Easy sufficient criterion for connectedness| If X is a path
connected topological space, then X is connected.

Example 1 [Obvious example] M(n, m,R) ~ R™ is connected
Example 2 [Convex sets are connected]

S(n,R) = {X € M(n,R) : X = X} is connected
Ut(n,R) = {X € M(n,R) : X upper-triangular and X;; > 0} is connected
Example 3 [Special orthogonal matrices|

SO(n) ={X € O(n) : det(X) = 1} is connected

because there is a path in SO(n) from I, to any X € SO(n).
Tlustrative example: suppose X € SO(5) has the eigenvalue decompo-
sition

cosf@ —sinf
sinf cos®

X=0Q 1 QY, QeO0n).
1

(Note: if X € SO(n) the multiplicity of the eigenvalue —1 is even.)
Then, f : [0,1] — SO(5),

cos(0t) —sin(Ot)
sin(ft)  cos(6t)
ft) =@ cos(mt) — sin(nt) QT

sin(mt)  cos(mt)

is a path in SO(5) from I5 to X.
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Example 4 [Non-singular matrices with positive determinant]
GL*(n,R) = {X € M(n,R) : det(X) > 0} is connected

because there is a path in GL*(n,R) from I, to any X € GL™(n,R).

Proof: let X € GL*(n,R). Invoking the QR decomposition of X (and
noting that det X > 0), we see that there ezxist Q € SO(n) and U €
UT(n,R) such that

X =QU.

Since both SO(n) and UT(n,R) are connected, let Q(t) and U(t) be
paths in SO(n) and in Ut (n,R) from I,, to Q and U, respectively. Then,
X(t)=QM)U(t) is a path in GL™(n,R) from I, to X.

Example 5 [Special Euclidean group]|

SE(n) = { {602 ﬂ : @ €S0(n),d € R”} is connected

because there is a path in SE(n) from

to any X € SE(n).
Proof: let

X = {%2 ﬂ € SE(n).

Let Q(t) be a path in SO(n) from I, to Q, and §(t) a path in R™ from
0 tod. Then o s
t t
TR
is the desired path.

Theorem [Main theorem on connectedness] Let XY be topological
spaces and let f : X — Y be a continuous map. If X is connected, then
f(X) (as a subspace of Y)) is connected.



Example 1 [Unit-sphere]
S"'(R)={z €eR" : ||z|| = 1}

is connected, because it is the image of the connected space R"™ — {0}

through the continuous map

foRM {0} R fr) = ——

[zl
Example 2 [Ellipsoid] Any non-flat ellipsoid in R™ can be described as
E={Au+x: ueS" ' (R)}

where xy € R™ is the center of the ellipsoid and A € GL(n,R) defines
the shape and spatial orientation of E.
Thus E is connected because it is the image of the connected space
S"~!(R) through the continuous map

f:S"R) —R" f(z) = Az + .

Example 3 [Projective space RP"] RP" is connected because it is the
image of the connected space R"™! — {0} through the continuous pro-
jection map

7 R" — {0} — RP” m(z) = [z].

Proposition [Properties of connected spaces]

(a) Suppose X is a topological space and U, V' are disjoint open subsets
of X. If A is a connected subset of X contained in U UV, then either A C U
or ACV.

~ (b) Suppose X is a topological space and A C X is connected. Then
A is connected.

(c) Let X be a topological space, and let {A;} be a collection of con-
nected subsets with a point in common. Then [ J; 4; is connected.

(d) The Cartesian product of finitely many connected topological spaces
is connected.

(e) Any quotient space of a connected topological space is connected.

Theorem [Intermediate value theorem] Let X be a connected topolog-
ical space and f is a continuous real-valued function on X. If p,q € X then
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f takes on all values between f(p) and f(q).

Example 1 [Antipodal points at the same temperature| Let
T:SY(R)CR*—R

be a continuous map on the unit-circle in R?. Then, there exist a point
p € SY(R) such that T(p) = T(—p).

Proof: The map
f:00,2r] = R f(0) =T(cos@,sinf) —T(—cosf,—sinb)

is continuous. If f(0) = 0, we can pickp = (1,0). Otherwise, f(0)f(m) <
0 and there exists 0y € [0, 7| such that f(0y) = 0. Make p = (cos by, sin by).

As a consequence, this shows that there two antipodal points in the
Earth’s equator line at the same temperature.

Definition [Components] Let X be a topological space. A component of
X is a maximally connected subset of X, that is, a connected set that is not
contained in any larger connected set.

> Intuition: X consists of a union of disjoint “islands” /components.

Example 1 [Orthogonal group| The orthogonal group
O(n)={X eMn,R) : XX =1,}
has two components:

SO(n) ={X € O(n,R) : det X =1}
O~ (n) ={X € O(n,R) : det X = —1}.

Proof: We have already seen that SO(n) is connected. Any attempt
to enlarge SO(n) involves taking a point in O~ (n). But, then, the sets
U={X eMn,R) :detX <0} andV ={X € M(n,R) : det X > 0}
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would provide a separation of such set. Thus, SO(n) is a component
of O(n). The set O~ (n) is connected because it is the image of SO(n)
through the continuous map

—1

f iSO — M R)  f(X) = |x
Thus, O~ (n) is a component of O(n).

Proposition [Properties of components] Let X be any topological space.
(a) Each component of X is closed in X.
(b) Any connected subset of X is contained in a single component.

Definition [Compact space] A topological space X is said to be compact
if every open cover of X has a finite subcover. That is, if ¢/ is any given
open cover of X, then there are finitely many sets Uy, ..., Uy € U such that
X=U,U---UU.

Definition [Compact subset] Let X be a topological space. A subset
A C X is said to be compact if the subspace A is compact.

In equivalent terms, the subset A is compact if and only if given any
collection of open subsets of X covering A, there is a finite subcover.

Proposition [Characterization of compact sets in R"| A subset X in
R" is compact if and only if X is closed and bounded.

Example 1 [Stiefel manifold] The set
O(n,m) = {X e M(n,m,R) : XTX =1,}

is compact because it is closed and bounded.



It is closed because O(n,m) = f~'({I,,}) and
f: M(n,mR) - Mm,R)  f(X)=X"X

1s continuous.

It is bounded because, if X € O(n,m) then

IX))* = tr(XTX) = tr(I,,) = m.

Note that O(n,1) = S" }(R) and O(n,n) = O(n).

Theorem [Main theorem on compactness| Let XY be topological
spaces and let f : X — Y be a continuous map. If X is compact, then
f(X) (as a subspace of Y') is compact.

Example 1 [Projective space RP"] The projective space RP" is compact
because it is the image of the compact set S"(R) through the continuous
projection map 7 : R"™! — {0} — RP".

Proposition [Properties of compact spaces]
(a) Every closed subset of a compact space is compact.

(b) In a Hausdorff space X, compact sets can be separated by open
sets. That is, if A, B C X are disjoint compact subsets, there exist disjoint
open sets U,V C X such that AC U and BC V.

(c) Every compact subset of a Hausdorff space is closed.

(d) The Cartesian product of finitely many compact topological spaces
is compact.

(e) Any quotient space of a compact topological space is compact.

Example 1 [Special orthogonal matrices|
SO(n) ={X € 0O(n) : det X =1}
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is compact because it is a closed subset of the compact space O(n).
It is closed because SO(n) = f~1({1}) and

f:0(n) >R f(X)=detX

1S continuous.

Theorem [Extreme value theorem] If X is a compact space and [ :
X — R is continuous, then f attains its maximum and minimum values

on X.

Proposition [Characterization of compactness in 2nd countable Haus-
dorff spaces] Let X be a 2nd countable Hausdorff space. The following are
equivalent:

(a) X is compact

(b) Every sequence of points in X has a subsequence that converges to
a point in X.

Example 1 [Principal component analysis is a continuous map] Let
X,Y be 2nd countable Hausdorff spaces. Furthermore, let Y be com-
pact. Let F' : X XY — R be a continuous function. For each x € X,
we define the function F, : Y — R, F,(y) = F(z,y).

Suppose that, for each x € X, there exists only one global minimizer
in Y of the function F,. Let ¢ : X — Y be the map which, given
x € X, returns the (unique) global minimizer in Y of the function F,.
The map ¢ is continuous.

Proof: In this topological setting, it suffices to prove that x, — xg
implies y, = ¢(x,) — Yo = ¢(x0). Suppose y, /> yo (we will reach a
contradiction). Then, there exists an open set U in Y containing yo
and a subsequence y,, such that y, & U. Since Y is compact, the
sequence yYp, admits a convergent subsequence, say, Y, — z. Now, we
claim z = yq. To show this, choose y € Y arbitrarily. We have

F(‘Tnkl 9 ynkl) S F(xnkl 9 y) fo/r all l
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Taking the limit | — oo yields
F(x0,2) < F(x0,9).

Since y was chosen arbitrarily, this shows that z is a global minimizer
of F,,. By uniqueness, z = yy. Since the sequence Yy, = % = Yo 1 has
a point in U (contradiction!).

Let P = [p1p2 ... pk] € M(n, k,R) denote a constellation of k points
in R™. A one-dimensional principal component analysis (PCA) of P
consists in extracting the “dominant” straight line in P. That is, the
straight line spanned by a vector
i rat
z(P) € arg min Z P — —Dj
zeR"— {0} =1 [l
2T PPy

arg max 5
rer—{0} [l

The straight line is unique if Apax(PPT) is simple. In equivalent terms,
order the eigenvalues of the n x n symmetric matrix PPT as

M (PPT) < M1 (PPT) < - < X\ (PPT) < M (PPT).
N—— N——
Am;n(PPT) Amax(PPT)

The dominant straight line is unique for those constellations P belong-
ing to

P ={PeMnkR) : \\(PPT) > \(PPT)}.

Since each A; : S(n,R) — R is a continuous function on S(n,R), the
set of n X n symmetric matrices with real entries (see your homework
for this result!), the set P is open in M(n, k, R).

Thus, we have a map PCA : P — RP"!

PecP — PCA |+— 7(Z(P)) e RP"!

The map PCA is continuous, because
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Step 1: The map

F : RP"! x M(n, k,R) - R P)=>|p;

j=1

2p3

is continuous (as we have already seen in a previous example).

Step 2: Its restriction to the subspace RP" ' x P c RP"! xM(n, k, R)
is also continuous (for brevity of notation, we keep the same symbol

F):

xxl
T 2Pi

F:RP"'xP—>R F(a],P)=) e

Step 3: PCA : P — RP" ! extracts, for each P € P, the (unique)
minimizer of Fp in RP"™!. Since RP"! is compact, the previous result
shows that PCA is continuous.
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