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INew Spaces from Old‘

subspaces
Three basic mechanisms : Cartesian products
quotients

Definition [Topology generated by a class of subsets] Let X be a
nonempty set and C a class of subsets of X. The topology generated by C,
written 7 (C), is defined as the smallest topology containing the class C.

2X

Lemma [Characterization of generated topologies] Let X be a nonempty
set and C a class of subsets of X. Then 7(C) is the class of all unions of
finite intersections of sets in C.

That is, U € 7(C) if and only if

U=JU. U.=CinC2n---Cp Clec.

a€A

Also, the collection {U,} is a basis for 7 (C).



Definition [Subspace topology] Let X be a topological space and A C X
be any subset. The subspace topology 74 on A is defined as

Ta={ANU : U open in X}.

Let A C X be any subset. By the subspace A of X we mean the topo-
logical space (A, T4) where T, is the subspace topology on A.

Example 1 [Open ? Depends where...] Consider the subspace A =
0,2) of X =R.

The set [0, 1) is not open in X.

The set [0, 1) is open in A, because it can be written as

~—~— ~——
A open in X

Example 2 [Unit sphere in R"]
S UR) = {r € R” : 2] = 1}

is a subspace of R™.
The set U;" = {z € S"}(R) : x; > 0} is open in S" }(R):

Ufr=S"YR) N {z eR" : x; > 0}.

open\;n R
Example 3 [Group of n x n orthogonal matrices]
O(n)={X eM(n,R) : XTX =1,}
is a subspace of M(n, R).
The set U = {X € O(n) : det(X) > 0} is open in O(n):
U=0(n) Nn {X eMn,R) : det(X) > 0}.
open inVM(n, R)




Definition [Topological embedding| Let X and Y be topological spaces.
An injective, continuous map f : X — Y is said to be a topological em-
bedding if it is a homeomorphism onto its image f(X) (endowed with the
subspace topology).

> Intuition: we can interpret X ~ f(X) as a subspace of Y (X is simply
another label for a subspace of Y)

Theorem [Characteristic property of subspace topologies] Let XY
be topological spaces. Let A be a subspace of X. Then, amap f : YV — A
is continuous if and only if f =14 o f is continuous.

Here, 14 : A — X, 14(x) = x denotes the inclusion map of A into X.

> Intuition: continuity of the “hard” map f can be investigated through
the easier map f

Example 1 [Map into the unit sphere] The map

x
fo R —{0} — S"TI(R), f(:v)zm
is continuous, because
~ ~ x
[ R*—{0} - R", f(x)zm

is clearly continuous.



Lemma [Other properties of the subspace topology| Suppose A is a
subspace of the topological space X.

(a) The inclusion map ¢4 : A — X is continuous (in fact, a topological
embedding).

(b) If f: X =Y is continuous then f = ﬂA : A — Y is continuous.

(c) If B C A is a subspace of A, then B is a subspace of X; in other
words, the subspace topologies that B inherits from A and from X agree.

(d) If B is a basis for the topology of X, then
BA:{BQA : BEB}

is a basis for the topology of A.

(e) If X is Hausdorff and second countable then A is also Hausdorff
and second countable.

Example 1 [Map out of the unit sphere| The map
f i S"HR) — M(n,R), fla) = za”
is continuous, because
f : R" — M(n,R), ]?(13) =z’

is clearly continuous and f = ﬂsnﬂ(R).



Example 2 [Concatenating the techniques...] The map

f: On) = S"H(R), fX) = (a1 g - 2n]) = o
is continuous because

Step 1:

~

f: M(n,R) — R", f(X) =24
is clearly continuous

Step 2:

~

flow : O(n) — R, lom)(X) = 21

is continuous due to

o~

f

M(n,R) ——» R"

Lo(n i
") I AO(n)

O(n)

Step 3:
f:0(n) — S"(R), f(X) =1

is continuous due to

Rn

flO(n)/ T Lsn—l(]R)

O(n) — S (R)

Example 3 [A topological manifold] S" !(R) is a topological manifold
of dimension n — 1.



Example 4 [Another(?) topological manifold] The set of 2 x 2 special
orthogonal matrices

SO(2) = {X e M(2,R) : X" X = I, det(X) =1}

is a topological manifold of dimension 1, because the map

f: SYR) = SO(2), s (BD _ B‘ —xy}

is a homeomorphism.

Definition [Product topology]| Let X, X, ..., X, be topological spaces.
The product topology on the Cartesian product X; x X5 x -+ x X, is the
topology generated by the collection of rectangles

C={Uy xUyx---U, : U;is open in X;}.

Note that C is a basis for the product topology.
The set X; x --- x X,, equipped with the product topology is called a
product space.

Theorem [Characteristic property of product topologies| Let X; x
-+ x X, be a product space and let Y be a topological space. Then, the map
f Y —=X; x---x X, is continuous if and only if each map f; : ¥ — X,
fi = m; o f is continuous.

Here, m; : X7 x Xo x -+- x X, = X, m;(21,29,...,2,) = x; denotes the
projection map onto the ¢th factor X;.

Y

I

X1X"'XXn —>X1
b



Example 1 [Decomposing a vector in amplitude and direction]| The
map

PR ) SR SR, S = (lel ).

]

1S continuous.

Lemma [Other properties of the product topology] Let X;,..., X, be
topological spaces.

(a) The projection maps m; : X3 X -+ x X,, — X, are continuous and
open.

(b) Let ; € X, be fixed for j # i. The map
f:Xi—= Xy x--xX,, flz)= (21, .., %1, 2,251, ..., Tp)

is a topological embedding.

(c) If B, is a basis for the topology of X;, then the class
B:{le--'XBn : BZEBZ}

is a basis for the topology of the product space X; x --- x X,,.

(d) If A; is a subspace of X;, for i = 1,...,n, the product topology and
the subspace topology on A; x --- x A, C X7 x -+ x X,, are identical.

(e) If each X; is Hausdorff and second countable then the product space
X1 x -+ x X, is also Hausdorff and second countable.

Definition [Product map] If f; : X; — Y; are maps for i = 1,...,n, their
product map, written f; X --- X f,, is defined as

fix-ooxfn: Xix-ooxX, =Y X xY,,

(fi x - x fo)(xg, ... xn) = (fi(z), ..., fulzn)) .

Proposition [Product map| A product of continuous maps is continuous,
and a product of homeomorphisms is a homeomorphism.



Proposition [Product manifolds] If M, ..., M are topological manifolds
of dimensions nq, ..., n, respectively, the product space M; x --- x M} is a
topological manifold of dimension ny + - - - + ny.

> Intuition: if each X; has n; “degrees of freedom”, then X; X --- x X
has ny + -+ -+ ng “degrees of freedom”

Definition [Saturated sets, fibers] Let X and Y besetsand 7 : X — Y
be a surjective map.

A subset 7 1(y) C X for y € Y is called a fiber of 7.

A subset U C X is said to be saturated (with respect to 7)) if U = 7= 1(V)
for some subset V' C Y. Equivalent characterizations: U = 7~ (7(U)) or U
is a union of fibers.

X

Fiber 7' (y) ~ - Saturated (7=(V))

K]

Non-saturated




Example 1 Consider the surjective map

7 R2 - RY, (@) = ||z .

The fibers of 7 are the circles centered at the origin and the origin
itself.

The annulus U = {z € R? : 1 < ||z]| < 2} is a saturated set.

Each coordinate axis of R? is non-saturated.

Definition [Quotient topology]| Let X be a topological space, Y be any
set, and 7 : X — Y be a surjective map. The quotient topology on Y
induced by the map w is defined as

T.={UCY : 771(U) is open in X}.

Example 1 [Real projective space RP"] Introduce the equivalence rela-
tion ~ in X = R""! — {0}:

x o~y if and only if x and y are colinear .

Let RP" = X/ ~ denote the set of equivalence classes.
The map 7 : X — RP", x +— 7(x) = [z] is surjective.
The projective space RP" becomes a topological space by letting 7

induce the quotient topology.
The fibers of 7 are straight lines in R"™! — {0}.

Definition [Quotient map] Let X and Y be topological spaces. A surjec-
tive map f : X — Y is called a quotient map if the topology of Y coincides
with 77 (the quotient topology induced by f). This is equivalent to saying
that U is open in Y if and only if f~(U) is open in X.



Lemma [Characterization of quotient maps] Let X and Y be topolog-
ical spaces. A continuous surjective map f : X — Y is a quotient map if
and only if it takes saturated open sets to open sets, or saturated closed sets
to closed sets.

Lemma [Easy sufficient conditions for quotient maps] If f : X —» Y
is a surjective continuous map that is also an open or closed map, then it is
a quotient map.

Lemma [Composition property of quotient maps] Suppose m; : X —
Y and my : Y — Z are quotient maps. Then their composition m o my :
X — Z is also a quotient map.

Theorem [Characteristic property of quotient topologies] Let = :
X — Y be a quotient map. For any topological space B, amap f : ¥ — B
is continuous if and only if f = f o 7 is continuous.

X ~
/

Y ——» B

f

> Intuition: continuity of the “hard” map f can be investigated through
the easier map f

Example 1 [Real projective space RP"] For [x] € RP", let line([z]) be
the straight line spanned by x. Let z, € R™"! be fixed.

The map
[ RP" =R, f([z]) = dist(zo, line([z])),
is continuous, because
RV {0} S R, F@) = || (I — z(aTz) 2T ao|

is clearly continuous.
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Corollary [Passing to the quotient] Suppose 7 : X — Y is a quotient
map, B is a topological space, and f : X — B is any continuous map that is
constant on the fibers of 7 (that is, if 7(p) = w(¢q) then f(p) = f(q)) Then,
there exists an unique continuous map f : Y — B such that f: fom:

|\

Y —» B

Example 1 [Elementary descent to RP"] Let xy € R"" — {0} be fixed.
The map

ol |

FiR™ {0} >R, f(z) = arccos <M> :

is continuous and descends to a continuous map in RP".

Definition [Group] A group is an ordered pair (G, *) consisting of a set
G and a binary operation * : G x G — G such that i) [associativity] for
every x,y,z € G we have (x*xy)*z = xx (y+*2), ii) [identity] thereis e € G
such that e x 2 = x xe = e for all z € G, and iii) [inverse] for each z € G
there is a y € G such that xxy =y *xx =e.

If the operation * can be understood from the context, the group (G, *)
is simply denoted by G. Also, the symbol * is usually dropped and we write
xy instead of x * y.

11



Lemma [Elementary properties of groups] Let (G, *) be a group.

(a) The identity element is unique (and is usually denoted by e), that
is, if e1,e9 € G satisfy e; xx = v xe; = x for all z € G and ¢ € {1,2}, then
€1 = €9

(b) The inverse is unique (and is usually denoted by z~!), that is, if
for a given x € G, the elements y;,y, € G satisty x xy; = y; xx = e for
i € {1,2}, then y; = ys.

Example 1 [General linear group] GL(n,R) is a group with matrix mul-
tiplication as the group operation. The identity element of the group
is I,,. The inverse of A is A~!.

Example 2 [Group of orthogonal matrices] O(n) is a group with matrix
multiplication as the group operation.

Example 3 [Group of special orthogonal matrices]
SO(n) ={X € O(n) : det(X) =1}
is a group with matrix multiplication as the group operation.

Example 4 [Upper triangular matrices with positive diagonal en-
tries] The set

Ut(n,R) ={X € M(n,R) : X is upper-triangular and X;; > 0 for all i }
is a group with matrix multiplication as the group operation.

Example 5 [Group of rigid motions in R"] The set

SE(n) = {[%3 ﬂ : QeSO(n),aeRn}

is a group with matrix multiplication as the group operation.

12



Definition [Subgroup, left translation, right translation, homomor-
phism, kernel of a homomorphism] Let (G, %) be a group.

A subgroup of GG is a set H C G such that e € H, x x y € H whenever
x,y € H, and x~! € H whenever z € H.

For each g € G, we define the left translation map L, : G — G, Ly(x) =
g*x. Similarly, we have the right translation map R, : G — G, Ry(z) = x*g.

Let (H,*) denote a group with identity element €. A map F' : G — H
is said to be a homomorphism if F(x xy) = F(z)*F(y) for all z,y € G. The
kernel of F' is defined as

Ker F={zxeG: F(x)=¢}.

Note that Ker F' is a subgroup of G.

Example 1 [Subgroups of the general linear group] O(n), SO(n) and
U™ (n,R) are subgroups of GL(n,R).

SE(n) is a subgroup of GL(n + 1, R).
Example 2 [Homomorphism] The map
F : GL(n,R) — GL(1,R), F(X) = det(X),
is a homomorphism.

Example 3 [Generalization of the previous result] The map

F:GL(n,R)eGL((Z),R), f(X) = X™,

is a homomorphism (Cauchy-Binet formula).
Definition [Topological group] Let G be a group which is at the same
time a topological space. Then, G is said to be a topological group if the

maps m : G x G — G, m(z,y) = zy and ¢ : G — G, 1(z) = 27! are
continuous.

13



Example 1 [Famous topological groups] GL(n,R), O(n), SO(n), UT(n,R)
and SE(n) are topological groups.

Definition [Group action] Let G be a group and X be a set. A left action
of Gon X isamap 0 : G x X — X such that i) 0(e,z) = z for all z € X
and ii) 0(g,0(h,x)) = 0(gh,z) for all g,h € G and =z € X.

If the action 6 is clear from the context, we write gz instead of 6(g, z).
Thus, a left action satisfies ex = = and g(hx) = (gh)z.

A right action of G on X isamap 6 : X xG — X such that i) 6(z,e) = x
for all z € X and ii) 0(0(g,z),h) = 0(x,gh) for all g,h € G and = € X.

If G is a topological group and X is a topological space, the action is said
to be continuous if # is continuous.

Example 1 [GL(n,R) acts on R"] The map
0 : GL(n,R) x R" — R", 0(A,x) = Az,

defines a continuous left action of GL(n,R) on R".

This is called the natural action of GL(n,R) on R".
Example 2 [O(n) acts on S(n,R)] Let
S(n,R) = {X ¢ M(n,R) : X = X*}

denote the set of n x n symmetric matrices with real entries.

The map
0 : O(n) x S(n,R) — S(n,R), 0(Q.5) =QSQ",

defines a continuous left action of O(n) on S(n,R).

14



Lemma [Continuous left actions] Let § : G x X — X be a continuous
left action of G on X. For each g € G, the map

0, - X — X, 0y(x) =0(g, ) = gx
is a homeomorphism.

> Proof: The map 0, is bijective because the map 0,1 is a left and right
inverse for it, that is, 000,11 = 0,1 00, = idx. The map 0, is continuous
because it is the composition of two continuous maps: 0, = 6 o4, where
Ly G— GxX, 14(x) = (g,2). It is a homeomorphism because its inverse
is given by 0,1, which is continuous]

Definition [Orbits,free/transitive actions,invariants,maximal invari-
ants] Let 0 : G x X — X denote a left action of the group G on a set X.

The orbit of p € X is the set Gp = {0(g,p) : g € G}.

The action is said to be transitive if, for any given p,q € X there exists
g € G such that 0(g,p) = q.

The action is said to be free if (g, p) = p implies g = e.

An invariant of the action is a map ¢ : X — Y (where Y denotes a set)
which is constant on orbits, that is, x,y € Gp imply ¢(z) = ¢(y).

A maximal invariant of the action is an invariant ¢ which differs from
orbit to orbit, that is, x € Gy implies ¢(z) # ¢(y).

> Intuition: when an action 1is transitive, there is only one orbit. If the
action s free, each orbit is a “copy” of G. A mazximal invariant permits to
index the orbits.

Example 1 The natural action of GL(n,R) on R” is not transitive (it has

two orbits, namely, {0} and R™ — {0}), it is not free and a maximal
invariant is ¢ : R* — R, ¢(0) =0 and ¢(z) =1 if 2 # 0.

Example 2 The action of O(n) on S(n,R) discussed above is not transitive,
it is not free and a maximal invariant is ¢ : S(n,R) — R",

B(S) = (A(S), A2(S), ..., A(S)T,

where A1 (S) > Aa(S) > -+ > A\, (5) denote the eigenvalues of S sorted
in non-increasing order.

15



Definition [Orbit space] Let 6 : G x X — X denote a continuous action
of the topological group G on the topological space X.

Introduce an equivalence relation on X by declaring x ~ y if they share
the same orbit, that is, x ~ y if and only if there exists ¢ € G such that
y=10(g,2).

The set of equivalence classes is denoted by X /G and is called the orbit
space of the action.

Lemma [Orbit space| Suppose the topological group G acts continuously
on the left of the topological space X. Let X/G be given the quotient topol-
ogy.

(a) The projection map 7 : X — X/G is open.

(b) If X is second countable, then X/G is second countable.

(¢) X/G is Hausdorff if and only if the set

A={(p,q) € X x X : q=10(g,p) for some g € G}
is closed in X x X.

> Proof: (a) Let U be open in X. We must show that w(U) is open in
X/@G, that is, V. =7 (n(U)) 1s open in X. But

V= U eg(U)>
geG

where 0, : X — X, 0,(x) = gx. Since each 8, is a homeomorphism, 0,(U)
is open in X. Thus, V is open in X. (b) If B is a countable basis for X,
then m(B) = {m(B) : B € B} is a countable basis for X/G. (c) (=) Let
(x,y) € A. Thus, x and y lie in distinct orbits, that is, m(x) # w(y). Since
X/G is Hausdorff, let U and V be disjoint neighborhoods of w(x) and w(y),
respectively. Then, 7= (U) x 7=1(V) is open in X x X, contains (z,y) and
does not intersect A (why?). Thus, the complement of A in X x X is open.
(<) Let w(x) and 7(y) be two distinct points in X/G. Then, (x,y) ¢ A. Let
U and V' be neighborhoods of x and y, respectively, such that U x V does not
intersect A. Then, 7(U) and 7(V') are disjoint neighborhoods of m(x) and
7(y), respectively (why?)O]
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Example 1 [Projective space RP"] Let G = GL(1,R) act continuously on
X =R —{0}asf : Gx X — X, 0(\, z) = \z. Then, RP" = X/G.

RP" is second countable.
RP" is Hausdorfl because
A={(z,y) € X x X : x and y are in the same orbit}

is closed: it can be written as A = f~1({0}) where f if the continuous
map

fiXxX-R, fla,y) = (@"2)(y"y) — («Ty)*.

Lemma [Product of open maps is open| Let A, B, X,Y be topological
spaces. Let f : A— X and g : B — Y be open maps. Then, the product
map

fxg:AxB—=XxY  (fxg)ab) = (f(a),g(b))

is open.

> Proof: Let W be an open set in A x B. Then, W may be written as a
union of rectangles
w=JUuixV,

where each U; in open in A and each V; is open in B. We have

(fxg)(W) = (fxg) (Uva> U(f><g )(U: x Vi) Uf

Since f(U;) is open in X and g(V;) is open in'Y (by hypothesis), then f(U;) x
g(V;) is open in X x Y. Since W is an union of open sets, it is open]

Lemma [Hybrid spaces] Let the topological group G act continuously on
the left of the topological space X. Let the orbit space X/G be given the
quotient topology and let m : X — X/G be the corresponding projection
map. Let Y be any topological space. Then, the map

T xidy : X xY = (X/G)xY (7 xidy)(z,y) = (x(2),y)

17



is a quotient map.

> Proof: To abbreviate notation, let f = w x idy. The map f is clearly
surjective and continuous. Thus, if we show that f is an open map, we are
done. Now, bothm : X — X/G and idy : Y — Y are open maps. Since
f =m xidy is the product of open maps, it is itself open]

Corollary [Hybrid spaces| Let the topological group G act continuously
on the left of the topological space X. Let the orbit space X/G be given the
quotient topology and let m : X — X/G be the corresponding projection
map. Let Y and B be any topological spaces. Then, the map f o (X/G) x
Y — B is continuous if and only if the map f XxY — B, f fo(mxidy)
is continuous.

X xY

|\
7T><idy

(X/G) x Y — 5

> Intuition: continuity of the “hard” map f can be investigated through
the easier map f

Example 1 [Projective space RP" '] We write a matrix P € M(n, k, R)
is columns:
P=[pip2 - pil.

Consider the map

T

k
f o RP"! x M(n,k,R) — R => s H Hzp]

j=1

In geometric terms, the map f computes the total squared distance
from the constellation of points {p1,pa2, ..., pr} to the straight line [z].
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line [z] .\\ £ g
p2 \“ .
e« ¢
»
>
P
.\
The map f is continuous because
~ ~ k rxl
frR = {0} xM(n, k. R) =R f(z,P) = |lp; - TR
j=1

is clearly continuous.
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