Nonlinear Signal Processing (2004/2005)

jxavier@isr.ist.utl.pt
New Spaces from Old
Three basic mechanisms : \(\left\{\begin{array}{l}subspaces
Cartesian products
quotients\end{array}\right.\)

Definition [Topology generated by a class of subsets] Let X be a nonempty set and \mathcal{C} a class of subsets of X. The topology generated by \mathcal{C}, written $\mathcal{T}(\mathcal{C})$, is defined as the smallest topology containing the class \mathcal{C}.

Lemma [Characterization of generated topologies] Let X be a nonempty set and \mathcal{C} a class of subsets of X. Then $\mathcal{T}(\mathcal{C})$ is the class of all unions of finite intersections of sets in \mathcal{C}.

That is, $U \in \mathcal{T}(\mathcal{C})$ if and only if

$$
U=\bigcup_{\alpha \in A} U_{\alpha}, \quad U_{\alpha}=C_{\alpha}^{1} \cap C_{\alpha}^{2} \cap \cdots C_{\alpha}^{n}, \quad C_{\alpha}^{i} \in \mathcal{C}
$$

Also, the collection $\left\{U_{\alpha}\right\}$ is a basis for $\mathcal{T}(\mathcal{C})$.

Definition [Subspace topology] Let X be a topological space and $A \subset X$ be any subset. The subspace topology \mathcal{T}_{A} on A is defined as

$$
\mathcal{T}_{A}=\{A \cap U: U \text { open in } X\} .
$$

Let $A \subset X$ be any subset. By the subspace A of X we mean the topological space $\left(A, \mathcal{T}_{A}\right)$ where \mathcal{T}_{A} is the subspace topology on A.

Example 1 [Open ? Depends where...] Consider the subspace $A=$ $[0,2)$ of $X=\mathbb{R}$.
The set $[0,1)$ is not open in X.
The set $[0,1)$ is open in A, because it can be written as

$$
[0,1)=\underbrace{[0,2)}_{A} \cap \underbrace{(-1,1)}_{\text {open in } X}
$$

Example 2 [Unit sphere in \mathbb{R}^{n}]

$$
\mathrm{S}^{n-1}(\mathbb{R})=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}
$$

is a subspace of \mathbb{R}^{n}.
The set $U_{i}^{+}=\left\{x \in \mathrm{~S}^{n-1}(\mathbb{R}): x_{i}>0\right\}$ is open in $\mathrm{S}^{n-1}(\mathbb{R})$:

$$
U_{i}^{+}=\mathrm{S}^{n-1}(\mathbb{R}) \cap \underbrace{\left\{x \in \mathbb{R}^{n}: x_{i}>0\right\}}_{\text {open in } \mathbb{R}^{n}}
$$

Example 3 [Group of $n \times n$ orthogonal matrices]

$$
\mathrm{O}(n)=\left\{X \in \mathrm{M}(n, \mathbb{R}): X^{T} X=I_{n}\right\}
$$

is a subspace of $\mathrm{M}(n, \mathbb{R})$.
The set $U=\{X \in \mathrm{O}(n): \operatorname{det}(X)>0\}$ is open in $\mathrm{O}(n)$:

$$
U=\mathrm{O}(n) \cap \underbrace{\{X \in \mathrm{M}(n, \mathbb{R}): \operatorname{det}(X)>0\}}_{\text {open in } \mathrm{M}(n, \mathbb{R})}
$$

Definition [Topological embedding] Let X and Y be topological spaces. An injective, continuous map $f: X \rightarrow Y$ is said to be a topological embedding if it is a homeomorphism onto its image $f(X)$ (endowed with the subspace topology).
\triangleright Intuition: we can interpret $X \simeq f(X)$ as a subspace of $Y(X$ is simply another label for a subspace of Y)

Theorem [Characteristic property of subspace topologies] Let X, Y be topological spaces. Let A be a subspace of X. Then, a map $f: Y \rightarrow A$ is continuous if and only if $\widehat{f}=\iota_{A} \circ f$ is continuous.

Here, $\iota_{A}: A \rightarrow X, \iota_{A}(x)=x$ denotes the inclusion map of A into X.

\triangleright Intuition: continuity of the "hard" map f can be investigated through the easier map \widehat{f}

Example 1 [Map into the unit sphere] The map

$$
f: \mathbb{R}^{n}-\{0\} \rightarrow \mathrm{S}^{n-1}(\mathbb{R}), \quad f(x)=\frac{x}{\|x\|}
$$

is continuous, because

$$
\widehat{f}: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}^{n}, \quad \widehat{f}(x)=\frac{x}{\|x\|}
$$

is clearly continuous.

Lemma [Other properties of the subspace topology] Suppose A is a subspace of the topological space X.
(a) The inclusion map $\iota_{A}: A \rightarrow X$ is continuous (in fact, a topological embedding).
(b) If $\widehat{f}: X \rightarrow Y$ is continuous then $f=\left.\widehat{f}\right|_{A}: A \rightarrow Y$ is continuous.
(c) If $B \subset A$ is a subspace of A, then B is a subspace of X; in other words, the subspace topologies that B inherits from A and from X agree.
(d) If \mathcal{B} is a basis for the topology of X, then

$$
\mathcal{B}_{A}=\{B \cap A: B \in \mathcal{B}\}
$$

is a basis for the topology of A.
(e) If X is Hausdorff and second countable then A is also Hausdorff and second countable.

Example 1 [Map out of the unit sphere] The map

$$
f: \mathrm{S}^{n-1}(\mathbb{R}) \rightarrow \mathrm{M}(n, \mathbb{R}), \quad f(x)=x x^{T}
$$

is continuous, because

$$
\widehat{f}: \mathbb{R}^{n} \rightarrow \mathrm{M}(n, \mathbb{R}), \quad \widehat{f}(x)=x x^{T}
$$

is clearly continuous and $f=\left.\widehat{f}\right|_{S^{n-1}(\mathbb{R})}$.

Example 2 [Concatenating the techniques...] The map

$$
f: \mathrm{O}(n) \rightarrow \mathrm{S}^{n-1}(\mathbb{R}), \quad f(X)=f\left(\left[x_{1} x_{2} \cdots x_{n}\right]\right)=x_{1}
$$

is continuous because

Step 1:

$$
\widehat{f}: \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n}, \quad f(X)=x_{1}
$$

is clearly continuous
Step 2:

$$
\left.\widehat{f}\right|_{\mathrm{O}(n)}: \mathrm{O}(n) \rightarrow \mathbb{R}^{n},\left.\quad \widehat{f}\right|_{\mathrm{O}(n)}(X)=x_{1}
$$

is continuous due to

Step 3:

$$
f: \mathrm{O}(n) \rightarrow \mathrm{S}^{n-1}(\mathbb{R}), \quad f(X)=x_{1}
$$

is continuous due to

Example 3 [A topological manifold] $\mathrm{S}^{n-1}(\mathbb{R})$ is a topological manifold of dimension $n-1$.

Example 4 [Another(?) topological manifold] The set of 2×2 special orthogonal matrices

$$
\mathrm{SO}(2)=\left\{X \in \mathrm{M}(2, \mathbb{R}): X^{T} X=I_{2}, \operatorname{det}(X)=1\right\}
$$

is a topological manifold of dimension 1, because the map

$$
f: \mathrm{S}^{1}(\mathbb{R}) \rightarrow \mathrm{SO}(2), \quad f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
x & -y \\
y & x
\end{array}\right]
$$

is a homeomorphism.

Definition [Product topology] Let $X_{1}, X_{2}, \ldots, X_{n}$ be topological spaces. The product topology on the Cartesian product $X_{1} \times X_{2} \times \cdots \times X_{n}$ is the topology generated by the collection of rectangles

$$
\mathcal{C}=\left\{U_{1} \times U_{2} \times \cdots U_{n}: U_{i} \text { is open in } X_{i}\right\} .
$$

Note that \mathcal{C} is a basis for the product topology.
The set $X_{1} \times \cdots \times X_{n}$ equipped with the product topology is called a product space.

Theorem [Characteristic property of product topologies] Let $X_{1} \times$ $\cdots \times X_{n}$ be a product space and let Y be a topological space. Then, the map $f: Y \rightarrow X_{1} \times \cdots \times X_{n}$ is continuous if and only if each map $f_{i}: Y \rightarrow X_{i}$, $f_{i}=\pi_{i} \circ f$ is continuous.

Here, $\pi_{i}: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X_{i}, \pi_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$ denotes the projection map onto the i th factor X_{i}.

Example 1 [Decomposing a vector in amplitude and direction] The map

$$
f: \mathbb{R}^{n}-\{0\} \rightarrow \mathbb{R}^{+} \times \mathrm{S}^{n-1}(\mathbb{R}), \quad f(x)=\left(\|x\|, \frac{x}{\|x\|}\right)
$$

is continuous.

Lemma [Other properties of the product topology] Let X_{1}, \ldots, X_{n} be topological spaces.
(a) The projection maps $\pi_{i}: X_{1} \times \cdots \times X_{n} \rightarrow X_{i}$ are continuous and open.
(b) Let $x_{j} \in X_{j}$ be fixed for $j \neq i$. The map

$$
f: X_{i} \rightarrow X_{1} \times \cdots \times X_{n}, \quad f(x)=\left(x_{1}, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_{n}\right)
$$

is a topological embedding.
(c) If \mathcal{B}_{i} is a basis for the topology of X_{i}, then the class

$$
\mathcal{B}=\left\{B_{1} \times \cdots \times B_{n}: B_{i} \in \mathcal{B}_{i}\right\}
$$

is a basis for the topology of the product space $X_{1} \times \cdots \times X_{n}$.
(d) If A_{i} is a subspace of X_{i}, for $i=1, \ldots, n$, the product topology and the subspace topology on $A_{1} \times \cdots \times A_{n} \subset X_{1} \times \cdots \times X_{n}$ are identical.
(e) If each X_{i} is Hausdorff and second countable then the product space $X_{1} \times \cdots \times X_{n}$ is also Hausdorff and second countable.

Definition [Product map] If $f_{i}: X_{i} \rightarrow Y_{i}$ are maps for $i=1, \ldots, n$, their product map, written $f_{1} \times \cdots \times f_{n}$, is defined as

$$
\begin{gathered}
f_{1} \times \cdots \times f_{n}: X_{1} \times \cdots \times X_{n} \rightarrow Y_{1} \times \cdots \times Y_{n} \\
\left(f_{1} \times \cdots \times f_{n}\right)\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right) .
\end{gathered}
$$

Proposition [Product map] A product of continuous maps is continuous, and a product of homeomorphisms is a homeomorphism.

Proposition [Product manifolds] If M_{1}, \ldots, M_{k} are topological manifolds of dimensions n_{1}, \ldots, n_{k}, respectively, the product space $M_{1} \times \cdots \times M_{k}$ is a topological manifold of dimension $n_{1}+\cdots+n_{k}$.
\triangleright Intuition: if each X_{i} has n_{i} "degrees of freedom", then $X_{1} \times \cdots \times X_{k}$ has $n_{1}+\cdots+n_{k}$ "degrees of freedom"

Definition [Saturated sets, fibers] Let X and Y be sets and $\pi: X \rightarrow Y$ be a surjective map.

A subset $\pi^{-1}(y) \subset X$ for $y \in Y$ is called a fiber of π.
A subset $U \subset X$ is said to be saturated (with respect to π) if $U=\pi^{-1}(V)$ for some subset $V \subset Y$. Equivalent characterizations: $U=\pi^{-1}(\pi(U))$ or U is a union of fibers.

Example 1 Consider the surjective map

$$
\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}_{0}^{+}, \quad \pi(x)=\|x\|
$$

The fibers of π are the circles centered at the origin and the origin itself.

The annulus $U=\left\{x \in \mathbb{R}^{2}: 1<\|x\|<2\right\}$ is a saturated set.
Each coordinate axis of \mathbb{R}^{2} is non-saturated.

Definition [Quotient topology] Let X be a topological space, Y be any set, and $\pi: X \rightarrow Y$ be a surjective map. The quotient topology on Y induced by the map π is defined as

$$
\mathcal{T}_{\pi}=\left\{U \subset Y: \pi^{-1}(U) \text { is open in } X\right\} .
$$

Example 1 [Real projective space \mathbb{R}^{P}] Introduce the equivalence relation \sim in $X=\mathbb{R}^{n+1}-\{0\}:$
$x \sim y \quad$ if and only if $\quad x$ and y are colinear .
Let $\mathbb{R} \mathbb{P}^{n}=X / \sim$ denote the set of equivalence classes.
The map $\pi: X \rightarrow \mathbb{R P}^{n}, x \mapsto \pi(x)=[x]$ is surjective.
The projective space $\mathbb{R P}^{n}$ becomes a topological space by letting π induce the quotient topology.

The fibers of π are straight lines in $\mathbb{R}^{n+1}-\{0\}$.

Definition [Quotient map] Let X and Y be topological spaces. A surjective map $f: X \rightarrow Y$ is called a quotient map if the topology of Y coincides with \mathcal{T}_{f} (the quotient topology induced by f). This is equivalent to saying that U is open in Y if and only if $f^{-1}(U)$ is open in X.

Lemma [Characterization of quotient maps] Let X and Y be topological spaces. A continuous surjective map $f: X \rightarrow Y$ is a quotient map if and only if it takes saturated open sets to open sets, or saturated closed sets to closed sets.

Lemma [Easy sufficient conditions for quotient maps] If $f: X \rightarrow Y$ is a surjective continuous map that is also an open or closed map, then it is a quotient map.

Lemma [Composition property of quotient maps] Suppose $\pi_{1}: X \rightarrow$ Y and $\pi_{2}: Y \rightarrow Z$ are quotient maps. Then their composition $\pi_{2} \circ \pi_{1}$: $X \rightarrow Z$ is also a quotient map.

Theorem [Characteristic property of quotient topologies] Let π : $X \rightarrow Y$ be a quotient map. For any topological space B, a map $f: Y \rightarrow B$ is continuous if and only if $\widehat{f}=f \circ \pi$ is continuous.

\triangleright Intuition: continuity of the "hard" map f can be investigated through the easier map \widehat{f}

Example 1 [Real projective space $\left.\mathbb{R}^{\mathbb{P}^{n}}\right]$ For $[x] \in \mathbb{R P}^{n}$, let line $([x])$ be the straight line spanned by x. Let $x_{0} \in \mathbb{R}^{n+1}$ be fixed.
The map

$$
f: \mathbb{R P}^{n} \rightarrow \mathbb{R}, \quad f([x])=\operatorname{dist}\left(x_{0}, \text { line }([x])\right)
$$

is continuous, because

$$
\widehat{f}: \mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{R}, \quad \widehat{f}(x)=\left\|\left(I_{n}-x\left(x^{T} x\right)^{-1} x^{T}\right) x_{0}\right\|
$$

is clearly continuous.

Corollary [Passing to the quotient] Suppose $\pi: X \rightarrow Y$ is a quotient map, B is a topological space, and $\widehat{f}: X \rightarrow B$ is any continuous map that is constant on the fibers of π (that is, if $\pi(p)=\pi(q)$ then $\widehat{f}(p)=\widehat{f}(q)$). Then, there exists an unique continuous map $f: Y \rightarrow B$ such that $\widehat{f}=f \circ \pi$:

Example 1 [Elementary descent to $\mathbb{R P}^{n}$] Let $x_{0} \in \mathbb{R}^{n+1}-\{0\}$ be fixed. The map

$$
\widehat{f}: \mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{R}, \quad \widehat{f}(x)=\arccos \left(\frac{\left|x_{0}^{T} x\right|}{\left\|x_{0}\right\|\|x\|}\right)
$$

is continuous and descends to a continuous map in $\mathbb{R P}^{n}$.

Definition [Group] A group is an ordered pair $(G, *)$ consisting of a set G and a binary operation $*: G \times G \rightarrow G$ such that i) [associativity] for every $x, y, z \in G$ we have $(x * y) * z=x *(y * z)$, ii) [identity] there is $e \in G$ such that $e * x=x * e=e$ for all $x \in G$, and iii) [inverse] for each $x \in G$ there is a $y \in G$ such that $x * y=y * x=e$.

If the operation $*$ can be understood from the context, the group $(G, *)$ is simply denoted by G. Also, the symbol $*$ is usually dropped and we write $x y$ instead of $x * y$.

Lemma [Elementary properties of groups] Let $(G, *)$ be a group.
(a) The identity element is unique (and is usually denoted by e), that is, if $e_{1}, e_{2} \in G$ satisfy $e_{i} * x=x * e_{i}=x$ for all $x \in G$ and $i \in\{1,2\}$, then $e_{1}=e_{2}$
(b) The inverse is unique (and is usually denoted by x^{-1}), that is, if for a given $x \in G$, the elements $y_{1}, y_{2} \in G$ satisfy $x * y_{i}=y_{i} * x=e$ for $i \in\{1,2\}$, then $y_{1}=y_{2}$.

Example 1 [General linear group] $\mathrm{GL}(n, \mathbb{R})$ is a group with matrix multiplication as the group operation. The identity element of the group is I_{n}. The inverse of A is A^{-1}.

Example 2 [Group of orthogonal matrices] $\mathrm{O}(n)$ is a group with matrix multiplication as the group operation.

Example 3 [Group of special orthogonal matrices]

$$
\mathrm{SO}(n)=\{X \in \mathrm{O}(n): \operatorname{det}(X)=1\}
$$

is a group with matrix multiplication as the group operation.
Example 4 [Upper triangular matrices with positive diagonal entries] The set
$U^{+}(n, \mathbb{R})=\left\{X \in \mathrm{M}(n, \mathbb{R}): X\right.$ is upper-triangular and $X_{i i}>0$ for all i $\}$
is a group with matrix multiplication as the group operation.
Example 5 [Group of rigid motions in \mathbb{R}^{n}] The set

$$
\mathrm{SE}(n)=\left\{\left[\begin{array}{cc}
Q & \delta \\
0 & 1
\end{array}\right]: Q \in \mathrm{SO}(n), \delta \in \mathbb{R}^{n}\right\}
$$

is a group with matrix multiplication as the group operation.

Definition [Subgroup, left translation, right translation, homomorphism, kernel of a homomorphism] Let $(G, *)$ be a group.

A subgroup of G is a set $H \subset G$ such that $e \in H, x * y \in H$ whenever $x, y \in H$, and $x^{-1} \in H$ whenever $x \in H$.

For each $g \in G$, we define the left translation map $L_{g}: G \rightarrow G, L_{g}(x)=$ $g * x$. Similarly, we have the right translation map $R_{g}: G \rightarrow G, R_{g}(x)=x * g$.

Let $(H, \widetilde{*})$ denote a group with identity element \widetilde{e}. A map $F: G \rightarrow H$ is said to be a homomorphism if $F(x * y)=F(x) \widetilde{*} F(y)$ for all $x, y \in G$. The kernel of F is defined as

$$
\operatorname{Ker} F=\{x \in G: F(x)=\widetilde{e}\} .
$$

Note that $\operatorname{Ker} F$ is a subgroup of G.

Example 1 [Subgroups of the general linear group] $\mathrm{O}(n), \mathrm{SO}(n)$ and $\mathrm{U}^{+}(n, \mathbb{R})$ are subgroups of $\mathrm{GL}(n, \mathbb{R})$.
$\mathrm{SE}(n)$ is a subgroup of $\mathrm{GL}(n+1, \mathbb{R})$.
Example 2 [Homomorphism] The map

$$
F: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(1, \mathbb{R}), \quad F(X)=\operatorname{det}(X)
$$

is a homomorphism.
Example 3 [Generalization of the previous result] The map

$$
F: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}\left(\binom{n}{k}, \mathbb{R}\right), \quad f(X)=X^{[k]}
$$

is a homomorphism (Cauchy-Binet formula).

Definition [Topological group] Let G be a group which is at the same time a topological space. Then, G is said to be a topological group if the maps $m: G \times G \rightarrow G, m(x, y)=x y$ and $\iota: G \rightarrow G, \iota(x)=x^{-1}$ are continuous.

Example 1 [Famous topological groups] $\mathrm{GL}(n, \mathbb{R}), \mathrm{O}(n), \mathrm{SO}(n), \mathrm{U}^{+}(n, \mathbb{R})$ and $\mathrm{SE}(n)$ are topological groups.

Definition [Group action] Let G be a group and X be a set. A left action of G on X is a map $\theta: G \times X \rightarrow X$ such that i) $\theta(e, x)=x$ for all $x \in X$ and ii) $\theta(g, \theta(h, x))=\theta(g h, x)$ for all $g, h \in G$ and $x \in X$.

If the action θ is clear from the context, we write $g x$ instead of $\theta(g, x)$. Thus, a left action satisfies $e x=x$ and $g(h x)=(g h) x$.

A right action of G on X is a map $\theta: X \times G \rightarrow X$ such that $\mathbf{i}) \theta(x, e)=x$ for all $x \in X$ and ii) $\theta(\theta(g, x), h)=\theta(x, g h)$ for all $g, h \in G$ and $x \in X$.

If G is a topological group and X is a topological space, the action is said to be continuous if θ is continuous.

Example $1\left[G L(n, \mathbb{R})\right.$ acts on $\left.\mathbb{R}^{n}\right]$ The map

$$
\theta: \mathrm{GL}(n, \mathbb{R}) \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \theta(A, x)=A x
$$

defines a continuous left action of $\mathrm{GL}(n, \mathbb{R})$ on \mathbb{R}^{n}.
This is called the natural action of $\mathrm{GL}(n, \mathbb{R})$ on \mathbb{R}^{n}.
Example $2[\mathrm{O}(n)$ acts on $\mathrm{S}(n, \mathbb{R})]$ Let

$$
\mathrm{S}(n, \mathbb{R})=\left\{X \in \mathrm{M}(n, \mathbb{R}): X=X^{T}\right\}
$$

denote the set of $n \times n$ symmetric matrices with real entries.
The map

$$
\theta: \mathrm{O}(n) \times \mathrm{S}(n, \mathbb{R}) \rightarrow \mathrm{S}(n, \mathbb{R}), \quad \theta(Q, S)=Q S Q^{T}
$$

defines a continuous left action of $\mathrm{O}(n)$ on $\mathrm{S}(n, \mathbb{R})$.

Lemma [Continuous left actions] Let $\theta: G \times X \rightarrow X$ be a continuous left action of G on X. For each $g \in G$, the map

$$
\theta_{g}: X \rightarrow X, \quad \theta_{g}(x)=\theta(g, x)=g x
$$

is a homeomorphism.
\triangleright Proof: The map θ_{g} is bijective because the map $\theta_{g^{-1}}$ is a left and right inverse for it, that is, $\theta_{g} \circ \theta_{g^{-1}}=\theta_{g^{-1}} \circ \theta_{g}=\mathrm{id}_{X}$. The map θ_{g} is continuous because it is the composition of two continuous maps: $\theta_{g}=\theta \circ \iota_{g}$, where $\iota_{g}: G \rightarrow G \times X, \iota_{g}(x)=(g, x)$. It is a homeomorphism because its inverse is given by $\theta_{g^{-1}}$, which is continuous \square

Definition [Orbits,free/transitive actions,invariants,maximal invariants] Let $\theta: G \times X \rightarrow X$ denote a left action of the group G on a set X.

The orbit of $p \in X$ is the set $G p=\{\theta(g, p): g \in G\}$.
The action is said to be transitive if, for any given $p, q \in X$ there exists $g \in G$ such that $\theta(g, p)=q$.

The action is said to be free if $\theta(g, p)=p$ implies $g=e$.
An invariant of the action is a map $\phi: X \rightarrow Y$ (where Y denotes a set) which is constant on orbits, that is, $x, y \in G p$ imply $\phi(x)=\phi(y)$.

A maximal invariant of the action is an invariant ϕ which differs from orbit to orbit, that is, $x \notin G y$ implies $\phi(x) \neq \phi(y)$.
\triangleright Intuition: when an action is transitive, there is only one orbit. If the action is free, each orbit is a "copy" of G. A maximal invariant permits to index the orbits.

Example 1 The natural action of $\mathrm{GL}(n, \mathbb{R})$ on \mathbb{R}^{n} is not transitive (it has two orbits, namely, $\{0\}$ and $\left.\mathbb{R}^{n}-\{0\}\right)$, it is not free and a maximal invariant is $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}, \phi(0)=0$ and $\phi(x)=1$ if $x \neq 0$.

Example 2 The action of $\mathrm{O}(n)$ on $\mathrm{S}(n, \mathbb{R})$ discussed above is not transitive, it is not free and a maximal invariant is $\phi: \mathrm{S}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n}$,

$$
\phi(S)=\left(\lambda_{1}(S), \lambda_{2}(S), \ldots, \lambda_{n}(S)\right)^{T}
$$

where $\lambda_{1}(S) \geq \lambda_{2}(S) \geq \cdots \geq \lambda_{n}(S)$ denote the eigenvalues of S sorted in non-increasing order.

Definition [Orbit space] Let $\theta: G \times X \rightarrow X$ denote a continuous action of the topological group G on the topological space X.

Introduce an equivalence relation on X by declaring $x \sim y$ if they share the same orbit, that is, $x \sim y$ if and only if there exists $g \in G$ such that $y=\theta(g, x)$.

The set of equivalence classes is denoted by X / G and is called the orbit space of the action.

Lemma [Orbit space] Suppose the topological group G acts continuously on the left of the topological space X. Let X / G be given the quotient topology.
(a) The projection map $\pi: X \rightarrow X / G$ is open.
(b) If X is second countable, then X / G is second countable.
(c) X / G is Hausdorff if and only if the set

$$
A=\{(p, q) \in X \times X: q=\theta(g, p) \text { for some } g \in G\}
$$

is closed in $X \times X$.
\triangleright Proof: (a) Let U be open in X. We must show that $\pi(U)$ is open in X / G, that is, $V=\pi^{-1}(\pi(U))$ is open in X. But

$$
V=\bigcup_{g \in G} \theta_{g}(U),
$$

where $\theta_{g}: X \rightarrow X, \theta_{g}(x)=g x$. Since each θ_{g} is a homeomorphism, $\theta_{g}(U)$ is open in X. Thus, V is open in X. (b) If \mathcal{B} is a countable basis for X, then $\pi(\mathcal{B})=\{\pi(B): B \in \mathcal{B}\}$ is a countable basis for X / G. (c) (\Rightarrow) Let $(x, y) \notin A$. Thus, x and y lie in distinct orbits, that is, $\pi(x) \neq \pi(y)$. Since X / G is Hausdorff, let U and V be disjoint neighborhoods of $\pi(x)$ and $\pi(y)$, respectively. Then, $\pi^{-1}(U) \times \pi^{-1}(V)$ is open in $X \times X$, contains (x, y) and does not intersect A (why?). Thus, the complement of A in $X \times X$ is open. (\Leftarrow) Let $\pi(x)$ and $\pi(y)$ be two distinct points in X / G. Then, $(x, y) \notin A$. Let U and V be neighborhoods of x and y, respectively, such that $U \times V$ does not intersect A. Then, $\pi(U)$ and $\pi(V)$ are disjoint neighborhoods of $\pi(x)$ and $\pi(y)$, respectively (why?)

Example 1 [Projective space $\mathbb{R P}^{n}$] Let $G=\mathrm{GL}(1, \mathbb{R})$ act continuously on $X=\mathbb{R}^{n+1}-\{0\}$ as $\theta: G \times X \rightarrow X, \theta(\lambda, x)=\lambda x$. Then, $\mathbb{R} \mathbb{P}^{n}=X / G$. $\mathbb{R} \mathbb{P}^{n}$ is second countable.
$\mathbb{R} \mathbb{P}^{n}$ is Hausdorff because

$$
A=\{(x, y) \in X \times X: x \text { and } y \text { are in the same orbit }\}
$$

is closed: it can be written as $A=f^{-1}(\{0\})$ where f if the continuous map

$$
f: X \times X \rightarrow \mathbb{R}, \quad f(x, y)=\left(x^{T} x\right)\left(y^{T} y\right)-\left(x^{T} y\right)^{2} .
$$

Lemma [Product of open maps is open] Let A, B, X, Y be topological spaces. Let $f: A \rightarrow X$ and $g: B \rightarrow Y$ be open maps. Then, the product map

$$
f \times g: A \times B \rightarrow X \times Y \quad(f \times g)(a, b)=(f(a), g(b))
$$

is open.
\triangleright Proof: Let W be an open set in $A \times B$. Then, W may be written as a union of rectangles

$$
W=\bigcup_{i} U_{i} \times V_{i}
$$

where each U_{i} in open in A and each V_{i} is open in B. We have
$(f \times g)(W)=(f \times g)\left(\bigcup_{i} U_{i} \times V_{i}\right)=\bigcup_{i}(f \times g)\left(U_{i} \times V_{i}\right)=\bigcup_{i} f\left(U_{i}\right) \times g\left(V_{i}\right)$.
Since $f\left(U_{i}\right)$ is open in X and $g\left(V_{i}\right)$ is open in Y (by hypothesis), then $f\left(U_{i}\right) \times$ $g\left(V_{i}\right)$ is open in $X \times Y$. Since W is an union of open sets, it is open \square

Lemma [Hybrid spaces] Let the topological group G act continuously on the left of the topological space X. Let the orbit space X / G be given the quotient topology and let $\pi: X \rightarrow X / G$ be the corresponding projection map. Let Y be any topological space. Then, the map

$$
\pi \times \operatorname{id}_{Y}: X \times Y \rightarrow(X / G) \times Y \quad\left(\pi \times \operatorname{id}_{Y}\right)(x, y)=(\pi(x), y)
$$

is a quotient map.
\triangleright Proof: To abbreviate notation, let $f=\pi \times \mathrm{id}_{Y}$. The map f is clearly surjective and continuous. Thus, if we show that f is an open map, we are done. Now, both $\pi: X \rightarrow X / G$ and id $_{Y}: Y \rightarrow Y$ are open maps. Since $f=\pi \times \mathrm{id}_{Y}$ is the product of open maps, it is itself open \square

Corollary [Hybrid spaces] Let the topological group G act continuously on the left of the topological space X. Let the orbit space X / G be given the quotient topology and let $\pi: X \rightarrow X / G$ be the corresponding projection map. Let Y and B be any topological spaces. Then, the map $f:(X / G) \times$ $Y \rightarrow B$ is continuous if and only if the map $\widehat{f}: X \times Y \rightarrow B, \widehat{f}=f \circ\left(\pi \times \mathrm{id}_{Y}\right)$ is continuous.

\triangleright Intuition: continuity of the "hard" map f can be investigated through the easier map \widehat{f}

Example 1 [Projective space $\mathbb{R} \mathbb{P}^{n-1}$] We write a matrix $P \in \mathrm{M}(n, k, \mathbb{R})$ is columns:

$$
P=\left[p_{1} p_{2} \cdots p_{k}\right] .
$$

Consider the map

$$
f: \mathbb{R P}^{n-1} \times \mathrm{M}(n, k, \mathbb{R}) \rightarrow \mathbb{R} \quad f([x], P)=\sum_{j=1}^{k}\left\|p_{j}-\frac{x x^{T}}{\|x\|^{2}} p_{j}\right\|^{2}
$$

In geometric terms, the map f computes the total squared distance from the constellation of points $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ to the straight line $[x]$.

The map f is continuous because

$$
\widehat{f}: \mathbb{R}^{n}-\{0\} \times \mathrm{M}(n, k, \mathbb{R}) \rightarrow \mathbb{R} \quad \widehat{f}(x, P)=\sum_{j=1}^{k}\left\|p_{j}-\frac{x x^{T}}{\|x\|^{2}} p_{j}\right\|^{2}
$$

is clearly continuous.

References

[1] J. Lee, Introduction to Topological Manifolds, Springer-Verlag, 2000.

