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Topological Spaces

Definition [Topology] A topology on a set X is a collection T of subsets
of X (called open sets by definition) satisfying the following properties:

i) X and ∅ are elements of T
ii) T is closed under finite intersections: if U1, . . . , Un ∈ T , then their

intersection U1 ∩ · · · ∩ Un is in T
iii) T is closed under arbitrary unions: if {Uα}α∈A is any (finite or infinite)

collection of elements of T , then their union
⋃

α∈A Uα is in T .

� Remark: A set X can accept many topologies

Definition [Topological space] A pair (X, T ) consisting of a set X and a
topology T onX is called a topological space. If the topology T is understood
from the context, we simply say X is a topological space.

Example 1 [Most familiar example: standard topology on Rn] (Rn, T )
with T as the collection of all usual open sets in Rn (note: ∅ is in T )
Same example (in disguised forms):

(a) [Standard topology on M(m,n,R)]

M(m,n,R) = {X : X is a m× n matrix with real entries}

We have M(m,n,R) 	 Rmn. Example:

M(3, 2,R) 	 R6 with X =


x11 x12

x21 x22

x31 x32


 	 vec(X) =




x11

x21

x31

x12

x22

x32



.

Notation: M(n,R) ≡ M(n, n,R).
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(b) [Standard topology on Cn] We have Cn 	 R2n. Example:

C3 	 R6 with z =


z1z2
z3


 =


x1 + iy1
x2 + iy2
x3 + iy3


 	 ι(z) =




x1

y1
x2

y2
x3

y3



.

(c) [Standard topology on M(m,n,C)]

M(m,n,C) = {Z : Z is a m× n matrix with complex entries}

We have M(m,n,C) 	 Cmn 	 R2mn. Example:

M(3, 2,C) 	 C6 	 R12

with

Z =


z11 z12
z21 z22
z31 z32


 =


x11 + iy11 x12 + iy12
x21 + iy21 x22 + iy22
x31 + iy31 x32 + iy32


 	 vec(X) =




z11
z21
z31
z12
z22
z32



	 ι(vec(Z)) =




x11

y11
x12

y12
x31

y31
x12

y12
x22

y22
x32

y32




.

Notation: M(n,C) ≡ M(n, n,C).

Example 2 [Trivial space] (X, T ) with X some set and T = {∅, X}

Example 3 [Discrete space] (X, T ) with X any set and T = 2X (collec-
tion of all subsets of X)

Example 4 [Toy example 1] (X, T ) withX = {a, b, c} and T = {∅, {b}, {a, b}, X}
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Example 5 [Toy example 2] (X, T ) withX = {a, b, c} and T = {∅, {a, b}, X}

Example 6 [A fake topological space] (X, T ) with X = {a, b, c} and
T = {∅, {a}, {c}, X} because {a} ∪ {c} = {a, c} �∈ T

Example 7 [Subspaces] Let (X, T ) be a topological space and U an open
set (that is, U ∈ T ). Then, (U, TU), with

TU = {V ∈ T : V ⊂ U} = {W ∩ U : W ∈ T }

is a topological space.

The topology TU is called the subspace topology and, with this topol-
ogy, U is called a subspace of X.

Definition [Convergent sequence] Let X be a topological space. A se-
quence {xn : n = 1, 2, 3, . . .} of points in X is said to converge to x ∈ X
(notation: xn → x) if for every open set U containing x there exists N such
that xi ∈ U for all i ≥ N .

� Intuition: The tail of the sequence {xn} is arbitrarily close to x

Example 1 [In standard Rn, life as usual] The previous definition is our
familiar one for Rn with the standard topology

Example 2 [Funny things can happen] In a trivial space X every se-
quence converges to every point of X !

Definition [Continuous maps] If X and Y are topological spaces, a map
f : X → Y is said to be continuous if for every open set U ⊂ Y , f−1(U) is
open in X.

� Intuition: f is continuous iff it pulls back open sets in Y to open sets
in X
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Example 1 [In standard Rn, life as usual] The previous definition is
our familiar one for maps f : Rn → Rm with Rn and Rm with the
standard topology.

Some examples:

(a) f : Rn → R, f(x, y, z) = 3x2z − 2y3 + 5xy2z

(b) f : M(n,R)→ R, f(X) = det(X)

Application: the general linear group

GL(n,R) = {X ∈ M(n,R) : det(X) �= 0}

is an open subset of M(n,R) because it equals

{X : f(X) �= 0} = f−1(R − {0})

(c) f : GL(n,R)→ M(n,R), f(X) = X−1

(d) f : M(n,m,R)→ M

((
n
k

)
,

(
m
k

)
,R

)
, f(X) = X [k]

(1 ≤ k ≤ min{n,m}). Remark: A[k] is the kth compound matrix
of A.

Example: for n = 3,m = 4, k = 2 and

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34


 ,

we have

A[2] =




det

[
a11 a12

a21 a22

]
det

[
a11 a13

a21 a23

]
det

[
a11 a14

a21 a24

]
det

[
a12 a13

a22 a23

]
det

[
a12 a14

a22 a24

]
det

[
a13 a14

a23 a24

]

det

[
a11 a12

a31 a32

]
det

[
a11 a13

a31 a33

]
det

[
a11 a14

a31 a34

]
det

[
a12 a13

a32 a33

]
det

[
a12 a14

a32 a34

]
det

[
a13 a14

a33 a34

]

det

[
a21 a22

a31 a32

]
det

[
a21 a23

a31 a33

]
det

[
a21 a24

a31 a34

]
det

[
a22 a23

a32 a33

]
det

[
a22 a24

a32 a34

]
det

[
a23 a24

a33 a34

]



.
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Application: the set of n×m matrices with real entries and rank
greater than or equal to k

Rank≥k(n,m,R) = {X ∈ M(n,m,R) : rank(X) ≥ k}

is an open subset ofM(n,m,R) because it equals {X : f(X) �= 0}.
As a special case, we have that the subset of k-frames in Rn,

F(n, k,R) = {X ∈ M(n, k,R) : rank(X) = k} ,

is an open subset of M(n, k,R), because

F(n, k,R) = Rank≥k(n, k,R).

Example 2 [The topologies really matter] Let X = {a, b, c} and Ti the
topologies in the ith toy example.

The map id : (X, T1)→ (X, T2) is continuous

The map id : (X, T2)→ (X, T1) is not continuous.

Lemma [Elementary properties of continuous maps] Let X, Y , and
Z be topological spaces.

i) Any constant map f : X → Y is continuous

ii) The identity map id : X → X is continuous

iii) If f : X → Y and g : Y → Z are continuous, so is their composition
g ◦ f : X → Z

Lemma [Local criterion for continuity] A map f : X → Y between
topological spaces is continuous if and only if each point of X has a neigh-
borhood on which the restriction of f is continuous

Definition [Homeomorphism] If X and Y are topological spaces, a home-
omorphism from X to Y is a continuous bijective map f : X → Y with
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continuous inverse. If there exists a homeomorphism between X and Y , the
sets X and Y are said to be homeomorphic (topologically equivalent).

� Intuition: you can consider X and Y the “same” topological space (Y
is simply another label for X and vice-versa)

Definition [Open map] If X and Y are topological spaces, a map f : X →
Y is said to be an open map if for any open set U ⊂ X, the image set f(U)
is open in Y .

� Intuition: f is continuous iff pushes forward open sets in X to open
sets in Y

Example 1 [Elementary projection] π : Rn → Rm,

π(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

Example 2 [A fake open map] f : R → R, f(x) = |x| because f(−1, 1) =
[0, 1).

Definition [Closed set] A subset F of a topological space X is said to be
closed if its complement X − F is open.

Example 1

Rank≤k(m,n,R) = {X ∈ M(n,m,R) : rank(X) ≤ k}

is a closed subset of M(n,m,R) because

Rank≤k(m,n,R) = M(n,m,R)− Rank≥k+1(m,n,R)︸ ︷︷ ︸
open

.
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Lemma [Elementary properties of closed sets] Let X be a topological
space.

i) X and ∅ are closed
ii) if F1, . . . , Fn are closed, then F1 ∪ · · · ∪ Fn is closed

iii) if {Fα}α∈A is any (finite or infinite) collection of closed sets, then their
intersection

⋂
α∈A Fα is closed.

Lemma [Characterization of continuous maps through closed sets]
A map between topological spaces is continuous if and only if the inverse
image of every closed set is closed.

� Intuition: f is continuous iff it pulls back closed sets in Y to closed sets
in X

Definition [Closed map] If X and Y are topological spaces, a map f :
X → Y is said to be a closed map if for any closed set F ⊂ X, the image set
f(F ) is closed in Y .

Definition [Elementary topological concepts] Let X be a topological
space. Let A ⊂ X. The closure of A in X, written A or cl(A), is the set

A =
⋂

{B : A ⊂ B and B is closed in X} .

The interior of A, written IntA, is

IntA =
⋃

{C : C ⊂ A and C is open in X} .

The exterior of A, written ExtA, is ExtA = X −A, and the boundary of A,
written ∂A, is ∂A = X − (IntA ∪ ExtA).

� Intuition: A is the “smallest” closed set containing A ; Int(A) is the
“largest” open set contained in A

Lemma [Characterization of closure] Let X be a topological space and
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A ⊂ X. A point x ∈ A if and only if every open set containing x intersects A.

Example 1
GL(n,R) = M(n,R)

Example 2

Rank≥k(n,m,R) = M(n,m,R) (1 ≤ k ≤ min{n,m})

Lemma [Characterization of boundary] Let X be a topological space
and A ⊂ X. A point x is in the boundary of A if and only if every open set
containing x contains both a point of A and a point of X − A.

Definition [Basis] Let X be a topological space. A basis for X is a class
B of open sets with the property that every non-empty open set in X is a
union of sets in the class B.
That is, if U ⊂ X is open and non-empty, we can write

U =
⋃
α∈A

Bα for some Bα ∈ B.

The sets in a basis are called basic open sets.

� Intuition: a basis is the “DNA” of a topology; the basic open sets are
the building blocks of all open sets

Example 1 A topology T is a basis for itself (useless remark in practice)

Example 2 B = {(a, b) ⊂ R : a < b} is a basis for R

Example 3 B = {Bn
ε (x0) ⊂ Rn : ε > 0, x0 ∈ Rn} is a basis for Rn, where

Bn
ε (x0) = {x ∈ Rn : ‖x− x0‖2 < ε}

Example 4 B = {Cn
ε (x0) ⊂ Rn : ε > 0, x0 ∈ Rn} is a basis for Rn, where

Cn
ε (x0) = {x ∈ Rn : ‖x− x0‖∞ < ε}
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Lemma [Bases simplify the detection of continuous maps and open
maps] Let X and Y be topological spaces. Let BX be a basis for X and BY

be a basis for Y .
A map f : X → Y is continuous if and only if f−1(V ) is open for every

basic set V ∈ BY .
A map g : X → Y is open if and only if the image g(W ) is open for

every basic set W ∈ BX .

Example 1 [Pointwise maximum of continuous functions is contin-
uous] Let X be a topological space. Let fi : X → R be continuous
for i = 1, 2, . . . , n. Then, f : X → R given by

f(x) = max{f1(x), f2(x), . . . , fn(x)}

is continuous.

Definition [Locally Euclidean] A topological space X is said to be locally
Euclidean of dimension n if every point of X has a neighborhood homeomor-
phic to an open subset of Rn.

� Intuition: around each point X looks like Rn; but not globally

Definition [Chart] Let X be locally Euclidean of dimension n. A chart
on X is a pair (U,ϕ) where U ⊂ X is open and ϕ : U → ϕ(U) ⊂ Rn is a
homeomorphism.

Definition [Hausdorff space] A topological space X is said to be a Haus-
dorff space if given any pair of distinct points x, y ∈ X there exist open
neighborhoods U of x and V of y such that U ∩ V = ∅.

Example 1 [In standard Rn, life as usual] The standard Rn is a Haus-
dorff space
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Example 2 [Toy topology 2 is not Hausdorff] The topological space
(X, T ) with X = {a, b, c} and T = {∅, {a, b}, X} is not Hausdorff

Lemma [Elementary properties of Hausdorff spaces] LetX be a Haus-
dorff space. Then every singleton set {x} is closed in X. Also, the limits of
convergent sequences in X are unique.

Definition [Second countable space] A topological space X is said to be
second countable if it admits a countable basis.

Example 1 [In standard Rn, life as usual] The standard Rn is second
countable. A countable basis:

B = {Bn
ε (x0) : ε ∈ Q+, coordinates of x0 in Q}.

Definition [Cover/Subcover] Let X be a topological space. A class U =
{Uα : α ∈ A} of open sets is said to cover X if X =

⋃
α∈A Uα. A subcover

of U is a subclass V ⊂ U which still covers X.

Lemma [Fundamental property of second countable spaces] Let X
be a second countable space. Then every open cover of X admits a countable
subcover.

Lemma [Second countable spaces allow simple characterization of
closures] Let X be a second countable topological space. Let A ⊂ X. Then,
x0 ∈ A if and only if there exists a sequence xn ∈ A such that xn → x0.

� Proof: (⇒) Let x0 ∈ A and V = {V1, V2, V3, . . .} the collection of basic
open sets containing x0. Define the shrinking sequence: U1 = V1, U2 =
V1 ∩ V2, U3 = V1 ∩ V2 ∩ V3, . . . . Take a point xn ∈ A in each Un (this can be
done because each Un is an open set containing x0 ∈ A). We have xn → x0

(why?). (⇐) For the reverse direction, let U be an open set containing x0.
Since xn → x0, there is a xN ∈ A in U . Thus, A ∩ U �= ∅�
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Lemma [Second countable spaces simplify detection of continuous
maps] Let f : X → Y be a map between topological spaces. Assume X
is second countable. Then, f is continuous if and only if xn → x0 implies
f(xn)→ f(x0).

� Proof: (⇒) Let U be an open set containing f(x0). By hypothesis,
V = f−1(U) is open. Since xn → x0, the tail of xn is in V . Thus, the tail
of f(xn) is in f(V ) ⊂ U . (⇐) Let F be a closed set. Suppose A = f−1(F )
is not closed. Then there exists x0 ∈ A such that x0 �∈ A. Let xn ∈ A with
xn → x0. We have f(xn) ∈ f(A) ⊂ F for all n and f(x0) ∈ Y − F (open
set). Thus, f(xn) �→ f(x0) (contradiction)�

Definition [Topological manifold of dimension n] A topological man-
ifold of dimension n is a second countable Hausdorff space that is locally
Euclidean of dimension n.

Example 1 [The obvious example] Rn endowed with the standard topol-
ogy is an n-dimensional topological manifold.

Lemma [Open subsets of manifolds are manifolds] If U is an open
subset of an n-dimensional topological manifold, then U (endowed with the
subspace topology) is an n-dimensional topological manifold.

Lemma [Topological manifolds] Let X and Y be homeomorphic topo-
logical spaces. Then, X is an n-dimensional topological manifold if and only
if Y is an n-dimensional topological manifold.
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