Nonlinear Signal Processing (2004/2005)

```
jxavier@isr.ist.utl.pt
```


Riemannian Metrics

Definition [Tensor] Let V be a n-dimensional vector space over \mathbb{R}. A tensor Φ of order r on V is a multilinear (i.e., linear in each argument) map

$$
\Phi: \underbrace{V \times \cdots \times V}_{r} \rightarrow \mathbb{R} .
$$

Thus,

$$
\Phi(\cdots, a v+b w, \cdots)=a \Phi(\cdots, v, \cdots)+b \Phi(\cdots, w, \cdots)
$$

for all $a, b \in \mathbb{R}$ and $v, w \in V$.
The set of tensors of order r on V is denoted by $T^{r}(V)$.
A tensor of order $r=1$ is usually called a covector, and the set of covectors is usually denoted by V^{*} and termed the dual space of V (note: $V^{*}=T^{1}(V)$).

Example 1 [A tensor of order 1 (covector) on $\mathrm{M}(n, \mathbb{R})$] The map

$$
\Phi: \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R} \quad \Phi(X)=\operatorname{tr}(X)
$$

is a covector on $\mathrm{M}(n, \mathbb{R})$.
Example 2 [A tensor of order 2 on \mathbb{R}^{n}] Let $A \in \mathrm{M}(n, \mathbb{R})$. The map

$$
\Phi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \Phi(x, y)=x^{T} A y
$$

is a tensor of order 2 on \mathbb{R}^{n}.
The map

$$
\Psi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \Psi(x, y)=x^{T} A y+1
$$

is not a tensor.
Example 3 [A tensor of order 3 on $\mathrm{M}(n, \mathbb{R})$] The map

$$
\Phi: \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R} \quad \Phi(A, B, C)=\operatorname{tr}(A B C)
$$

is a tensor of order 3 on $\mathrm{M}(n, \mathbb{R})$.

Example 4 [A tensor of order n on \mathbb{R}^{n}] The map

$$
\Phi: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{n} \rightarrow \mathbb{R} \quad \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left(\left[x_{1} x_{2} \cdots x_{n}\right]\right)
$$

is a tensor of order n on \mathbb{R}^{n}.

Theorem [The vector space of tensors of order r] Let V be a n dimensional vector space over \mathbb{R}. Let r be a positive integer. With the operations of addition and multiplication by real numbers defined as

$$
\begin{aligned}
\left(\Phi_{1}+\Phi_{2}\right)\left(v_{1}, \ldots, v_{r}\right) & =\Phi_{1}\left(v_{1}, \ldots, v_{r}\right)+\Phi_{2}\left(v_{1}, \ldots, v_{r}\right) \\
(\alpha \Phi)\left(v_{1}, \ldots, v_{r}\right) & =\alpha \Phi\left(v_{1}, \ldots, v_{r}\right)
\end{aligned}
$$

for $\Phi, \Phi_{1}, \Phi_{2} \in T^{r}(V), \alpha \in \mathbb{R}$, and $v_{1}, \ldots, v_{r} \in V$, the set $T^{r}(V)$ is a vector space of dimension n^{r}.

Lemma [Pullback of tensors] Let V, W be vector spaces over \mathbb{R} and let $F_{*}: V \rightarrow W$ be a linear map. Then, for each positive integer r, the map $F^{*}: T^{r}(W) \rightarrow T^{r}(V)$, defined as

$$
\left(F^{*} \Phi\right)\left(v_{1}, \ldots, v_{r}\right)=\Phi\left(F_{*}\left(v_{1}\right), \ldots, F_{*}\left(v_{r}\right)\right)
$$

for all $\Phi \in T^{r}(W)$, is a linear map between the vector spaces $T^{r}(W)$ and $T^{r}(V)$.

Example 1 [Pullback of a tensor] Consider the linear map

$$
F_{*}: \mathbb{R}^{n} \rightarrow \mathrm{M}(n, \mathbb{R}) \quad F_{*}(x)=\operatorname{Diag}(x)=\left[\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & \\
& & \ddots & \\
& & & x_{n}
\end{array}\right]
$$

and the tensor of order 2 on $\mathrm{M}(n, \mathbb{R})$ given by

$$
\Phi: \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R} \quad \Phi(A, B)=\operatorname{tr}(A B)
$$

The pullback of Φ by F_{*}, denoted $F^{*} \Phi$, is the tensor of order 2 on \mathbb{R}^{n} given by

$$
\begin{aligned}
\left(F^{*} \Phi\right)(x, y) & =\Phi\left(F_{*}(x) F_{*}(y)\right) \\
& =\operatorname{tr}(\operatorname{Diag}(x) \operatorname{Diag}(y)) \\
& =\operatorname{tr}\left[\begin{array}{llll}
x_{1} y_{1} & & & \\
& x_{2} y_{2} & & \\
& & \ddots & \\
& & & x_{n} y_{n}
\end{array}\right] \\
& =x^{T} y .
\end{aligned}
$$

Example 2 [Another pullback of a tensor] Consider the linear map

$$
F_{*}: \mathrm{M}(p, q, \mathbb{R}) \rightarrow \mathrm{M}(n, \mathbb{R}) \quad F_{*}(X)=D X E
$$

where $D \in \mathrm{M}(n, p, \mathbb{R})$ and $E \in \mathrm{M}(q, n, \mathbb{R})$ are fixed matrices, and the tensor of order 3 on $\mathrm{M}(n, \mathbb{R})$ given by

$$
\Phi: \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \times \mathrm{M}(n, \mathbb{R}) \rightarrow \mathbb{R} \quad \Phi(A, B, C)=\operatorname{tr}(A \otimes B \otimes C)
$$

The pullback of Φ by F_{*}, denoted $F^{*} \Phi$, is the tensor of order 3 on $\mathrm{M}(p, q, \mathbb{R})$ given by

$$
\begin{aligned}
\left(F^{*} \Phi\right)\left(X_{1}, X_{2}, X_{3}\right) & =\Phi\left(F_{*}\left(X_{1}\right), F_{*}\left(X_{2}\right), F_{*}\left(X_{3}\right)\right) \\
& =\operatorname{tr}\left(D X_{1} E \otimes D X_{2} E \otimes D X_{3} E\right)
\end{aligned}
$$

Definition [Product of tensors] Let V be a vector space over \mathbb{R}. Let $\Phi \in T^{r}(V)$ and $\Psi \in T^{s}(V)$. The product of Φ and Ψ, denoted $\Phi \otimes \Psi$ is a tensor of order $r+s$ defined by

$$
(\Phi \otimes \Psi)\left(v_{1}, \ldots, v_{r}, v_{r+1}, \ldots, v_{r+s}\right)=\Phi\left(v_{1}, \ldots, v_{r}\right) \Psi\left(v_{r+1}, \ldots, v_{r+s}\right) .
$$

Example 1 [Product of tensors] Consider the tensors

$$
\Phi: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{n} \rightarrow \mathbb{R} \quad \Phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}\left[x_{1} x_{2} \cdots x_{n}\right]
$$

and

$$
\Psi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \Psi(x, y)=x^{T} M y
$$

where $M \in \mathrm{M}(n, \mathbb{R})$ is a fixed matrix.
Note that Φ is a tensor of order n and Ψ is a tensor of order 2. Thus, $\Phi \otimes \Psi$ is a tensor of order $n+2$ on \mathbb{R}^{n} and it is given by

$$
\begin{aligned}
(\Phi \otimes \Psi)\left(x_{1}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right) & =\Phi\left(x_{1}, \ldots, x_{n}\right) \Psi\left(x_{n+1}, x_{n+2}\right) \\
& =\operatorname{det}\left[x_{1} \cdots x_{n}\right] x_{n+1}^{T} M x_{n+2} .
\end{aligned}
$$

Theorem [Product of tensors] Let V be a n-dimensional vector space over \mathbb{R}. The product of tensors

$$
T^{r}(V) \times T^{s}(V) \rightarrow T^{r+s}(V) \quad(\Phi, \Psi) \mapsto \Phi \otimes \Psi
$$

is bilinear and associative:

$$
\begin{aligned}
\left(a \Phi_{1}+b \Phi_{2}\right) \otimes \Psi & =a\left(\Phi_{1} \otimes \Psi\right)+b\left(\Phi_{2} \otimes \Psi\right) \\
\Phi \otimes\left(a \Psi_{1}+b \Psi_{2}\right) & =a\left(\Phi \otimes \Psi_{1}\right)+b\left(\Phi \otimes \Psi_{2}\right) \\
(\Phi \otimes \Psi) \otimes \Omega & =\Phi \otimes(\Psi \otimes \Omega) .
\end{aligned}
$$

If $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ is a basis of $V^{*}=T^{1}(V)$, then

$$
\left\{\omega^{i_{1}} \otimes \omega^{i_{2}} \otimes \cdots \otimes \omega^{i_{r}}: 1 \leq i_{1}, i_{2}, \ldots, i_{r} \leq n\right\}
$$

is a basis of $T^{r}(V)$. That is, each $\Phi \in T^{r}(V)$ can be written as

$$
\Phi=\sum_{\left(i_{1}, \ldots, i_{r}\right) \in I^{r}} a_{i_{1} \cdots i_{r}} \omega^{i_{1}} \otimes \omega^{i_{2}} \otimes \cdots \otimes \omega^{i_{r}}
$$

where $I=\{1,2, \ldots, n\}$ and $a_{i_{1} \cdots i_{r}} \in \mathbb{R}$ are constants (uniquely determined by Φ).

Furthermore, if $F_{*}: V \rightarrow W$ is a linear map of vector spaces, then $F^{*}(\Phi \otimes \Psi)=\left(F^{*} \Phi\right) \otimes\left(F^{*} \Psi\right)$.

Example 1 [Expansion of a tensor] Let $V=\mathbb{R}^{3}$ and the canonical basis $\left\{e_{1}, e_{2}, e_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$. The dual space V^{*} is spanned by the dual basis $\left\{\omega^{1}, \omega^{2}, \omega^{3}\right\}$ where

$$
\omega^{i}: V \rightarrow \mathbb{R} \quad \omega^{i}\left(e_{j}\right)=\delta_{j}^{i}=\left\{\begin{array}{ll}
0 & , i \neq j \\
1, & i=1
\end{array} .\right.
$$

In equivalent terms,

$$
\omega^{i}: V \rightarrow \mathbb{R} \quad \omega^{i}(x)=e_{i}^{T} x .
$$

For example, $\omega^{1} \otimes \omega^{3}$ is the tensor of order 2 given by

$$
\begin{aligned}
\left(\omega^{1} \otimes \omega^{3}\right)(x, y) & =\omega^{1}(x) \omega^{3}(y) \\
& =\left(x^{T} e_{1}\right)\left(e_{3}^{T} y\right) \\
& =x^{T}\left(e_{1} e_{3}^{T}\right) y \\
& =x^{T}\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] y .
\end{aligned}
$$

Consider the tensor of order 2 on \mathbb{R}^{3} given by

$$
\Phi: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R} \quad \Phi(x, y)=x^{T}\left[\begin{array}{ccc}
1 & -1 & 2 \\
4 & 2 & 0 \\
3 & 2 & 2
\end{array}\right] y
$$

Then, we can expand Φ as

$$
\begin{aligned}
\Phi= & \omega^{1} \otimes \omega^{1}-\omega^{1} \otimes \omega^{2}+2 \omega^{1} \otimes \omega^{3}+ \\
& 4 \omega^{2} \otimes \omega^{1}+2 \omega^{2} \otimes \omega^{2}+ \\
& 3 \omega^{3} \otimes \omega^{1}+2 \omega^{3} \otimes \omega^{2}+2 \omega^{3} \otimes \omega^{3} .
\end{aligned}
$$

Equivalently, if Φ is any given tensor of order 2 on \mathbb{R}^{3} we can find the coefficients $\Phi_{i j}$ in the expansion

$$
\begin{aligned}
\Phi= & \Phi_{11} \omega^{1} \otimes \omega^{1}+\Phi_{12} \omega^{1} \otimes \omega^{2}+\Phi_{13} \omega^{1} \otimes \omega^{3}+ \\
& \Phi_{21} \omega^{2} \otimes \omega^{1}+\Phi_{22} \omega^{2} \otimes \omega^{2}+\Phi_{23} \omega^{2} \otimes \omega^{3}+ \\
& \Phi_{31} \omega^{3} \otimes \omega^{1}+\Phi_{32} \omega^{3} \otimes \omega^{2}+\Phi_{33} \omega^{3} \otimes \omega^{3}
\end{aligned}
$$

by calculating $\Phi_{i j}=\Phi\left(e_{i}, e_{j}\right)$.

Example 2 [Tensors of order 2 as matrices and vice-versa] Let V be any real n-dimensional vector space. Once we fix a basis $\left\{E_{1}, E_{2}, \ldots, E_{n}\right\}$ for V, any tensor Φ of order 2 can be represented by a $n \times n$ matrix M_{Φ} :

$$
\Phi\left(x^{i} E_{i}, y^{j} E_{j}\right)=x^{i} y^{j} \Phi\left(E_{i}, E_{j}\right)=x^{T} \underbrace{\left[\begin{array}{ccc}
\Phi\left(E_{1}, E_{1}\right) & \cdots & \Phi\left(E_{1}, E_{n}\right) \\
\vdots & \ddots & \vdots \\
\Phi\left(E_{n}, E_{1}\right) & \cdots & \Phi\left(E_{n}, E_{n}\right)
\end{array}\right]}_{M_{\Phi}} y .
$$

This equivalence (w.r.t to a fixed basis $\left\{E_{1}, \ldots, E_{n}\right\}$) is denoted by

$$
\Phi \sim M_{\Phi}
$$

Definition [Smooth tensor fields] A smooth tensor field of order r on a smooth manifold M is a map Φ which assigns to each $p \in M$ an element $\Phi_{p} \in T^{r}\left(T_{p} M\right)$ such that: for any smooth vector fields X_{1}, \ldots, X_{r} defined on M, the function

$$
\Phi\left(X_{1}, \ldots, X_{r}\right): M \rightarrow \mathbb{R} \quad p \mapsto \Phi_{p}\left(X_{1 p}, \ldots, X_{r p}\right)
$$

is smooth.
The set of smooth tensor fields of order r on M is denoted by $\mathcal{T}^{r}(M)$ and it is a vector space under pointwise addition of tensors and multiplication by elements of \mathbb{R}.
\triangleright Intuition: a smooth tensor field on M is a smooth assignment of a tensor Φ_{p} to each tangent space $T_{p} M$

Example 1 [Canonical smooth covector fields on \mathbb{R}^{n}] The n covector fields $d x^{1}, \ldots, d x^{n}$ defined, at each $p \in \mathbb{R}^{n}$, to be the dual basis of the canonical basis

$$
\left.\frac{\partial}{\partial x^{1}}\right|_{p},\left.\frac{\partial}{\partial x^{2}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}
$$

of $T_{p} \mathbb{R}^{n}$, are smooth covector fields on \mathbb{R}^{n}.

Example 2 [A smooth covector field on \mathbb{R}^{3}] The covector field

$$
\omega=\left(x^{2}-y+z\right) d x+(\sin (x y)-3) d y+x e^{y} d z
$$

is a smooth covector field on \mathbb{R}^{3}.
At $p=(1,0,1)$, we have the covector $\omega_{(1,0,1)}: T_{(1,0,1)} \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
\omega_{(1,0,1)}\left(\left.a \frac{\partial}{\partial x}\right|_{(1,0,1)}+\left.b \frac{\partial}{\partial y}\right|_{(1,0,1)}+\left.c \frac{\partial}{\partial z}\right|_{(1,0,1)}\right)=2 a-3 b+c .
$$

Example 3 [A smooth function induces a smooth covector field]

Let M be a smooth manifold and $f \in C^{\infty}(M)$. The covector field $d f$ defined, at each $p \in M$, by

$$
\left.d f\right|_{p}\left(X_{p}\right)=X_{p} f, \quad X_{p} \in T_{p} M,
$$

is smooth. It is called the differential of f.
For the special case $M=\mathbb{R}^{n}$, we have

$$
\left.d f\right|_{p}=\left.\frac{\partial f}{\partial x^{1}}(p) d x^{1}\right|_{p}+\left.\frac{\partial f}{\partial x^{2}}(p) d x^{2}\right|_{p}+\cdots+\left.\frac{\partial f}{\partial x^{n}}(p) d x^{n}\right|_{p}
$$

For instance, if

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R} \quad f(x, y, z)=\cos (x z)+y^{2},
$$

then

$$
d f=-z \sin (x z) d x+2 y d y-x \sin (x z) d z
$$

Definition [Product of tensor fields] Let M be a smooth manifold. Let Φ and Ψ be tensor fields on M order r and s, respectively. The product of Φ and Ψ, denoted $\Phi \otimes \Psi$ is the tensor field of order $r+s$ on M defined for each $p \in M$ as $(\Phi \otimes \Psi)_{p}=\Phi_{p} \otimes \Psi_{p}$.

Theorem [Product of smooth tensor fields] Let M be a n-dimensional smooth manifold. The product of tensor fields just defined takes smooth tensor fields to smooth tensor fields. Moreover, the map

$$
\mathcal{T}^{r}(M) \times \mathcal{T}^{s}(M) \rightarrow \mathcal{T}^{r+s}(M) \quad(\Phi, \Psi) \mapsto \Phi \otimes \Psi
$$

is bilinear and associative.
If $\omega^{1}, \omega^{2}, \ldots, \omega^{n}$ is a basis of $\mathcal{T}^{*}(M)=\mathcal{T}^{1}(M)$ (that is, $\omega_{p}^{1}, \ldots, \omega_{p}^{n}$ is a basis of $T_{p}^{*} M$ at each $\left.p \in M\right)$, then each $\Phi \in \mathcal{T}^{r}(M)$ can be written as

$$
\Phi=\sum_{\left(i_{1}, \ldots, i_{r}\right) \in I^{r}} f_{i_{1} \cdots i_{r}} \omega^{i_{1}} \otimes \omega^{i_{2}} \otimes \cdots \otimes \omega^{i_{r}}
$$

where $I=\{1,2, \ldots, n\}$ and $f_{i_{1} \cdots i_{r}}: M \rightarrow \mathbb{R}$ are smooth functions (uniquely determined by Φ).

Lemma [Pullback of smooth tensor fields] Let M, N be smooth manifolds and $F: M \rightarrow N$ a smooth map. Then, each smooth tensor field $\Phi \in \mathcal{T}^{r}(N)$ determines a smooth tensor field $F^{*} \Phi \in \mathcal{T}^{r}(M)$ by the formula

$$
\left(F^{*} \Phi\right)_{p}\left(X_{1 p}, \ldots, X_{r p}\right)=\Phi_{F(p)}\left(F_{*}\left(X_{1 p}\right), \ldots, F_{*}\left(X_{r p}\right)\right) .
$$

The map $F^{*}: \mathcal{T}^{r}(N) \rightarrow \mathcal{T}^{r}(M)$ thus defined is linear. Moreover,

$$
F^{*}(\Phi \otimes \Psi)=\left(F^{*} \Phi\right) \otimes\left(F^{*} \Psi\right)
$$

for $\Phi \in \mathcal{T}^{r}(M)$ and $\Psi \in \mathcal{T}^{s}(M)$.

Example 1 [A simple pullback] Let $M=\mathbb{R}^{m}, N=\mathbb{R}^{n}$ and consider a smooth map

$$
F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad F(x)=\left(F^{1}(x), F^{2}(x), \ldots, F^{n}(x)\right)
$$

Let $1 \leq j \leq n$. The pullback of $d y^{j}$ by F is given by

$$
F^{*} d y^{j}=a_{i}^{j} d x^{j}
$$

and each smooth function $a_{i}^{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be found as

$$
\begin{aligned}
a_{i}^{j} & =\left(F^{*} d y^{j}\right)\left(\partial_{i}\right) \\
& =d y^{j}\left(F_{*} \partial_{i}\right) \\
& =d y^{j}\left(\partial_{i} F^{k} \partial_{k}\right) \\
& =\partial_{i} F^{k}\left(d y^{j}\right)\left(\partial_{k}\right) \\
& =\partial_{i} F^{j} .
\end{aligned}
$$

Thus,

$$
F^{*} d y^{j}=\partial_{i} F^{j} d x^{i}
$$

For instance, if

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \quad F(u, v)=\left(u^{2}+v, \sin (u v), u e^{v}\right)
$$

with coordinates (u, v) on \mathbb{R}^{2} and (x, y, z) on \mathbb{R}^{3}, then

$$
\begin{aligned}
& F^{*} d x=2 u d u+d v \\
& F^{*} d y=v \cos (u v) d u+u \cos (u v) d v \\
& F^{*} d z=e^{v} d u+u e^{v} d v
\end{aligned}
$$

Example 2 [A pullback of a tensor of order 2] Let $M=\mathbb{R}^{m}, N=\mathbb{R}^{n}$ and consider a smooth map

$$
F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \quad F(x)=\left(F^{1}(x), F^{2}(x), \ldots, F^{n}(x)\right)
$$

Let $\Phi=\Phi_{i j} d y^{i} \otimes d y^{j}$ be a smooth tensor field of order 2 on \mathbb{R}^{n}. Note that each

$$
\Phi_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

is a smooth function.
The pullback of Φ by F is the tensor field of order 2 on \mathbb{R}^{m} given by

$$
\begin{aligned}
F^{*} \Phi & =F^{*}\left(\Phi_{i j} d y^{i} \otimes d y^{j}\right) \\
& =F^{*} \Phi_{i j} F^{*} d y^{i} \otimes F^{*} d y^{j} \\
& =\left(\Phi_{i j} \circ F\right)\left(\partial_{k} F^{i} d x^{k}\right) \otimes\left(\partial_{l} F^{j} d x^{l}\right) \\
& =\left(\Phi_{i j} \circ F\right) \partial_{k} F^{i} \partial_{l} F^{j} d x^{k} \otimes d x^{l} .
\end{aligned}
$$

In a more compact notation: if $\Phi_{y} \sim M(y)$ then

$$
\left(F^{*} \Phi\right)_{p} \sim D F(p)^{T} M(F(p)) D F(p) .
$$

Definition [Riemannian manifold] A Riemannian manifold is a smooth manifold M on which is defined a Riemannian metric g, that is, a smooth
tensor of order 2 which is symmetric $\left(g\left(X_{p}, Y_{p}\right)=g\left(Y_{p}, X_{p}\right)\right.$ for all $\left.X_{p} \in T_{p} M\right)$ and positive-definite $\left(g\left(X_{p}, X_{p}\right)=0\right.$ if and only if $\left.X_{p}=0\right)$.

A smooth manifold M with Riemannian metric g is usually denoted by (M, g).

Example 1 [The canonical Riemannian metric on \mathbb{R}^{n}] The canonical Riemannian metric on \mathbb{R}^{n} is given by

$$
g\left(\left.\partial_{i}\right|_{p},\left.\partial_{j}\right|_{p}\right)=\delta_{i}^{j}
$$

Thus, for each $p \in \mathbb{R}^{n}$, we have

$$
g_{p} \sim\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right] .
$$

Example 2 [Another Riemannian structure on \mathbb{R}^{n}] Let Σ be a fixed $n \times n$ positive definite matrix. Define a tensor field g of order 2 on \mathbb{R}^{n} as $g\left(\left.\partial_{i}\right|_{p},\left.\partial_{j}\right|_{p}\right)=\Sigma_{i j}$ or, equivalently,

$$
g_{p} \sim \Sigma \quad \text { for all } p \in \mathbb{R}^{n} .
$$

The tensor field g is a valid Riemannian metric on \mathbb{R}^{n}.
Example 3 [A Riemannian structure on \mathbb{R}^{3}] Define a tensor field g of order 2 on \mathbb{R}^{3} as

$$
g_{(x, y, z)} \sim\left[\begin{array}{ccc}
e^{2 x+y z} & & \\
& 2-\cos (z) & \\
& & y^{2}+1
\end{array}\right]
$$

The tensor field g is a valid Riemannian metric on \mathbb{R}^{3}.
Example 4 [A Riemannian structure on $\mathrm{P}(n, \mathbb{R})$] Since $\mathrm{P}(n, \mathbb{R})$ is an open subset of $S(n, \mathbb{R})$ we have the identification

$$
T_{P} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R}) \quad \text { for all } P \in \mathrm{P}(n, \mathbb{R})
$$

Consider the inner-product at $T_{P} \mathrm{P}(n, \mathbb{R})$:

$$
g_{P}(\Delta, \Omega)=\operatorname{tr}\left(\Omega^{T} \Delta\right) \quad \text { for } \quad \Delta, \Omega \in T_{P} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R})
$$

The tensor field g is a valid Riemannian metric on $\mathrm{P}(n, \mathbb{R})$.
Example 5 [Left-invariant Riemannian metrics on Lie groups] Let G be a lie group. Let g_{e} be any inner-product on $T_{e} G$. We can propagate this inner-product to all the group G through left-translations, that is, to each $a \in G$, we assign the inner-product g_{a} on $T_{a} G$ as

$$
g_{a}\left(X_{a}, Y_{a}\right)=g_{e}\left(L_{a^{-1_{*}}} X_{a}, L_{a^{-1} *} Y_{a}\right)
$$

where

$$
L_{b}: G \rightarrow G \quad L_{b}(x)=b \cdot x
$$

denotes left translation.
The resulting Riemannian metric $g=\langle\cdot, \cdot\rangle$ is left-invariant:

$$
\left\langle X_{a}, Y_{a}\right\rangle=\left\langle L_{b *}\left(X_{a}\right), L_{b *}\left(Y_{a}\right)\right\rangle \quad \text { for all } a, b \in G
$$

For instance, consider the Lie group $\mathrm{GL}(n, \mathbb{R})$. Since $\mathrm{GL}(n, \mathbb{R})$ is an open subset of $\mathbf{M}(n, \mathbb{R})$ we have the identification

$$
T_{A} \mathrm{GL}(n, \mathbb{R}) \simeq \mathrm{M}(n, \mathbb{R}) \quad \text { for all } A \in \mathrm{GL}(n, \mathbb{R})
$$

Consider the usual inner-product at $T_{I_{n}} \mathrm{GL}(n, \mathbb{R})$:

$$
\langle\Delta, \Omega\rangle=\operatorname{tr}\left(\Omega^{T} \Delta\right) \quad \text { for } \quad \Delta, \Omega \in T_{I_{n}} \mathrm{GL}(n, \mathbb{R}) \simeq \mathrm{M}(n, \mathbb{R})
$$

By left-translation the inner-product at $T_{A} \mathrm{GL}(n, \mathbb{R})$ is given by:

$$
\langle\Delta, \Omega\rangle=\operatorname{tr}\left(\Omega^{T}\left(A A^{T}\right)^{-1} \Delta\right) \quad \text { for } \quad \Delta, \Omega \in T_{A} \mathrm{GL}(n, \mathbb{R}) \simeq \mathrm{M}(n, \mathbb{R})
$$

Lemma [Riemannian submanifolds] Let $\left(M, g_{M}\right)$ be a Riemannian manifold. Let $N \subset M$ be a submanifold with inclusion map $\iota: N \rightarrow M$. Then, $g_{N}=\iota^{*} g_{M}$ is a Riemannian metric on N.

Example 1 [The canonical Riemannian metric on $S^{2}(\mathbb{R})$] Let

$$
F: W \subset \mathbb{R}^{2} \rightarrow \mathrm{~S}^{2}(\mathbb{R}) \quad F(\theta, \varphi)=(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)
$$

be a local parameterization of the unit-sphere $S^{2}(\mathbb{R})$ where

$$
W=\{(\theta, \varphi): 0<\theta<2 \pi, 0<\varphi<\pi / 2\} .
$$

In these coordinates, the canonical Riemannian metric on $S^{2}(\mathbb{R})$ is given by

$$
F^{*} g_{\mathrm{S}^{2}(\mathbb{R})}(\theta, \varphi) \sim\left(\begin{array}{cc}
\sin ^{2} \varphi & 0 \\
0 & 1
\end{array}\right)
$$

Definition [Vertical and horizonal subspaces, Riemannian submersions] Let $\pi: \widetilde{M} \rightarrow M$ be a surjective submersion. The fiber over $q \in M$, written F_{y}, is defined as the inverse image $F_{q}=\pi^{-1}(q) \subset \widetilde{M}$ (note: since π has constant rank, F_{q} is a closed, embedded submanifold of $\left.\widetilde{M}\right)$.

Suppose ($\widetilde{M}, \widetilde{g}$) is a Riemannian manifold. Let $p \in F_{q}$. The vertical space at p is the subspace of $T_{p} \widetilde{M}$ defined as

$$
\mathrm{V}_{p}=\operatorname{Ker} \pi_{*}
$$

where $\pi_{*}: T_{p} \widetilde{M} \rightarrow T_{q} M$ is the push-forward of the map π.
The horizontal subspace at p is defined as $\mathrm{H}_{p}=\mathrm{V}_{p}^{\perp}$ and corresponds to the orthogonal complement of V_{p} with respect to the inner-product \widetilde{g}_{p} : $T_{p} \widetilde{M} \times T_{p} \widetilde{M} \rightarrow \mathbb{R}$.

Thus, we have the orthogonal direct sum

$$
T_{p} \widetilde{M}=\mathrm{V}_{p} \oplus \mathrm{H}_{p}
$$

Let g be a Riemannian metric on M. The map $\pi: \widetilde{M} \rightarrow M$ is said to be a Riemannian submersion if, for every $p \in \widetilde{M}$, the restriction

$$
\pi_{*}: \mathbf{H}_{p} \rightarrow T_{\pi(p)} M
$$

is an isometry.

Proposition [Horizontal lifts, Riemannian submersions] Let \widetilde{M} be a Riemannian manifold and $\pi: \widetilde{M} \rightarrow M$ be a surjective submersion.
(a) Any smooth vector field \widetilde{X} on \widetilde{M} can be written uniquely as

$$
\widetilde{X}=\widetilde{X}^{\mathrm{H}}+\widetilde{X}^{\mathrm{V}}
$$

where $\widetilde{X}^{\mathrm{H}}$ and \widetilde{X}^{\vee} are smooth vector fields on \widetilde{M} with $\widetilde{X}_{p}^{\mathrm{H}} \in \mathrm{H}_{p}$ and $\widetilde{X}_{p}^{\mathrm{V}} \in \mathrm{V}_{p}$ for all $p \in \widetilde{M}$.
(b) Let X be a smooth vector field on M. Then, there is an unique horizontal smooth vector $\widetilde{X}^{\mathrm{H}}$ on \widetilde{M}, called the horizontal lift of X, such that

$$
\pi_{*}\left(\widetilde{X}_{p}^{\mathrm{H}}\right)=X_{\pi(p)}
$$

for all $p \in M$.
(c) Let φ denote a smooth action of a Lie group G on \widetilde{M} such that:

- G preserves fibers (i.e, $\pi \circ \varphi_{g}=\pi$ for all $g \in G$)
- G acts transitively on each fiber

- G acts on \widetilde{M} by isometries (i.e., each linear map $\varphi_{g^{*}}: T_{p} \widetilde{M} \rightarrow T_{\varphi_{g}(p)} \widetilde{M}$ is an isometry).

Then, there exists a unique Riemannian metric on M such that π is a Riemannian submersion.

Example 1 [A Riemannian metric on $\mathrm{P}(n, \mathbb{R})$] Consider the map

$$
\pi: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{P}(n, \mathbb{R})
$$

which, given $A \in \mathrm{GL}(n, \mathbb{R})$, extracts the P factor of A from the polar decomposition $A=P Q$.

Note that π is a surjective submersion.
The vertical space at $A \in \mathrm{GL}(n, \mathbb{R})$ is given by $\mathrm{V}_{A}=A \mathrm{~K}(n, \mathbb{R})$.
Consider the previously discussed left-invariant metric on $\mathrm{GL}(n, \mathbb{R})$. Then, the horizontal space at $A \in \mathrm{GL}(n, \mathbb{R})$ is given by $\mathrm{H}_{A}=A \mathrm{~S}(n, \mathbb{R})$.
The projection map

$$
\pi_{*}: \mathrm{H}_{A} \simeq A \mathrm{~S}(n, \mathbb{R}) \rightarrow T_{P} \mathrm{P}(n, \mathbb{R}) \simeq \mathrm{S}(n, \mathbb{R}) \quad A S \rightarrow \Delta
$$

is described by the equation

$$
\Delta P+P \Delta=2 A S A^{T} .
$$

The Lie group $\mathrm{O}(n)$ acts smoothly on $\mathrm{GL}(n, \mathbb{R})$ as

$$
\mathrm{O}(n) \times \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R}) \quad Q \cdot A=A Q^{T}
$$

Note that $\mathrm{O}(n)$ preserves fibers, acts transitively on them and acts on $\mathrm{GL}(n, \mathbb{R})$ by isometries.
The Riemannian metric on $\mathrm{P}(n)$ that makes π a Riemannian submersion is given by

$$
g_{P}(\Delta, \Omega)=\frac{1}{4} \operatorname{tr}\left(P^{-1} \Delta+\Delta P^{-1}\right)\left(P^{-1} \Omega+\Omega P^{-1}\right) .
$$

References

[1] J. Lee, Riemannian Manifolds, Springer-Verlag, 2000.

