Nonlinear Signal Processing (2004/2005)

jxavier@isr.ist.utl.pt

Riemannian Metrics

Definition [Tensor] Let V be a n-dimensional vector space over \mathbb{R} . A tensor Φ of order r on V is a multilinear (i.e., linear in each argument) map

$$\Phi : \underbrace{V \times \cdots \times V}_{r} \to \mathbb{R}.$$

Thus,

$$\Phi(\cdots, av + bw, \cdots) = a \Phi(\cdots, v, \cdots) + b \Phi(\cdots, w, \cdots)$$

for all $a, b \in \mathbb{R}$ and $v, w \in V$.

The set of tensors of order r on V is denoted by $T^r(V)$.

A tensor of order r = 1 is usually called a covector, and the set of covectors is usually denoted by V^* and termed the dual space of V (note: $V^* = T^1(V)$).

Example 1 [A tensor of order 1 (covector) on $M(n, \mathbb{R})$] The map

 $\Phi \, : \, \mathsf{M}(n,\mathbb{R}) \to \mathbb{R} \qquad \Phi(X) = \mathsf{tr}(X)$

is a covector on $\mathsf{M}(n,\mathbb{R})$.

Example 2 [A tensor of order 2 on \mathbb{R}^n] Let $A \in \mathsf{M}(n, \mathbb{R})$. The map

 $\Phi \, : \, \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \qquad \Phi(x, y) = x^T A y$

is a tensor of order 2 on \mathbb{R}^n .

The map

$$\Psi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \qquad \Psi(x, y) = x^T A y + 1$$

is $\underline{\text{not}}$ a tensor.

Example 3 [A tensor of order 3 on $M(n, \mathbb{R})$] The map

 $\Phi : \mathsf{M}(n,\mathbb{R}) \times \mathsf{M}(n,\mathbb{R}) \times \mathsf{M}(n,\mathbb{R}) \to \mathbb{R} \qquad \Phi(A,B,C) = \mathsf{tr}(ABC)$

is a tensor of order 3 on $M(n, \mathbb{R})$.

Example 4 [A tensor of order n on \mathbb{R}^n] The map

$$\Phi: \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_n \to \mathbb{R} \qquad \Phi(x_1, x_2, \dots, x_n) = \det\left(\begin{bmatrix} x_1 \, x_2 \, \cdots \, x_n \end{bmatrix} \right)$$

is a tensor of order n on \mathbb{R}^n .

Theorem [The vector space of tensors of order r] Let V be a n-dimensional vector space over \mathbb{R} . Let r be a positive integer. With the operations of addition and multiplication by real numbers defined as

$$(\Phi_1 + \Phi_2)(v_1, \dots, v_r) = \Phi_1(v_1, \dots, v_r) + \Phi_2(v_1, \dots, v_r) (\alpha \Phi)(v_1, \dots, v_r) = \alpha \Phi(v_1, \dots, v_r)$$

for $\Phi, \Phi_1, \Phi_2 \in T^r(V)$, $\alpha \in \mathbb{R}$, and $v_1, \ldots, v_r \in V$, the set $T^r(V)$ is a vector space of dimension n^r .

Lemma [Pullback of tensors] Let V, W be vector spaces over \mathbb{R} and let $F_* : V \to W$ be a linear map. Then, for each positive integer r, the map $F^* : T^r(W) \to T^r(V)$, defined as

$$(F^*\Phi)(v_1,\ldots,v_r) = \Phi(F_*(v_1),\ldots,F_*(v_r))$$

for all $\Phi \in T^r(W)$, is a linear map between the vector spaces $T^r(W)$ and $T^r(V)$.

Example 1 [Pullback of a tensor] Consider the linear map

$$F_* : \mathbb{R}^n \to \mathsf{M}(n, \mathbb{R}) \qquad F_*(x) = \mathsf{Diag}(x) = \begin{bmatrix} x_1 & & \\ & x_2 & \\ & & \ddots & \\ & & & x_n \end{bmatrix}$$

and the tensor of order 2 on $\mathsf{M}(n,\mathbb{R})$ given by

$$\Phi : \mathsf{M}(n,\mathbb{R}) \times \mathsf{M}(n,\mathbb{R}) \to \mathbb{R} \qquad \Phi(A,B) = \mathsf{tr}(AB).$$

The pullback of Φ by F_* , denoted $F^*\Phi$, is the tensor of order 2 on \mathbb{R}^n given by

$$(F^*\Phi)(x,y) = \Phi(F_*(x)F_*(y))$$

= tr (Diag(x) Diag(y))
= tr $\begin{bmatrix} x_1y_1 & x_2y_2 & & \\ & \ddots & & \\ & & \ddots & \\ & & & x_ny_n \end{bmatrix}$
= x^Ty .

Example 2 [Another pullback of a tensor] Consider the linear map

 $F_* : \mathsf{M}(p,q,\mathbb{R}) \to \mathsf{M}(n,\mathbb{R}) \qquad F_*(X) = DXE,$

where $D \in \mathsf{M}(n, p, \mathbb{R})$ and $E \in \mathsf{M}(q, n, \mathbb{R})$ are fixed matrices, and the tensor of order 3 on $\mathsf{M}(n, \mathbb{R})$ given by

$$\Phi : \mathsf{M}(n,\mathbb{R}) \times \mathsf{M}(n,\mathbb{R}) \times \mathsf{M}(n,\mathbb{R}) \to \mathbb{R} \qquad \Phi(A,B,C) = \mathsf{tr} \left(A \otimes B \otimes C \right).$$

The pullback of Φ by F_* , denoted $F^*\Phi$, is the tensor of order 3 on $\mathsf{M}(p,q,\mathbb{R})$ given by

$$(F^*\Phi)(X_1, X_2, X_3) = \Phi(F_*(X_1), F_*(X_2), F_*(X_3)) = \operatorname{tr} (DX_1 E \otimes DX_2 E \otimes DX_3 E).$$

Definition [Product of tensors] Let V be a vector space over \mathbb{R} . Let $\Phi \in T^r(V)$ and $\Psi \in T^s(V)$. The product of Φ and Ψ , denoted $\Phi \otimes \Psi$ is a tensor of order r + s defined by

$$(\Phi \otimes \Psi)(v_1, \ldots, v_r, v_{r+1}, \ldots, v_{r+s}) = \Phi(v_1, \ldots, v_r)\Psi(v_{r+1}, \ldots, v_{r+s}).$$

Example 1 [Product of tensors] Consider the tensors

$$\Phi: \underbrace{\mathbb{R}^n \times \cdots \times \mathbb{R}^n}_n \to \mathbb{R} \qquad \Phi(x_1, x_2, \dots, x_n) = \det \left[x_1 \, x_2 \, \cdots \, x_n \right]$$

and

$$\Psi : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \qquad \Psi(x, y) = x^T M y,$$

where $M \in \mathsf{M}(n, \mathbb{R})$ is a fixed matrix.

Note that Φ is a tensor of order n and Ψ is a tensor of order 2. Thus, $\Phi \otimes \Psi$ is a tensor of order n + 2 on \mathbb{R}^n and it is given by

$$(\Phi \otimes \Psi) (x_1, \dots, x_n, x_{n+1}, x_{n+2}) = \Phi(x_1, \dots, x_n) \Psi(x_{n+1}, x_{n+2}) = \det [x_1 \cdots x_n] x_{n+1}^T M x_{n+2}.$$

Theorem [Product of tensors] Let V be a n-dimensional vector space over \mathbb{R} . The product of tensors

$$T^r(V) \times T^s(V) \to T^{r+s}(V) \qquad (\Phi, \Psi) \mapsto \Phi \otimes \Psi,$$

is bilinear and associative:

$$(a\Phi_1 + b\Phi_2) \otimes \Psi = a (\Phi_1 \otimes \Psi) + b (\Phi_2 \otimes \Psi) \Phi \otimes (a\Psi_1 + b\Psi_2) = a (\Phi \otimes \Psi_1) + b (\Phi \otimes \Psi_2) (\Phi \otimes \Psi) \otimes \Omega = \Phi \otimes (\Psi \otimes \Omega).$$

If $\omega^1, \omega^2, \ldots, \omega^n$ is a basis of $V^* = T^1(V)$, then

$$\left\{\omega^{i_1}\otimes\omega^{i_2}\otimes\cdots\otimes\omega^{i_r}:1\leq i_1,i_2,\ldots,i_r\leq n\right\}$$

is a basis of $T^r(V)$. That is, each $\Phi \in T^r(V)$ can be written as

$$\Phi = \sum_{(i_1,\dots,i_r)\in I^r} a_{i_1\cdots i_r} \,\,\omega^{i_1}\otimes\omega^{i_2}\otimes\cdots\otimes\omega^{i_r},$$

where $I = \{1, 2, ..., n\}$ and $a_{i_1 \cdots i_r} \in \mathbb{R}$ are constants (uniquely determined by Φ).

Furthermore, if $F_* : V \to W$ is a linear map of vector spaces, then $F^*(\Phi \otimes \Psi) = (F^*\Phi) \otimes (F^*\Psi).$

Example 1 [Expansion of a tensor] Let $V = \mathbb{R}^3$ and the canonical basis $\{e_1, e_2, e_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. The dual space V^* is spanned by the dual basis $\{\omega^1, \omega^2, \omega^3\}$ where

$$\omega^{i} : V \to \mathbb{R} \qquad \omega^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 0 & , i \neq j \\ 1 & , i = 1 \end{cases}$$

In equivalent terms,

$$\omega^i : V \to \mathbb{R} \qquad \omega^i(x) = e_i^T x.$$

For example, $\omega^1 \otimes \omega^3$ is the tensor of order 2 given by

$$\begin{aligned} (\omega^1 \otimes \omega^3)(x,y) &= \omega^1(x)\,\omega^3(y) \\ &= (x^T e_1)\,(e_3^T y) \\ &= x^T(e_1 e_3^T)y \\ &= x^T \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} y. \end{aligned}$$

Consider the tensor of order 2 on \mathbb{R}^3 given by

$$\Phi : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \qquad \Phi(x, y) = x^T \begin{bmatrix} 1 & -1 & 2 \\ 4 & 2 & 0 \\ 3 & 2 & 2 \end{bmatrix} y.$$

Then, we can expand Φ as

$$\Phi = \omega^1 \otimes \omega^1 - \omega^1 \otimes \omega^2 + 2\omega^1 \otimes \omega^3 + 4\omega^2 \otimes \omega^1 + 2\omega^2 \otimes \omega^2 + 3\omega^3 \otimes \omega^1 + 2\omega^3 \otimes \omega^2 + 2\omega^3 \otimes \omega^3.$$

Equivalently, if Φ is any given tensor of order 2 on \mathbb{R}^3 we can find the coefficients Φ_{ij} in the expansion

$$\Phi = \Phi_{11} \omega^1 \otimes \omega^1 + \Phi_{12} \omega^1 \otimes \omega^2 + \Phi_{13} \omega^1 \otimes \omega^3 + \Phi_{21} \omega^2 \otimes \omega^1 + \Phi_{22} \omega^2 \otimes \omega^2 + \Phi_{23} \omega^2 \otimes \omega^3 + \Phi_{31} \omega^3 \otimes \omega^1 + \Phi_{32} \omega^3 \otimes \omega^2 + \Phi_{33} \omega^3 \otimes \omega^3$$

by calculating $\Phi_{ij} = \Phi(e_i, e_j)$.

Example 2 [Tensors of order 2 as matrices and vice-versa] Let V be any real *n*-dimensional vector space. Once we fix a basis $\{E_1, E_2, \ldots, E_n\}$ for V, any tensor Φ of order 2 can be represented by a $n \times n$ matrix M_{Φ} :

$$\Phi\left(x^{i}E_{i}, y^{j}E_{j}\right) = x^{i}y^{j}\Phi(E_{i}, E_{j}) = x^{T}\underbrace{\begin{bmatrix}\Phi(E_{1}, E_{1}) & \cdots & \Phi(E_{1}, E_{n})\\ \vdots & \ddots & \vdots\\ \Phi(E_{n}, E_{1}) & \cdots & \Phi(E_{n}, E_{n})\end{bmatrix}}_{M_{\Phi}}y.$$

This equivalence (w.r.t to a fixed basis $\{E_1, \ldots, E_n\}$) is denoted by

 $\Phi \sim M_{\Phi}.$

Definition [Smooth tensor fields] A smooth tensor field of order r on a smooth manifold M is a map Φ which assigns to each $p \in M$ an element $\Phi_p \in T^r(T_pM)$ such that: for any smooth vector fields X_1, \ldots, X_r defined on M, the function

$$\Phi(X_1,\ldots,X_r): M \to \mathbb{R} \qquad p \mapsto \Phi_p(X_{1p},\ldots,X_{rp})$$

is smooth.

The set of smooth tensor fields of order r on M is denoted by $\mathcal{T}^r(M)$ and it is a vector space under pointwise addition of tensors and multiplication by elements of \mathbb{R} .

 \triangleright Intuition: a smooth tensor field on M is a smooth assignment of a tensor Φ_p to each tangent space T_pM

Example 1 [Canonical smooth covector fields on \mathbb{R}^n] The *n* covector fields dx^1, \ldots, dx^n defined, at each $p \in \mathbb{R}^n$, to be the dual basis of the canonical basis

$$\frac{\partial}{\partial x^1} \bigg|_p, \frac{\partial}{\partial x^2} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p$$

of $T_p\mathbb{R}^n$, are smooth covector fields on \mathbb{R}^n .

Example 2 [A smooth covector field on \mathbb{R}^3] The covector field

$$\omega = (x^2 - y + z) \, dx + (\sin(xy) - 3) \, dy + xe^y \, dz$$

is a smooth covector field on \mathbb{R}^3 .

At
$$p = (1, 0, 1)$$
, we have the covector $\omega_{(1,0,1)} : T_{(1,0,1)} \mathbb{R}^3 \to \mathbb{R}$ given by

$$\omega_{(1,0,1)}\left(a\frac{\partial}{\partial x}\Big|_{(1,0,1)} + b\frac{\partial}{\partial y}\Big|_{(1,0,1)} + c\frac{\partial}{\partial z}\Big|_{(1,0,1)}\right) = 2a - 3b + c.$$

Example 3 [A smooth function induces a smooth covector field] Let M be a smooth manifold and $f \in C^{\infty}(M)$. The covector field df defined, at each $p \in M$, by

$$df|_p(X_p) = X_p f, \qquad X_p \in T_p M,$$

is smooth. It is called the differential of f.

For the special case $M = \mathbb{R}^n$, we have

$$df|_p = \frac{\partial f}{\partial x^1}(p) \, dx^1|_p + \frac{\partial f}{\partial x^2}(p) \, dx^2|_p + \dots + \frac{\partial f}{\partial x^n}(p) \, dx^n|_p.$$

For instance, if

$$f : \mathbb{R}^3 \to \mathbb{R}$$
 $f(x, y, z) = \cos(xz) + y^2$,

then

$$df = -z\sin(xz)dx + 2ydy - x\sin(xz)dz.$$

Definition [Product of tensor fields] Let M be a smooth manifold. Let Φ and Ψ be tensor fields on M order r and s, respectively. The product of Φ and Ψ , denoted $\Phi \otimes \Psi$ is the tensor field of order r + s on M defined for each $p \in M$ as $(\Phi \otimes \Psi)_p = \Phi_p \otimes \Psi_p$.

Theorem [Product of smooth tensor fields] Let M be a n-dimensional smooth manifold. The product of tensor fields just defined takes smooth tensor fields to smooth tensor fields. Moreover, the map

$$\mathcal{T}^{r}(M) \times \mathcal{T}^{s}(M) \to \mathcal{T}^{r+s}(M) \qquad (\Phi, \Psi) \mapsto \Phi \otimes \Psi$$

is bilinear and associative.

If $\omega^1, \omega^2, \ldots, \omega^n$ is a basis of $\mathcal{T}^*(M) = \mathcal{T}^1(M)$ (that is, $\omega_p^1, \ldots, \omega_p^n$ is a basis of T_p^*M at each $p \in M$), then each $\Phi \in \mathcal{T}^r(M)$ can be written as

$$\Phi = \sum_{(i_1,\dots,i_r)\in I^r} f_{i_1\cdots i_r} \,\omega^{i_1}\otimes\omega^{i_2}\otimes\cdots\otimes\omega^{i_r},$$

where $I = \{1, 2, ..., n\}$ and $f_{i_1 \cdots i_r} : M \to \mathbb{R}$ are smooth functions (uniquely determined by Φ).

Lemma [Pullback of smooth tensor fields] Let M, N be smooth manifolds and $F : M \to N$ a smooth map. Then, each smooth tensor field $\Phi \in \mathcal{T}^r(N)$ determines a smooth tensor field $F^* \Phi \in \mathcal{T}^r(M)$ by the formula

$$(F^*\Phi)_p(X_{1p},\ldots,X_{rp}) = \Phi_{F(p)}(F_*(X_{1p}),\ldots,F_*(X_{rp})).$$

The map F^* : $\mathcal{T}^r(N) \to \mathcal{T}^r(M)$ thus defined is linear. Moreover,

$$F^* \left(\Phi \otimes \Psi \right) = \left(F^* \Phi \right) \otimes \left(F^* \Psi \right)$$

for $\Phi \in \mathcal{T}^r(M)$ and $\Psi \in \mathcal{T}^s(M)$.

Example 1 [A simple pullback] Let $M = \mathbb{R}^m$, $N = \mathbb{R}^n$ and consider a smooth map

$$F : \mathbb{R}^m \to \mathbb{R}^n \qquad F(x) = (F^1(x), F^2(x), \dots, F^n(x)).$$

Let $1 \leq j \leq n$. The pullback of dy^j by F is given by

$$F^* \, dy^j = a^j_i dx^j$$

and each smooth function $a_i^j\,:\,\mathbb{R}^n\to\mathbb{R}$ can be found as

$$a_i^j = (F^* dy^j)(\partial_i)$$

= $dy^j (F_* \partial_i)$
= $dy^j (\partial_i F^k \partial_k)$
= $\partial_i F^k (dy^j)(\partial_k)$
= $\partial_i F^j.$

Thus,

$$F^* dy^j = \partial_i F^j \, dx^i.$$

For instance, if

$$F : \mathbb{R}^2 \to \mathbb{R}^3$$
 $F(u, v) = (u^2 + v, \sin(uv), ue^v)$

with coordinates (u, v) on \mathbb{R}^2 and (x, y, z) on \mathbb{R}^3 , then

$$F^*dx = 2u \, du + dv$$

$$F^*dy = v \cos(uv) \, du + u \cos(uv) \, dv$$

$$F^*dz = e^v \, du + ue^v \, dv.$$

Example 2 [A pullback of a tensor of order 2] Let $M = \mathbb{R}^m$, $N = \mathbb{R}^n$ and consider a smooth map

$$F : \mathbb{R}^m \to \mathbb{R}^n \qquad F(x) = (F^1(x), F^2(x), \dots, F^n(x)).$$

Let $\Phi = \Phi_{ij} dy^i \otimes dy^j$ be a smooth tensor field of order 2 on \mathbb{R}^n . Note that each

$$\Phi_{ij} : \mathbb{R}^n \to \mathbb{R}$$

is a smooth function.

The pullback of Φ by F is the tensor field of order 2 on \mathbb{R}^m given by

$$F^{*}\Phi = F^{*} \left(\Phi_{ij} dy^{i} \otimes dy^{j} \right)$$

$$= F^{*}\Phi_{ij} F^{*} dy^{i} \otimes F^{*} dy^{j}$$

$$= \left(\Phi_{ij} \circ F \right) \left(\partial_{k} F^{i} dx^{k} \right) \otimes \left(\partial_{l} F^{j} dx^{l} \right)$$

$$= \left(\Phi_{ij} \circ F \right) \partial_{k} F^{i} \partial_{l} F^{j} dx^{k} \otimes dx^{l}.$$

In a more compact notation: if $\Phi_y \sim M(y)$ then

$$(F^*\Phi)_p \sim DF(p)^T M(F(p)) DF(p).$$

Definition [Riemannian manifold] A Riemannian manifold is a smooth manifold M on which is defined a Riemannian metric g, that is, a smooth

tensor of order 2 which is symmetric $(g(X_p, Y_p) = g(Y_p, X_p)$ for all $X_p \in T_pM)$ and positive-definite $(g(X_p, X_p) = 0$ if and only if $X_p = 0)$.

A smooth manifold M with Riemannian metric g is usually denoted by (M, g).

Example 1 [The canonical Riemannian metric on \mathbb{R}^n] The canonical Riemannian metric on \mathbb{R}^n is given by

$$g(\partial_i|_p, \partial_j|_p) = \delta_i^j.$$

Thus, for each $p \in \mathbb{R}^n$, we have

$$g_p \sim \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}.$$

Example 2 [Another Riemannian structure on \mathbb{R}^n] Let Σ be a fixed $n \times n$ positive definite matrix. Define a tensor field g of order 2 on \mathbb{R}^n as $g(\partial_i|_p, \partial_j|_p) = \Sigma_{ij}$ or, equivalently,

$$g_p \sim \Sigma$$
 for all $p \in \mathbb{R}^n$.

The tensor field g is a valid Riemannian metric on \mathbb{R}^n .

Example 3 [A Riemannian structure on \mathbb{R}^3] Define a tensor field g of order 2 on \mathbb{R}^3 as

$$g_{(x,y,z)} \sim \begin{bmatrix} e^{2x+yz} & & \\ & 2-\cos(z) & \\ & & y^2+1 \end{bmatrix}.$$

The tensor field g is a valid Riemannian metric on \mathbb{R}^3 .

Example 4 [A Riemannian structure on $P(n, \mathbb{R})$] Since $P(n, \mathbb{R})$ is an open subset of $S(n, \mathbb{R})$ we have the identification

$$T_P \mathsf{P}(n, \mathbb{R}) \simeq \mathsf{S}(n, \mathbb{R})$$
 for all $P \in \mathsf{P}(n, \mathbb{R})$.

Consider the inner-product at $T_P \mathsf{P}(n, \mathbb{R})$:

$$g_P(\Delta, \Omega) = \operatorname{tr}(\Omega^T \Delta) \quad \text{for} \quad \Delta, \Omega \in T_P \mathsf{P}(n, \mathbb{R}) \simeq \mathsf{S}(n, \mathbb{R}).$$

The tensor field g is a valid Riemannian metric on $\mathsf{P}(n,\mathbb{R})$.

Example 5 [Left-invariant Riemannian metrics on Lie groups] Let G be a lie group. Let g_e be any inner-product on T_eG . We can propagate this inner-product to all the group G through left-translations, that is, to each $a \in G$, we assign the inner-product g_a on T_aG as

$$g_a(X_a, Y_a) = g_e(L_{a^{-1}*}X_a, L_{a^{-1}*}Y_a),$$

where

$$L_b : G \to G \qquad L_b(x) = b \cdot x$$

denotes left translation.

The resulting Riemannian metric $g = \langle \cdot, \cdot \rangle$ is left-invariant:

$$\langle X_a, Y_a \rangle = \langle L_{b*}(X_a), L_{b*}(Y_a) \rangle$$
 for all $a, b \in G$.

For instance, consider the Lie group $\mathsf{GL}(n,\mathbb{R})$. Since $\mathsf{GL}(n,\mathbb{R})$ is an open subset of $\mathsf{M}(n,\mathbb{R})$ we have the identification

$$T_A \mathsf{GL}(n, \mathbb{R}) \simeq \mathsf{M}(n, \mathbb{R})$$
 for all $A \in \mathsf{GL}(n, \mathbb{R})$.

Consider the usual inner-product at $T_{I_n} \mathsf{GL}(n, \mathbb{R})$:

$$\langle \Delta, \Omega \rangle = \operatorname{tr}(\Omega^T \Delta) \quad \text{for} \quad \Delta, \Omega \in T_{I_n} \operatorname{GL}(n, \mathbb{R}) \simeq \operatorname{M}(n, \mathbb{R}).$$

By left-translation the inner-product at $T_A \mathsf{GL}(n, \mathbb{R})$ is given by:

$$\langle \Delta, \Omega \rangle = \operatorname{tr}(\Omega^T \left(A A^T \right)^{-1} \Delta) \quad \text{for} \quad \Delta, \Omega \in T_A \operatorname{GL}(n, \mathbb{R}) \simeq \operatorname{M}(n, \mathbb{R}).$$

Lemma [Riemannian submanifolds] Let (M, g_M) be a Riemannian manifold. Let $N \subset M$ be a submanifold with inclusion map $\iota : N \to M$. Then, $g_N = \iota^* g_M$ is a Riemannian metric on N.

Example 1 [The canonical Riemannian metric on $S^2(\mathbb{R})$] Let

$$F : W \subset \mathbb{R}^2 \to \mathsf{S}^2(\mathbb{R}) \qquad F(\theta, \varphi) = (\cos \theta \, \sin \varphi, \, \sin \theta \, \sin \varphi, \, \cos \varphi)$$

be a local parameterization of the unit-sphere $S^2(\mathbb{R})$ where

$$W = \{ (\theta, \varphi) : 0 < \theta < 2\pi, 0 < \varphi < \pi/2 \}.$$

In these coordinates, the canonical Riemannian metric on $\mathsf{S}^2(\mathbb{R})$ is given by

$$F^*g_{\mathsf{S}^2(\mathbb{R})}(\theta,\varphi) \sim \left(\begin{array}{cc} \sin^2\varphi & 0\\ 0 & 1 \end{array}\right).$$

Definition [Vertical and horizonal subspaces, Riemannian submersions] Let $\pi : \widetilde{M} \to M$ be a surjective submersion. The fiber over $q \in M$, written F_y , is defined as the inverse image $F_q = \pi^{-1}(q) \subset \widetilde{M}$ (note: since π has constant rank, F_q is a closed, embedded submanifold of \widetilde{M}).

Suppose $(\widetilde{M}, \widetilde{g})$ is a Riemannian manifold. Let $p \in F_q$. The vertical space at p is the subspace of $T_p \widetilde{M}$ defined as

$$\mathsf{V}_p = \mathsf{Ker}\,\pi_*$$

where π_* : $T_p\widetilde{M} \to T_qM$ is the push-forward of the map π .

The horizontal subspace at p is defined as $\mathsf{H}_p = \mathsf{V}_p^{\perp}$ and corresponds to the orthogonal complement of V_p with respect to the inner-product \widetilde{g}_p : $T_p\widetilde{M} \times T_p\widetilde{M} \to \mathbb{R}$.

Thus, we have the orthogonal direct sum

$$T_pM = \mathsf{V}_p \oplus \mathsf{H}_p$$

Let g be a Riemannian metric on M. The map $\pi : M \to M$ is said to be a Riemannian submersion if, for every $p \in \widetilde{M}$, the restriction

$$\pi_*$$
: $\mathsf{H}_p \to T_{\pi(p)}M$

is an isometry.

Proposition [Horizontal lifts, Riemannian submersions] Let \widetilde{M} be a Riemannian manifold and $\pi : \widetilde{M} \to M$ be a surjective submersion.

(a) Any smooth vector field \widetilde{X} on \widetilde{M} can be written uniquely as

 $\widetilde{X} = \widetilde{X}^{\mathsf{H}} + \widetilde{X}^{\mathsf{V}}$

where $\widetilde{X}^{\mathsf{H}}$ and $\widetilde{X}^{\mathsf{V}}$ are smooth vector fields on \widetilde{M} with $\widetilde{X}_{p}^{\mathsf{H}} \in \mathsf{H}_{p}$ and $\widetilde{X}_{p}^{\mathsf{V}} \in \mathsf{V}_{p}$ for all $p \in \widetilde{M}$.

(b) Let X be a smooth vector field on M. Then, there is an unique horizontal smooth vector $\widetilde{X}^{\mathsf{H}}$ on \widetilde{M} , called the horizontal lift of X, such that

$$\pi_*\left(\widetilde{X}_p^{\mathsf{H}}\right) = X_{\pi(p)},$$

for all $p \in M$.

(c) Let φ denote a smooth action of a Lie group G on \widetilde{M} such that:

- G preserves fibers (i.e, $\pi \circ \varphi_g = \pi$ for all $g \in G$)
- G acts transitively on each fiber

• G acts on \widetilde{M} by isometries (i.e., each linear map $\varphi_{g*} : T_p \widetilde{M} \to T_{\varphi_g(p)} \widetilde{M}$ is an isometry).

Then, there exists a unique Riemannian metric on M such that π is a Riemannian submersion.

Example 1 [A Riemannian metric on $P(n, \mathbb{R})$] Consider the map

$$\pi : \mathsf{GL}(n,\mathbb{R}) \to \mathsf{P}(n,\mathbb{R})$$

which, given $A \in \mathsf{GL}(n, \mathbb{R})$, extracts the P factor of A from the polar decomposition A = PQ.

Note that π is a surjective submersion.

The vertical space at $A \in GL(n, \mathbb{R})$ is given by $V_A = AK(n, \mathbb{R})$.

Consider the previously discussed left-invariant metric on $\mathsf{GL}(n,\mathbb{R})$. Then, the horizontal space at $A \in \mathsf{GL}(n,\mathbb{R})$ is given by $\mathsf{H}_A = A\mathsf{S}(n,\mathbb{R})$. The projection map

$$\pi_* : \mathsf{H}_A \simeq A\mathsf{S}(n,\mathbb{R}) \to T_P\mathsf{P}(n,\mathbb{R}) \simeq \mathsf{S}(n,\mathbb{R}) \qquad AS \to \Delta$$

is described by the equation

$$\Delta P + P\Delta = 2ASA^T.$$

The Lie group O(n) acts smoothly on $GL(n, \mathbb{R})$ as

$$\mathsf{O}(n) \times \mathsf{GL}(n, \mathbb{R}) \to \mathsf{GL}(n, \mathbb{R}) \qquad Q \cdot A = AQ^T.$$

Note that O(n) preserves fibers, acts transitively on them and acts on $GL(n, \mathbb{R})$ by isometries.

The Riemannian metric on $\mathsf{P}(n)$ that makes π a Riemannian submersion is given by

$$g_P\left(\Delta,\Omega\right) = \frac{1}{4}\operatorname{tr}\left(P^{-1}\Delta + \Delta P^{-1}\right)\left(P^{-1}\Omega + \Omega P^{-1}\right).$$

References

[1] J. Lee, *Riemannian Manifolds*, Springer-Verlag, 2000.