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Riemannian Metrics

Definition [Tensor] Let V be a n-dimensional vector space over R. A tensor
Φ of order r on V is a multilinear (i.e., linear in each argument) map

Φ : V × · · · × V︸ ︷︷ ︸
r

→ R.

Thus,

Φ(· · · , av + bw, · · · ) = aΦ(· · · , v, · · · ) + bΦ(· · · , w, · · · )

for all a, b ∈ R and v, w ∈ V .
The set of tensors of order r on V is denoted by T r(V ).
A tensor of order r = 1 is usually called a covector, and the set of covectors

is usually denoted by V ∗ and termed the dual space of V (note: V ∗ = T 1(V )).

Example 1 [A tensor of order 1 (covector) on M(n,R)] The map

Φ : M(n,R) → R Φ(X) = tr(X)

is a covector on M(n,R).

Example 2 [A tensor of order 2 on R
n] Let A ∈ M(n,R). The map

Φ : R
n × R

n → R Φ(x, y) = xTAy

is a tensor of order 2 on R
n.

The map
Ψ : R

n × R
n → R Ψ(x, y) = xTAy + 1

is not a tensor.

Example 3 [A tensor of order 3 on M(n,R)] The map

Φ : M(n,R)× M(n,R)× M(n,R) → R Φ(A,B,C) = tr (ABC)

is a tensor of order 3 on M(n,R).
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Example 4 [A tensor of order n on R
n] The map

Φ : R
n × · · · × R

n︸ ︷︷ ︸
n

→ R Φ(x1, x2, . . . , xn) = det ([x1 x2 · · · xn ])

is a tensor of order n on R
n.

Theorem [The vector space of tensors of order r] Let V be a n-
dimensional vector space over R. Let r be a positive integer. With the
operations of addition and multiplication by real numbers defined as

(Φ1 + Φ2)(v1, . . . , vr) = Φ1(v1, . . . , vr) + Φ2(v1, . . . , vr)

(αΦ)(v1, . . . , vr) = αΦ(v1, . . . , vr)

for Φ,Φ1,Φ2 ∈ T r(V ), α ∈ R, and v1, . . . , vr ∈ V , the set T r(V ) is a vector
space of dimension nr.

Lemma [Pullback of tensors] Let V,W be vector spaces over R and let
F∗ : V → W be a linear map. Then, for each positive integer r, the map
F ∗ : T r(W ) → T r(V ), defined as

(F ∗Φ) (v1, . . . , vr) = Φ (F∗(v1), . . . , F∗(vr))

for all Φ ∈ T r(W ), is a linear map between the vector spaces T r(W ) and
T r(V ).

Example 1 [Pullback of a tensor] Consider the linear map

F∗ : R
n → M(n,R) F∗(x) = Diag(x) =


x1

x2

. . .

xn


and the tensor of order 2 on M(n,R) given by

Φ : M(n,R)× M(n,R) → R Φ(A,B) = tr(AB).
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The pullback of Φ by F∗, denoted F ∗Φ, is the tensor of order 2 on R
n

given by

(F ∗Φ)(x, y) = Φ(F∗(x)F∗(y))

= tr (Diag(x)Diag(y))

= tr


x1y1

x2y2

. . .

xnyn


= xTy.

Example 2 [Another pullback of a tensor] Consider the linear map

F∗ : M(p, q,R) → M(n,R) F∗(X) = DXE,

where D ∈ M(n, p,R) and E ∈ M(q, n,R) are fixed matrices, and the
tensor of order 3 on M(n,R) given by

Φ : M(n,R)×M(n,R)×M(n,R) → R Φ(A,B,C) = tr (A⊗B ⊗ C) .

The pullback of Φ by F∗, denoted F ∗Φ, is the tensor of order 3 on M(p, q,R)
given by

(F ∗Φ)(X1, X2, X3) = Φ(F∗(X1), F∗(X2), F∗(X3))

= tr (DX1E ⊗DX2E ⊗DX3E) .

Definition [Product of tensors] Let V be a vector space over R. Let
Φ ∈ T r(V ) and Ψ ∈ T s(V ). The product of Φ and Ψ, denoted Φ ⊗ Ψ is a
tensor of order r + s defined by

(Φ⊗Ψ) (v1, . . . , vr, vr+1, . . . , vr+s) = Φ(v1, . . . , vr)Ψ(vr+1, . . . , vr+s).

Example 1 [Product of tensors] Consider the tensors

Φ : R
n × · · · × R

n︸ ︷︷ ︸
n

→ R Φ(x1, x2, . . . , xn) = det [x1 x2 · · · xn ]
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and
Ψ : R

n × R
n → R Ψ(x, y) = xTMy,

where M ∈ M(n,R) is a fixed matrix.

Note that Φ is a tensor of order n and Ψ is a tensor of order 2. Thus,
Φ⊗Ψ is a tensor of order n+ 2 on R

n and it is given by

(Φ⊗Ψ) (x1, . . . , xn, xn+1, xn+2) = Φ(x1, . . . , xn)Ψ(xn+1, xn+2)

= det [x1 · · · xn ]x
T
n+1Mxn+2.

Theorem [Product of tensors] Let V be a n-dimensional vector space
over R. The product of tensors

T r(V )× T s(V ) → T r+s(V ) (Φ,Ψ) �→ Φ⊗Ψ,

is bilinear and associative:

(aΦ1 + bΦ2)⊗Ψ = a (Φ1 ⊗Ψ) + b (Φ2 ⊗Ψ)

Φ⊗ (aΨ1 + bΨ2) = a (Φ⊗Ψ1) + b (Φ⊗Ψ2)

(Φ⊗Ψ)⊗ Ω = Φ⊗ (Ψ⊗ Ω).

If ω1, ω2, . . . , ωn is a basis of V ∗ = T 1(V ), then{
ωi1 ⊗ ωi2 ⊗ · · · ⊗ ωir : 1 ≤ i1, i2, . . . , ir ≤ n

}
is a basis of T r(V ). That is, each Φ ∈ T r(V ) can be written as

Φ =
∑

(i1,...,ir)∈Ir

ai1 ··· ir ωi1 ⊗ ωi2 ⊗ · · · ⊗ ωir ,

where I = {1, 2, . . . , n} and ai1 ··· ir ∈ R are constants (uniquely determined
by Φ).

Furthermore, if F∗ : V → W is a linear map of vector spaces, then
F ∗ (Φ⊗Ψ) = (F ∗Φ)⊗ (F ∗Ψ).
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Example 1 [Expansion of a tensor] Let V = R
3 and the canonical basis

{e1, e2, e3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The dual space V ∗ is spanned
by the dual basis {ω1, ω2, ω3} where

ωi : V → R ωi(ej) = δi
j =

{
0 , i 
= j
1 , i = 1

.

In equivalent terms,

ωi : V → R ωi(x) = eT
i x.

For example, ω1 ⊗ ω3 is the tensor of order 2 given by

(ω1 ⊗ ω3)(x, y) = ω1(x)ω3(y)

= (xT e1) (e
T
3 y)

= xT (e1e
T
3 )y

= xT

0 0 1
0 0 0
0 0 0

 y.

Consider the tensor of order 2 on R
3 given by

Φ : R
3 × R

3 → R Φ(x, y) = xT

1 −1 2
4 2 0
3 2 2

 y.

Then, we can expand Φ as

Φ = ω1 ⊗ ω1 − ω1 ⊗ ω2 + 2ω1 ⊗ ω3 +

4ω2 ⊗ ω1 + 2ω2 ⊗ ω2 +

3ω3 ⊗ ω1 + 2ω3 ⊗ ω2 + 2ω3 ⊗ ω3.

Equivalently, if Φ is any given tensor of order 2 on R
3 we can find the

coefficients Φij in the expansion

Φ = Φ11 ω
1 ⊗ ω1 + Φ12 ω

1 ⊗ ω2 + Φ13 ω
1 ⊗ ω3 +

Φ21 ω
2 ⊗ ω1 + Φ22 ω

2 ⊗ ω2 + Φ23 ω
2 ⊗ ω3 +

Φ31 ω
3 ⊗ ω1 + Φ32 ω

3 ⊗ ω2 + Φ33 ω
3 ⊗ ω3

by calculating Φij = Φ(ei, ej).
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Example 2 [Tensors of order 2 as matrices and vice-versa] Let V be
any real n-dimensional vector space. Once we fix a basis {E1, E2, . . . , En}
for V , any tensor Φ of order 2 can be represented by a n × n matrix
MΦ:

Φ
(
xiEi, y

jEj

)
= xiyjΦ(Ei, Ej) = xT

Φ(E1, E1) · · · Φ(E1, En)
...

. . .
...

Φ(En, E1) · · · Φ(En, En)


︸ ︷︷ ︸

MΦ

y.

This equivalence (w.r.t to a fixed basis {E1, . . . , En}) is denoted by

Φ ∼ MΦ.

Definition [Smooth tensor fields] A smooth tensor field of order r on a
smooth manifold M is a map Φ which assigns to each p ∈ M an element
Φp ∈ T r (TpM) such that: for any smooth vector fields X1, . . . , Xr defined
on M , the function

Φ(X1, . . . , Xr) : M → R p �→ Φp (X1p, . . . , Xrp)

is smooth.
The set of smooth tensor fields of order r on M is denoted by T r(M) and

it is a vector space under pointwise addition of tensors and multiplication by
elements of R.

 Intuition: a smooth tensor field on M is a smooth assignment of a
tensor Φp to each tangent space TpM

Example 1 [Canonical smooth covector fields on R
n] The n covector

fields dx1, . . . , dxn defined, at each p ∈ R
n, to be the dual basis of the

canonical basis
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

of TpR
n, are smooth covector fields on R

n.

6



Example 2 [A smooth covector field on R
3] The covector field

ω = (x2 − y + z) dx+ (sin(xy)− 3) dy + xey dz

is a smooth covector field on R
3.

At p = (1, 0, 1), we have the covector ω(1,0,1) : T(1,0,1)R
3 → R given by

ω(1,0,1)

(
a
∂

∂x

∣∣∣∣
(1,0,1)

+ b
∂

∂y

∣∣∣∣
(1,0,1)

+ c
∂

∂z

∣∣∣∣
(1,0,1)

)
= 2a− 3b+ c.

Example 3 [A smooth function induces a smooth covector field]
Let M be a smooth manifold and f ∈ C∞(M). The covector field df
defined, at each p ∈ M , by

df |p(Xp) = Xpf, Xp ∈ TpM,

is smooth. It is called the differential of f .

For the special case M = R
n, we have

df |p =
∂f

∂x1 (p) dx
1|p +

∂f

∂x2 (p) dx
2|p + · · ·+ ∂f

∂xn (p) dx
n|p.

For instance, if

f : R
3 → R f(x, y, z) = cos(xz) + y2,

then
df = −z sin(xz)dx+ 2ydy − x sin(xz)dz.

Definition [Product of tensor fields] Let M be a smooth manifold. Let
Φ and Ψ be tensor fields on M order r and s, respectively. The product of
Φ and Ψ, denoted Φ ⊗ Ψ is the tensor field of order r + s on M defined for
each p ∈ M as (Φ⊗Ψ)p = Φp ⊗Ψp .

Theorem [Product of smooth tensor fields] Let M be a n-dimensional
smooth manifold. The product of tensor fields just defined takes smooth
tensor fields to smooth tensor fields. Moreover, the map

T r(M)× T s(M) → T r+s(M) (Φ,Ψ) �→ Φ⊗Ψ
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is bilinear and associative.
If ω1, ω2, . . . , ωn is a basis of T ∗(M) = T 1(M) (that is, ω1

p, . . . , ω
n
p is a

basis of T ∗
pM at each p ∈ M), then each Φ ∈ T r(M) can be written as

Φ =
∑

(i1,...,ir)∈Ir

fi1 ··· ir ωi1 ⊗ ωi2 ⊗ · · · ⊗ ωir ,

where I = {1, 2, . . . , n} and fi1 ··· ir : M → R are smooth functions (uniquely
determined by Φ).

Lemma [Pullback of smooth tensor fields] Let M,N be smooth man-
ifolds and F : M → N a smooth map. Then, each smooth tensor field
Φ ∈ T r(N) determines a smooth tensor field F ∗Φ ∈ T r(M) by the formula

(F ∗Φ)p (X1p, . . . , Xrp) = ΦF (p) (F∗(X1p), . . . , F∗(Xrp)) .

The map F ∗ : T r(N) → T r(M) thus defined is linear. Moreover,

F ∗ (Φ⊗Ψ) = (F ∗Φ)⊗ (F ∗Ψ)

for Φ ∈ T r(M) and Ψ ∈ T s(M).

Example 1 [A simple pullback] Let M = R
m, N = R

n and consider a
smooth map

F : R
m → R

n F (x) = (F 1(x), F 2(x), . . . , F n(x)).

Let 1 ≤ j ≤ n. The pullback of dyj by F is given by

F ∗ dyj = aj
idx

j

and each smooth function aj
i : R

n → R can be found as

aj
i = (F ∗dyj)(∂i)

= dyj(F∗∂i)

= dyj
(
∂iF

k∂k

)
= ∂iF

k(dyj)(∂k)

= ∂iF
j.

8



Thus,
F ∗dyj = ∂iF

j dxi.

For instance, if

F : R
2 → R

3 F (u, v) = (u2 + v, sin(uv), uev)

with coordinates (u, v) on R
2 and (x, y, z) on R

3, then

F ∗dx = 2u du+ dv

F ∗dy = v cos(uv) du+ u cos(uv) dv

F ∗dz = ev du+ uev dv.

Example 2 [A pullback of a tensor of order 2] Let M = R
m, N = R

n

and consider a smooth map

F : R
m → R

n F (x) = (F 1(x), F 2(x), . . . , F n(x)).

Let Φ = Φij dy
i ⊗ dyj be a smooth tensor field of order 2 on R

n. Note
that each

Φij : R
n → R

is a smooth function.

The pullback of Φ by F is the tensor field of order 2 on R
m given by

F ∗Φ = F ∗ (Φij dy
i ⊗ dyj

)
= F ∗Φij F

∗dyi ⊗ F ∗dyj

= (Φij ◦ F )
(
∂kF

idxk
)
⊗
(
∂lF

jdxl
)

= (Φij ◦ F ) ∂kF
i∂lF

jdxk ⊗ dxl.

In a more compact notation: if Φy ∼ M(y) then

(F ∗Φ)p ∼ DF (p)TM(F (p))DF (p).

Definition [Riemannian manifold] A Riemannian manifold is a smooth
manifold M on which is defined a Riemannian metric g, that is, a smooth
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tensor of order 2 which is symmetric (g(Xp, Yp) = g(Yp, Xp) for allXp ∈ TpM)
and positive-definite (g(Xp, Xp) = 0 if and only if Xp = 0).

A smooth manifold M with Riemannian metric g is usually denoted by
(M, g).

Example 1 [The canonical Riemannian metric on R
n] The canonical

Riemannian metric on R
n is given by

g(∂i|p, ∂j|p) = δj
i .

Thus, for each p ∈ R
n, we have

gp ∼


1

1
. . .

1

 .

Example 2 [Another Riemannian structure on R
n] Let Σ be a fixed

n× n positive definite matrix. Define a tensor field g of order 2 on R
n

as g(∂i|p, ∂j|p) = Σij or, equivalently,

gp ∼ Σ for all p ∈ R
n.

The tensor field g is a valid Riemannian metric on R
n.

Example 3 [A Riemannian structure on R
3] Define a tensor field g of

order 2 on R
3 as

g(x,y,z) ∼

e2x+yz

2− cos(z)
y2 + 1

 .

The tensor field g is a valid Riemannian metric on R
3.

Example 4 [A Riemannian structure on P(n,R)] Since P(n,R) is an
open subset of S(n,R) we have the identification

TP P(n,R) � S(n,R) for all P ∈ P(n,R).
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Consider the inner-product at TP P(n,R):

gP (∆,Ω) = tr(ΩT∆) for ∆,Ω ∈ TP P(n,R) � S(n,R).

The tensor field g is a valid Riemannian metric on P(n,R).

Example 5 [Left-invariant Riemannian metrics on Lie groups] Let G
be a lie group. Let ge be any inner-product on TeG. We can propagate
this inner-product to all the group G through left-translations, that is,
to each a ∈ G, we assign the inner-product ga on TaG as

ga(Xa, Ya) = ge(La−1∗Xa, La−1∗Ya),

where
Lb : G → G Lb(x) = b · x

denotes left translation.

The resulting Riemannian metric g = 〈·, ·〉 is left-invariant:

〈Xa, Ya〉 = 〈Lb∗(Xa), Lb∗(Ya)〉 for all a, b ∈ G.

For instance, consider the Lie group GL(n,R). Since GL(n,R) is an
open subset of M(n,R) we have the identification

TAGL(n,R) � M(n,R) for all A ∈ GL(n,R).

Consider the usual inner-product at TInGL(n,R):

〈∆,Ω〉 = tr(ΩT∆) for ∆,Ω ∈ TInGL(n,R) � M(n,R).

By left-translation the inner-product at TAGL(n,R) is given by:

〈∆,Ω〉 = tr(ΩT
(
AAT

)−1
∆) for ∆,Ω ∈ TAGL(n,R) � M(n,R).

Lemma [Riemannian submanifolds] Let (M, gM) be a Riemannian man-
ifold. Let N ⊂ M be a submanifold with inclusion map ι : N → M . Then,
gN = ι∗gM is a Riemannian metric on N .
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Example 1 [The canonical Riemannian metric on S2(R)] Let

F : W ⊂ R
2 → S2(R) F (θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

be a local parameterization of the unit-sphere S2(R) where

W = {(θ, ϕ) : 0 < θ < 2π, 0 < ϕ < π/2} .

In these coordinates, the canonical Riemannian metric on S2(R) is given
by

F ∗gS2(R)(θ, ϕ) ∼
(

sin2 ϕ 0
0 1

)
.

Definition [Vertical and horizonal subspaces, Riemannian submer-

sions] Let π : M̃ → M be a surjective submersion. The fiber over q ∈ M ,

written Fy, is defined as the inverse image Fq = π−1(q) ⊂ M̃ (note: since π

has constant rank, Fq is a closed, embedded submanifold of M̃).

Suppose (M̃, g̃) is a Riemannian manifold. Let p ∈ Fq. The vertical space

at p is the subspace of TpM̃ defined as

Vp = Ker π∗

where π∗ : TpM̃ → TqM is the push-forward of the map π.
The horizontal subspace at p is defined as Hp = V⊥

p and corresponds
to the orthogonal complement of Vp with respect to the inner-product g̃p :

TpM̃ × TpM̃ → R.
Thus, we have the orthogonal direct sum

TpM̃ = Vp ⊕ Hp.

Let g be a Riemannian metric on M . The map π : M̃ → M is said to
be a Riemannian submersion if, for every p ∈ M̃ , the restriction

π∗ : Hp → Tπ(p)M

is an isometry.
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M̃

Hp ⊂ TpM̃

Vp ⊂ TpM̃

p

Fπ(p)

Proposition [Horizontal lifts, Riemannian submersions] Let M̃ be a

Riemannian manifold and π : M̃ → M be a surjective submersion.

(a) Any smooth vector field X̃ on M̃ can be written uniquely as

X̃ = X̃H + X̃V

where X̃H and X̃V are smooth vector fields on M̃ with X̃H
p ∈ Hp and X̃V

p ∈ Vp

for all p ∈ M̃ .

(b) Let X be a smooth vector field on M . Then, there is an unique

horizontal smooth vector X̃H on M̃ , called the horizontal lift of X, such that

π∗
(
X̃H

p

)
= Xπ(p),

for all p ∈ M .

(c) Let ϕ denote a smooth action of a Lie group G on M̃ such that:

• G preserves fibers (i.e, π ◦ ϕg = π for all g ∈ G)

• G acts transitively on each fiber
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M̃

pHp

Fq

Xp

Yp

TqM

M
qπ∗(Xp)

π∗(Yp)

π∗ : HpM̃ → TqM

• G acts on M̃ by isometries (i.e., each linear map ϕg∗ : TpM̃ → Tϕg(p)M̃
is an isometry).

Then, there exists a unique Riemannian metric on M such that π is a
Riemannian submersion.

Example 1 [A Riemannian metric on P(n,R)] Consider the map

π : GL(n,R) → P(n,R)

which, given A ∈ GL(n,R), extracts the P factor of A from the polar
decomposition A = PQ.
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Note that π is a surjective submersion.

The vertical space at A ∈ GL(n,R) is given by VA = AK(n,R).

Consider the previously discussed left-invariant metric on GL(n,R).
Then, the horizontal space at A ∈ GL(n,R) is given by HA = AS(n,R).

The projection map

π∗ : HA � AS(n,R) → TP P(n,R) � S(n,R) AS → ∆

is described by the equation

∆P + P∆ = 2ASAT .

The Lie group O(n) acts smoothly on GL(n,R) as

O(n)× GL(n,R) → GL(n,R) Q · A = AQT .

Note that O(n) preserves fibers, acts transitively on them and acts on
GL(n,R) by isometries.

The Riemannian metric on P(n) that makes π a Riemannian submer-
sion is given by

gP (∆,Ω) =
1

4
tr
(
P−1∆+∆P−1

) (
P−1Ω + ΩP−1

)
.
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