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‘ Riemannian Metrics ‘

Definition [Tensor] Let V' be a n-dimensional vector space over R. A tensor
® of order r on V is a multilinear (i.e., linear in each argument) map

O Vx---xV-=NR.
T

Thus,
(p( 7av+bw’...):a®(... ,U,"‘)"‘b(p(“‘ ’w’...)

for all a,b € R and v,w € V.

The set of tensors of order r on V' is denoted by 77 (V).

A tensor of order r = 1 is usually called a covector, and the set of covectors
is usually denoted by V* and termed the dual space of V (note: V* = T*(V)).

Example 1 [A tensor of order 1 (covector) on M(n,R)] The map
O MnR)—R  &(X) = tr(X)
is a covector on M(n, R).
Example 2 [A tensor of order 2 on R"] Let A € M(n,R). The map
d:R"XR"—=R ®(z,y) = 27 Ay

is a tensor of order 2 on R™.

The map
U:R"xR"—R U(x,y) =2t Ay + 1

is not a tensor.
Example 3 [A tensor of order 3 on M(n,R)] The map
® : M(n,R) x M(n,R) x M(n,R) — R ®(A,B,C) =tr(ABC)

is a tensor of order 3 on M(n, R).
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Example 4 [A tensor of order n on R"] The map

d :R"x---xR"—=R O(zq,x9,...,0,) =det ([zy 29 -+ 2, ])
— ———
n

is a tensor of order n on R™.

Theorem [The vector space of tensors of order r] Let V' be a n-
dimensional vector space over R. Let r be a positive integer. With the
operations of addition and multiplication by real numbers defined as

((I)l—F(I)g)(Ul,...,’UT) = (131(111,...,vr)+(I>2(v1,...7vr)
(a®)(v,...,v,) = a®(v,...,v,)

for &, 91,9y € T"(V), « € R, and vy,...,v,. € V, the set T"(V) is a vector
space of dimension n'.

Lemma [Pullback of tensors| Let V, W be vector spaces over R and let
F, : V. — W be a linear map. Then, for each positive integer r, the map
F* : T"(W) — T"(V), defined as

(F*®) (v1,...,0,) = ®(Fi(vy),..., Fi(v,))

for all ® € T"(W), is a linear map between the vector spaces 7" (W) and
(V).

Example 1 [Pullback of a tensor| Consider the linear map

T
X2

F, : R" = M(n,R) F.(z) = Diag(x) =
Tn
and the tensor of order 2 on M(n,R) given by

O : M(n,R) x M(n,R) =R ®(A, B) = tr(AB).
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The pullback of ® by F,, denoted F*®, is the tensor of order 2 on R"”
given by
(F7®)(z,y) = @(Fi(z)Fi(y))
= tr(Diag(z) Diag(y))

1Y

T2Y2
= tr

xnyn
= Ty
Example 2 [Another pullback of a tensor| Consider the linear map
F, : M(p,q,R) — M(n,R) F.(X)=DXE,

where D € M(n,p,R) and E € M(q,n,R) are fixed matrices, and the
tensor of order 3 on M(n,R) given by

® : M(n,R)xM(n,R)xM(n,R) — R (A, B,C)=tr(A® B ().
The pullback of ® by F, denoted F*®, is the tensor of order 3 on M(p, ¢, R)
given by

(F*®)(X1, X5, X5) = O(F(X1), Fi(Xa), Fi(X3))
= tr(DX1E®DX2E®DX3E)

Definition [Product of tensors] Let V be a vector space over R. Let
¢ € T7(V)and ¥ € T%(V). The product of ® and ¥, denoted ® @ ¥ is a
tensor of order r 4 s defined by

(PR W) (U1, Uy Uy 1y e v o Upgs) = P01, U)W (Vpg1y - v, Uprs)

Example 1 [Product of tensors] Consider the tensors

d:R"x---xR*" =R ®<$1,$27...,$n):det[$1$2 .fL'n]
—_——
n



and
U:R"xR" =R  U(z,y) =2 My,

where M € M(n,R) is a fixed matrix.

Note that ® is a tensor of order n and V¥ is a tensor of order 2. Thus,
® ® VU is a tensor of order n + 2 on R™ and it is given by

(PRY) (21, Ty Tty Trg2) = P(T1,00 0 20) U(Tng1, Togo)
= det[x - @] 2l MT, 0.

Theorem [Product of tensors] Let V' be a n-dimensional vector space
over R. The product of tensors

T (V) xT*(V) — T”S(V) (P, V) — PRV,
is bilinear and associative:

PR (a¥; +b¥y) = a(®PRU,)+b(P®U,)
PRV)0 = 2 (TRQ).

If w!w? ..., w"is a basis of V* = TY(V), then
{Wr'@w? @ @w™ : 1<iy,ds,...,1, <n}
is a basis of 7" (V). That is, each ® € T"(V') can be written as

b = E gy ... g, w“®w’2®---®w“,

where I = {1,2,...,n} and a;,..;, € R are constants (uniquely determined
by ®).
Furthermore, if F, : V — W is a linear map of vector spaces, then

F (D@ T) = (F*0)  (F*).



Example 1 [Expansion of a tensor| Let V' = R? and the canonical basis
{e1,eq,e3} ={(1,0,0),(0,1,0),(0,0,1)}. The dual space V* is spanned
by the dual basis {w!,w? w*} where

J

w V=R wi(ej):5?:{0 ’ Z.%j

In equivalent terms,
W V=R  Wi(r)=eln
For example, w! ® w? is the tensor of order 2 given by

(W'®)(z,y) = w'(z)w’(y)
= (z"e1) (e3y)
= $T(€163Ty

)

0 1

0 0]y.
0 0

o O O

Consider the tensor of order 2 on R? given by

1 -1
P :R*xR*—=R O(z,y) = |4
3

N O N
<

2
2
Then, we can expand ¢ as
d = RV -—WwRW+20 @+
40’ @w' + 20 @ w? +
3w QW + 2w @ w? + 2w @ W3,

Equivalently, if ® is any given tensor of order 2 on R? we can find the
coefficients ®;; in the expansion

P = O w W +Ppw W+ Ppw ®W+
<I>21w2®w1+®22w2®w2+®23w2®w3+
<I>31w3®w1+¢32w3®w2+¢33w3®w3

by calculating ®;; = ®(e;, €;).



Example 2 [Tensors of order 2 as matrices and vice-versa] Let V' be
any real n-dimensional vector space. Once we fix a basis { £, Fs, ..., FE,}
for V, any tensor ® of order 2 can be represented by a n X n matrix
Mq;.Z

®(E17E1> CD(ElvEn)
¢ (F'Ey Ey) = 'y (B, By) =" | S 7
O(E,, Ey) - (B, E,)

J/

Mo
This equivalence (w.r.t to a fixed basis {E1,. .., E,}) is denoted by

(I)NM.:I).

Definition [Smooth tensor fields| A smooth tensor field of order r on a
smooth manifold M is a map ® which assigns to each p € M an element
¢, € T (T,M) such that: for any smooth vector fields Xi,..., X, defined
on M, the function

O(Xy,.... X)) M—>R  p—d,(Xy, ..., X,,)

is smooth.

The set of smooth tensor fields of order r on M is denoted by 7"(M) and
it is a vector space under pointwise addition of tensors and multiplication by
elements of R.

> Intuition: a smooth tensor field on M is a smooth assignment of a
tensor @, to each tangent space T,M

Example 1 [Canonical smooth covector fields on R"] The n covector
fields dxt, ..., da™ defined, at each p € R™, to be the dual basis of the
canonical basis

0 9, 0

ox! p’8x2 p"“’ﬁx”

of T,R"™, are smooth covector fields on R".

p
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Example 2 [A smooth covector field on R3] The covector field
w= (2 —y+ 2)dr + (sin(xy) — 3) dy + ve¥ dz

is a smooth covector field on R3.

At p = (1,0,1), we have the covector w101y : T(1,01)R* — R given by

0
W(1,0,1) a%

Example 3 [A smooth function induces a smooth covector field]
Let M be a smooth manifold and f € C*°(M). The covector field df
defined, at each p € M, by

0
+b—
(1,0,1) oy

N 0
C—
(1,0,1) 0z

(1,0,1)

>:2a—3b+c.

df‘p(Xp) = pr? Xp € TpMa

is smooth. It is called the differential of f.

For the special case M = R", we have

of of
Bl = @) &+ 5,3

of

(p) dx2|p + -+ D"

(p) dz"|,.

For instance, if
f:R¥P=R f(z,y, 2) = cos(xz) + 1%,

then
df = —zsin(zz)dzr + 2ydy — xsin(zz)dz.

Definition [Product of tensor fields| Let M be a smooth manifold. Let
® and ¥ be tensor fields on M order r and s, respectively. The product of
® and W, denoted ® ® W is the tensor field of order » + s on M defined for
eachpe Mas (PeV),=0,0VY,.

Theorem [Product of smooth tensor fields| Let M be a n-dimensional
smooth manifold. The product of tensor fields just defined takes smooth
tensor fields to smooth tensor fields. Moreover, the map

T (M) x T(M) — T™5(M)  (,0) — U
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is bilinear and associative.

If w'w? ... ,w" is a basis of 7*(M) = T'(M) (that is, w!,...,w" is a

p’ »p

basis of TyM at each p € M), then each ® € 7"(M) can be written as

b = i, W QW2 R @ W,
1 r

where I = {1,2,...,n} and f;, ..;, : M — R are smooth functions (uniquely
determined by ®).

Lemma [Pullback of smooth tensor fields| Let M, N be smooth man-
ifolds and F' : M — N a smooth map. Then, each smooth tensor field
® € 77(N) determines a smooth tensor field F*® € 7"(M) by the formula

(F*®), (X Xop) = Py (oK) o s Fol(Xy)
The map F* : T"(N) — 7" (M) thus defined is linear. Moreover,
F* (@ ®0) = (F0) ® (F*T)
for ® € T"(M) and ¥ € T°(M).

Example 1 [A simple pullback] Let M = R™, N = R™ and consider a
smooth map

F:R™ = R"  F(z)=(F'(z), F*(2),...,F"(z)).

Let 1 < j < n. The pullback of dy’ by F is given by
F*dy = alda’

and each smooth function a/ : R* — R can be found as

of = (F'dy')(9)

dy (8,F*,)

O, F*(dy’)(0)

8



Thus,
F*dy’ = 0,F7 dx'.

For instance, if
F:R* - R F(u,v) = (u* + v,sin(uv), ue")
with coordinates (u,v) on R? and (x,v, 2) on R3, then

F*dx = 2udu+dv
F*dy = wcos(uv)du + ucos(uv) dv
F*dz = e€"du+ ue’dv.

Example 2 [A pullback of a tensor of order 2] Let M = R™ N =R"
and consider a smooth map

F:R"—>R" F(z) = (F'(2), F*(2),..., F"(x)).

Let ® = ®;; dy’ ® dy’ be a smooth tensor field of order 2 on R". Note
that each

¢, R" =R
is a smooth function.
The pullback of ® by F'is the tensor field of order 2 on R™ given by
F*o = F*(d;dy' ®dy)
= [0, F'dy' ® F*dy’
= (0 F) (OpF'da") ® (O, Fdat)
= (D0 F) O F' O F da* @ da'.

In a more compact notation: if ®, ~ M (y) then

(F*®), ~ DF(p)" M(F(p))DF(p).

Definition [Riemannian manifold] A Riemannian manifold is a smooth
manifold M on which is defined a Riemannian metric g, that is, a smooth



tensor of order 2 which is symmetric (¢(X,, Y,) = g(Y,, X)) for all X, € T,M)
and positive-definite (g(X,, X,) = 0 if and only if X, = 0).

A smooth manifold M with Riemannian metric g is usually denoted by
(M, g).

Example 1 [The canonical Riemannian metric on R"| The canonical
Riemannian metric on R” is given by

9(0ilp, 951p) = 53
Thus, for each p € R", we have
1

gp ~

Example 2 [Another Riemannian structure on R"| Let ¥ be a fixed
n X n positive definite matrix. Define a tensor field g of order 2 on R"
as g(0ilp, 0j]p) = X4; or, equivalently,

Gp ~ X for all p € R".

The tensor field ¢ is a valid Riemannian metric on R".

Example 3 [A Riemannian structure on R3] Define a tensor field g of
order 2 on R? as

e2x+yz
zy,2) ~ 2 — cos(z)
v +1
The tensor field g is a valid Riemannian metric on R3.

Example 4 [A Riemannian structure on P(n,R)] Since P(n,R) is an
open subset of S(n,R) we have the identification

TpP(n,R) ~ S(n,R) for all P € P(n,R).
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Consider the inner-product at TpP(n,R):

gp (A, Q) = tr(QTA) for A, Q € TpP(n,R) ~ S(n, R).

The tensor field g is a valid Riemannian metric on P(n,R).

Example 5 [Left-invariant Riemannian metrics on Lie groups] Let G
be a lie group. Let g, be any inner-product on 7T,G. We can propagate
this inner-product to all the group G through left-translations, that is,
to each a € GG, we assign the inner-product g, on T,G as

ga(Xa’ Ya) = ge(Lafl*Xaa Lafl*}/;z)a

where

denotes left translation.

The resulting Riemannian metric g = (-, -) is left-invariant:

(Xo,Ya) = (Lyn(Xa), Lo (Ya))  forall a,b € G

For instance, consider the Lie group GL(n,R). Since GL(n,R) is an
open subset of M(n, R) we have the identification

T4GL(n,R) ~ M(n,R) for all A € GL(n,R).
Consider the usual inner-product at 77, GL(n, R):
(A, Q) =tr(QTA) for A, Qe T, GL(n,R) ~ M(n,R).
By left-translation the inner-product at T4GL(n,R) is given by:

(A, Q) =tr(QT (AAT)'A)  for A, Q€ TaGL(n,R) ~ M(n,R).

Lemma [Riemannian submanifolds] Let (M, gys) be a Riemannian man-
ifold. Let N C M be a submanifold with inclusion map ¢ : N — M. Then,
gn = t*gpr is a Riemannian metric on N.
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Example 1 [The canonical Riemannian metric on S*(R)] Let
F:WcCR? — S$*R) F(0,¢) = (cosf sin ¢, sind sin @, cos @)
be a local parameterization of the unit-sphere S?(R) where
W={(0,¢) :0<0<21,0<p<m/2}.

In these coordinates, the canonical Riemannian metric on S*(R) is given

by ,
. sin 0

Definition [Vertical and horizonal subspaces, Riemannian submer-
sions] Let 7 : M — M be a surjective submersion. The fiber over ¢ € M,
written F,, is defined as the inverse image F, = 7 '(q) C M (note: since 7
has constant rank, Fj is a closed, embedded submanifold of M ).

Suppose (]\7 ,g) is a Riemannian manifold. Let p € F,. The vertical space

at p is the subspace of TpM defined as
V, = Ker,

where m, : T, p]\7 — T,M is the push-forward of the map .
The horizontal subspace at p is defined as H, = V; and corresponds
to the orthogonal complement of V,, with respect to the inner-product g, :

T,M x T,M — R.
Thus, we have the orthogonal direct sum

T,M =V, & H,.

Let g be a Riemannian metric on M. The map 7 : M — M is said to
be a Riemannian submersion if, for every p € M, the restriction

e+ Hy — TrpyM

is an isometry.
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.-

H, c T,M

Y,

Proposition [Horizontal lifts, Riemannian submersions] Let M be a
Riemannian manifold and 7 : M — M be a surjective submersion.
(a) Any smooth vector field X on M can be written uniquely as

K- XML RV

where XH and XV are smooth vector fields on M with )?;' € H, and )?;’ eV,

for all p € M.
(b) Let X be a smooth vector field on M. Then, there is an unique
horizontal smooth vector X" on M, called the horizontal lift of X, such that

Ty <XE> = Xﬂ(p),

for all p € M.
(c) Let ¢ denote a smooth action of a Lie group G on M such that:

e ( preserves fibers (i.e, mo g, =7 for all g € G)

e (G acts transitively on each fiber
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e Gactson M by isometries (i.e., each linear map ¢, : TpM — T%(p)]\?/
is an isometry).

Then, there exists a unique Riemannian metric on M such that 7 is a
Riemannian submersion.

Example 1 [A Riemannian metric on P(n,R)] Consider the map
7 : GL(n,R) — P(n,R)

which, given A € GL(n,R), extracts the P factor of A from the polar
decomposition A = PQ).
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Note that 7 is a surjective submersion.
The vertical space at A € GL(n,R) is given by V4 = AK(n,R).

Consider the previously discussed left-invariant metric on GL(n,R).
Then, the horizontal space at A € GL(n,R) is given by H4 = AS(n, R).

The projection map
7. : Ha = AS(n,R) — TpP(n,R) ~ S(n,R) AS — A
is described by the equation

AP + PA =2ASAT,
The Lie group O(n) acts smoothly on GL(n,R) as
O(n) x GL(n,R) — GL(n,R) Q- A= AQT.

Note that O(n) preserves fibers, acts transitively on them and acts on
GL(n,R) by isometries.

The Riemannian metric on P(n) that makes 7 a Riemannian submer-
sion is given by

gp (A, Q) = itr (P'A+ AP (PT'Q+ QP .
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