Nonlinear Signal Processing (2004-2005)

Course Overview
Instituto Superior Técnico, Lisbon, Portugal
João Xavier
\{jxavier\}@isr.ist.utl.pt

Outline

Motivation: Signal Processing \& Related Applications of Differential Geometry\triangleright Optimization
\triangleright Kendall's theory of shapes
\triangleright Random Matrix Theory
\diamond Coherent Capacity of Multi-Antenna Systems
\triangleright Information Geometry
\triangleright Geometrical Interpretation of Jeffreys' Prior
\triangleright Performance Bounds for Constrained or Non-Identifiable Parametric Estimation

Course's Table of Contents

\triangleright Topological manifolds
\triangleright Differentiable manifolds
\triangleright Riemannian manifolds

Outline

Bibliography\triangleright Recommended textbooks
\triangleright Additional material (short notes on specialized topics)
\square Grading
\square Discussion, questions, etc

Applications of DG: Optimization

Unconstrained minimization problem:$$
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x})
$$Iterative line search:

given initial point \boldsymbol{x}_{0}
for $k=0,1, \ldots$
choose descent direction \boldsymbol{d}_{k}
solve $t^{*}=\arg \min _{t \geq 0} f\left(\boldsymbol{x}_{k}+t \boldsymbol{d}_{k}\right)$
$\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+t^{*} \boldsymbol{d}_{k}$
end

Applications of DG: Optimization

Sketch:

Descent direction: $\boldsymbol{d}_{\mathrm{grad}}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right), \boldsymbol{d}_{\text {newton }}=-\left[\boldsymbol{\nabla}^{2} f\left(\boldsymbol{x}_{k}\right)\right]^{-1} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$

Applications of DG: Optimization

Constrained minimization problem:

$$
\boldsymbol{x}^{*}=\arg \min _{\boldsymbol{h}(\boldsymbol{x})=\mathbf{0}} f(\boldsymbol{x})
$$Iterative line search with projected gradient:

given initial point \boldsymbol{x}_{0}
for $k=0,1, \ldots$
compute $\boldsymbol{d}_{k}=\boldsymbol{\Pi}\left(-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)\right)$
solve $t^{*}=\arg \min _{t \geq 0} f\left(\boldsymbol{x}_{k}+t \boldsymbol{d}_{k}\right)$
$\widehat{\boldsymbol{x}}_{k+1}=\boldsymbol{x}_{k}+t^{*} \boldsymbol{d}_{k}$
return to the constraint surface $\boldsymbol{x}_{k+1}=\arg \min _{\boldsymbol{h}(\boldsymbol{x})=0}\left\|\boldsymbol{x}-\widehat{\boldsymbol{x}}_{k+1}\right\|^{2}$
end

Applications of DG: Optimization

Sketch:

Applications of DG: Optimization

Differential geometry enables a descent algorithm with feasible iteratesIterative geodesic search:given initial point \boldsymbol{x}_{0}
for $k=0,1, \ldots$
choose descent direction \boldsymbol{d}_{k}
solve $t^{*}=\arg \min _{t \geq 0} f\left(\boldsymbol{\gamma}_{k}(t)\right)$
$\left(\boldsymbol{\gamma}_{k}(t)=\right.$ geodesic emanating from \boldsymbol{x}_{k} in the direction $\left.\boldsymbol{d}_{k}\right)$
$\boldsymbol{x}_{k+1}=\boldsymbol{\gamma}_{k}\left(t^{*}\right)$
end

Applications of DG: Optimization

\square Sketch:

\square Descent direction: generalizations of $\boldsymbol{d}_{\text {grad }}$ and $\boldsymbol{d}_{\text {newton }}$ are availableTheory works for abstract spaces (e.g. projective spaces)

Applications of DG: Optimization

Example: Signal model$$
\boldsymbol{y}[t]=\boldsymbol{Q} \boldsymbol{x}[t]+\boldsymbol{w}[t] \quad t=1,2, \ldots, T
$$

\boldsymbol{Q} : orthogonal matrix $\left(\boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}_{N}\right), \boldsymbol{x}[t]$: known and $\boldsymbol{w}[t] \stackrel{\text { iid }}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{C})$
\square Maximum-Likelihood Estimate:

$$
\boldsymbol{Q}^{*}=\arg \max _{\boldsymbol{Q} \in \mathbb{O}(N)} p(\boldsymbol{Y} ; \boldsymbol{Q})
$$

$\triangleright \mathbb{O}(N)=$ group of $N \times N$ orthogonal matrices
$\triangleright \boldsymbol{Y}=[\boldsymbol{y}[1] \boldsymbol{y}[2] \cdots \boldsymbol{y}[T]]$ and $\boldsymbol{X}=[\boldsymbol{x}[1] \boldsymbol{x}[2] \cdots \boldsymbol{x}[T]]$

Applications of DG: Optimization

Optimization problem: Orthogonal Procrustes rotation

$$
\begin{aligned}
\boldsymbol{Q}^{*} & =\arg \min _{\boldsymbol{Q} \in \mathbb{O}(N)}\|\boldsymbol{Y}-\boldsymbol{Q} \boldsymbol{X}\|_{\boldsymbol{C}^{-1}}^{2} \\
& =\arg \min _{\boldsymbol{Q} \in \mathbb{O}(N)} \operatorname{tr}\left\{\boldsymbol{Q}^{T} \boldsymbol{C}^{-1} \boldsymbol{Q} \widehat{\boldsymbol{R}}_{\boldsymbol{x} \boldsymbol{x}}\right\}-\operatorname{tr}\left\{\boldsymbol{Q}^{T} \boldsymbol{C}^{-1} \widehat{\boldsymbol{R}}_{\boldsymbol{y} \boldsymbol{x}}\right\} \\
\triangleright \widehat{\boldsymbol{R}}_{\boldsymbol{y} \boldsymbol{x}} & =\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{y}[t] \boldsymbol{x}[t]^{T} \text { and } \widehat{\boldsymbol{R}}_{\boldsymbol{x} \boldsymbol{x}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}[t] \boldsymbol{x}[t]^{T}
\end{aligned}
$$Note: the eigenstructure of \boldsymbol{C} controls the Hessian of the objective $\kappa\left(\boldsymbol{C}^{-1}\right)=\frac{\lambda_{\max }\left(\boldsymbol{C}^{-1}\right)}{\lambda_{\min }\left(\boldsymbol{C}^{-1}\right)}$ condition number of \boldsymbol{C}^{-1}

Applications of DG: Optimization

Example: $N=5, T=100, \boldsymbol{C}=\operatorname{diag}(1,1,1,1,1), \kappa\left(\boldsymbol{C}^{-1}\right)=1$
$\circ=$ projected gradient $\square=$ gradient geodesic descent $\diamond=$ Newton geodesic descent

Applications of DG: Optimization

\square Example: $N=5, T=100, \boldsymbol{C}=\operatorname{diag}(0.2,0.4,0.6,0.8,1), \kappa\left(\boldsymbol{C}^{-1}\right)=5$

$\circ=$ projected gradient $\square=$ gradient geodesic descent $\diamond=$ Newton geodesic descent

Applications of DG: Optimization

\square Example: $N=5, T=100, \boldsymbol{C}=\operatorname{diag}(0.02,0.05,0.14,0.37,1), \kappa\left(\boldsymbol{C}^{-1}\right)=50$

$\circ=$ projected gradient $\square=$ gradient geodesic descent $\diamond=$ Newton geodesic descent

Applications of DG: Optimization

Important: Following geodesics is not necessarily optimal. See:"Optimization algorithms exploiting unitary constraints", J. Manton, IEEE Trans. on Signal Processing, vol. 50, no. 3, pp. 635-650, March 2002

Applications of DG: Optimization

Bibliography:

\diamond "The geometry of weighted low-rank approximations", J. Manton et al., IEEE Trans. on Signal Processing, vol. 51, no. 2, pp. 500-514, February 2003
\diamond "Efficient algorithms for inferences on Grassmann manifolds", K. Gallivan et al, Proc. 12th IEEE Workshop Statistical Signal Processing, 2003
\diamond "Adaptive eigenvalue computations using Newton's method on the Grassmann manifold", E. Lundstrom et al., SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 819-839, 2002
\diamond "A Grassmann-Rayleigh quotient iteration for computing invariant subspaces", P. Absil et al., SIAM Review, vol. 44, no. 1, pp. 57-73, 2002
\diamond "Algorithms on the Stiefel manifold for joint diagonalization", M. Nikpour et al., IEEE Int. Conf. on Acoust. Speech and Signal Proc. (ICASSP), vol. 2, pp. 1481-1484, 2002
\diamond "Optimization algorithms exploiting unitary constraints", J. Manton, IEEE Trans. on Signal Processing, vol. 50, no. 3, pp. 635-650, March 2002
\diamond "Contravariant adaptation on structured matrix spaces", T. Moon and J. Gunther, Signal Processing, 82, pp. 1389-1410, 2002

Applications of DG: Optimization

Bibliography (cont.):

\diamond "The geometry of the Newton method on non-compact Lie groups", R. Mahony and J. Manton, Journal of Global Optimization, vol. 23, pp. 309-327, 2002.
\diamond "Prior knowledge and preferential structures in gradient descent learning algorithms", R. Mahony and Williamson, Journal of Machine Learning Research, pp. 311-355, 2001.
\diamond "Precoder assisted channel estimation in complex projective space", J. Manton, IEEE 3rd Workshop on Sig. Proc. Advanc. on Wir. Comm. (SPAWC), pp. 348-351, 2001
\diamond "Optimization on Riemannian manifold", IEEE Proc. 38th conference on Decision and Control, pp. 888-893, Dec. 1999.
\diamond "Optimum phase-only adaptive nulling", S. Smith, IEEE Trans. on Signal Processing, vol. 47, no. 7, pp. 1835-1843, July 1999
\diamond "Motion estimation in computer vision: optimization on Stiefel manifolds", Y. Ma et al, IEEE Proc. 38th conference on Decision and Control, vol. 4, pp. 3751-3756, Dec. 1998
\diamond "The geometry of algorithms with orthogonality constraints", A. Edelman et al., SIAM J. Matrix Anal. Appl., vol. 20, no. 2, pp. 303-353, 1998

Applications of DG: Optimization

Bibliography (cont.):

\diamond "Optimal motion from image sequences: a Riemannian viewpoint", Y. Ma et al, Electronic Research Lab Memorandum, UC Berkeley, 1998
\diamond "Optimization tecnhiques on Riemannian manifolds", S. Smith, Fields Institute Communications, vol. 3, pp. 113-136, 1994
\diamond "Optimization and Dynamical Systems", U. Helmke and J. Moore, Springer-Verlag, 1994
\diamond "Geometric optimization methods for adaptive filtering", S. Smith, PhD Thesis, Harvard University, 1993
\diamond "Constrained optimization along geodesics", C. Botsaris, J. Math. Anal. Appl., vol. 79, pp. 295-306, 1981

Applications of DG: Kendall's theory of shapes

Image 1
Image 2

Applications of DG: Kendall's theory of shapes

Bibliography:

\diamond "Multivariate shape analysis", I. Dryden and K. Mardia, Sankhya: The Indian Journal of Statistics, 55, pp. 460-480, 1993
\diamond "Procrustes methods in the statistical analysis of shape", C. Goodall, J. R. Statist. Soc. B, 53, no.2, pp. 285-339, 1991
\diamond "A survey of the statistical theory of shapes", D. Kendall, Statist. Sci., 4, pp. pp. 87-120, 1989
\diamond "Shape manifolds, Procrustean metrics and complex projective spaces", D. Kendall, Bull. London Math. Soc., 16, pp. 81-121, 1984
\diamond "Directional Statistics", K. Mardia and P. Jupp, Wiley Series in Probability and Statistics

Applications of DG: Random Matrix Theory

Basic statistics: transformation of random objects in Euclidean spaces $\int \boldsymbol{x}$ is a random vector in $\mathbb{R}^{n}$$\boldsymbol{x} \sim p_{\boldsymbol{X}}(\boldsymbol{x})$
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ smooth, bijective
$\begin{aligned} \Rightarrow \quad & \boldsymbol{y} \sim p_{\boldsymbol{Y}}(\boldsymbol{y})=p_{\boldsymbol{X}}\left(F^{-1}(\boldsymbol{y})\right) J(\boldsymbol{y}) \\ & J(\boldsymbol{y})=\frac{1}{\operatorname{det}\left(D F\left(F^{-1}(\boldsymbol{y})\right)\right)}\end{aligned}$
$\boldsymbol{y}=F(\boldsymbol{x})$

Applications of DG: Random Matrix Theory

Generalization: transformation of random objects in manifolds $\mathcal{M}, \mathcal{N}$$$
\left\{\begin{array}{l}
x \text { is a random point in } \mathcal{M} \\
x \sim \Omega_{X}(\text { exterior form }) \\
F: \mathcal{M} \rightarrow \mathcal{N} \text { smooth, bijective } \\
y=F(x)
\end{array}\right.
$$

The answer is provided by the calculus of exterior differential forms

Applications of DG: Random Matrix Theory

Example A: decoupling a random vector in amplitude and direction$$
\left\{\begin{array}{l}
\mathcal{M}=\mathbb{R}^{n}-\{\mathbf{0}\}=\{\boldsymbol{x}: \boldsymbol{x} \neq \mathbf{0}\} \\
\mathcal{N}=\mathbb{R}^{+} \times \mathbb{S}^{n-1}=\{(R, \boldsymbol{u}): R>0,\|\boldsymbol{u}\|=1\} \quad \Rightarrow \quad p(R, \boldsymbol{u})=p_{\boldsymbol{X}}(R \boldsymbol{u}) R^{n-1} \\
(R, \boldsymbol{u})=F(\boldsymbol{x})=\left(\|\boldsymbol{x}\|, \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) \\
\boldsymbol{x} \sim p_{\boldsymbol{X}}(\boldsymbol{x})
\end{array}\right.
$$

Example B: decoupling a random matrix through the polar decomposition

$$
\left\{\begin{array}{l}
\mathcal{M}=\mathbb{G} \mathbb{L}(n)=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n}:|\boldsymbol{X}| \neq \mathbf{0}\right\} \\
\mathcal{N}=\mathbb{P}(n) \times \mathbb{O}(n)=\left\{(\boldsymbol{P}, \boldsymbol{Q}): \boldsymbol{P} \succ \mathbf{0}, \boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}_{n}\right\} \quad \Rightarrow p(\boldsymbol{P}, \boldsymbol{Q})=\ldots \text { (known) } \\
(\boldsymbol{P}, \boldsymbol{Q})=F(\boldsymbol{X}) \Leftrightarrow \boldsymbol{X}=\boldsymbol{P} \boldsymbol{Q} \\
\boldsymbol{X} \sim p_{\boldsymbol{X}}(\boldsymbol{X})
\end{array}\right.
$$

Applications of DG: Random Matrix Theory

Example C: decoupling a random symmetric matrix by eigendecomposition$$
\left\{\begin{array}{l}
\mathcal{M}=\mathbb{S}(n)=\left\{\boldsymbol{X} \in \mathbb{R}^{n \times n}: \boldsymbol{X}=\boldsymbol{X}^{T}\right\} \\
\mathcal{N}=\mathbb{O}(n) \times \mathbb{D}(n)=\left\{(\boldsymbol{Q}, \boldsymbol{\Lambda}): \boldsymbol{Q}^{T} \boldsymbol{Q}=\boldsymbol{I}_{n}, \boldsymbol{\Lambda}: \operatorname{diag}\right\} \quad \Rightarrow p(\boldsymbol{Q}, \boldsymbol{\Lambda})=\ldots \text { (known) } \\
(\boldsymbol{Q}, \boldsymbol{\Lambda})=F(\boldsymbol{X}) \Leftrightarrow \boldsymbol{X}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T} \\
\boldsymbol{X} \sim p_{\boldsymbol{X}}(\boldsymbol{X})
\end{array}\right.
$$

Many other examples... (e.g. Cholesky, QR, LU, SVD)

Applications of DG: Random Matrix Theory

Bibliography:

\diamond "Matrix Variate Distributions", A. Gupta, Chapman \& Hall, 1999
\diamond "Jacobians of Matrix Transformations and Functions of Matrix Argument", A. Mathai, World Scientific, 1997
\diamond "Random Matrices", M. Mehta, Academic Press, 1991
\diamond "Eigenvalues and Condition Numbers of Random Matrices", A. Edelman, PhD Thesis, Massachusetts Institute of Technology, 1989
\diamond "Multivariate Calculation", R. Farrell, Springer-Verlag, 1985
\diamond "Aspects of Multivariate Statistical Theory", R. Muirhead, John Wiley \& Sons, 1982
\diamond "Distributions of matrix variates and latent roots derived from normal samples", A. James, Annals of Math. Statistics, vol. 35, pp. 475-501, 1964

RMT and DG concepts in signal processing

\square Bibliography (only a small sample):
\diamond "Random Matrix Theory and Wireless Communications", A. Tulino and S. Verdú, Now Publishers Inc., 2004.
\diamond "Grassmann-based signal design for non-coherent reception", I. Kammoun and J. C. Belfiore, Signal Processing Advances in Wireless Communications, 2003, SPAWC 2003, 4th IEEE Workshop 2003 (pp.507-511)
\diamond "Communication on the Grassmann manifold: a geometric approach to the nonchoerent multiple-antenna channel", L. Zheng and D. Tse, IEEE Transactions on Information Theory, vol. 48, no. 2, pp. 359-383, February 2002.
\diamond A. Srivastava, "A Bayesian approach to geometric subspace estimation," IEEE Transactions on Signal Processing, vol. 48, no. 5, pp. 1390-1400, May 2000.

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

Scenario: point-to-point single-user communication with multiple $T \times$ antennas

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

Data model: $\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{n}$ with $\boldsymbol{y}, \boldsymbol{n} \in \mathbb{C}^{N_{r}}, \boldsymbol{H} \in \mathbb{C}^{N_{r} \times N_{t}}, \boldsymbol{x} \in \mathbb{C}^{N_{t}}$$\diamond N_{t}=$ number of Tx antennas
$\diamond N_{r}=$ number of Rx antennas
Assumption: $n_{i} \stackrel{\text { iid }}{\sim} \mathbb{C N}(0,1)$

Decoupled data model:
\diamond SVD: $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{H}$ with $\boldsymbol{U} \in \mathbb{U}\left(N_{r}\right), \boldsymbol{V} \in \mathbb{U}\left(N_{t}\right), \boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{f}, \mathbf{0}\right)$,
$\left(\sigma_{1}, \ldots, \sigma_{f}\right)=$ nonzero singular values of $\boldsymbol{H}, f=\min \left\{N_{r}, N_{t}\right\}$
\diamond Transform the data: $\widetilde{\boldsymbol{y}}=\boldsymbol{U}^{H} \boldsymbol{y}, \widetilde{\boldsymbol{x}}=\boldsymbol{V}^{H} \boldsymbol{x}$ and $\widetilde{\boldsymbol{n}}=\boldsymbol{U}^{H} \boldsymbol{n}$
\diamond Equivalent diagonal model: $\widetilde{\boldsymbol{y}}=\boldsymbol{\Sigma} \widetilde{\boldsymbol{x}}+\widetilde{\boldsymbol{n}}$

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

Interpretation: The matrix channel \boldsymbol{H} is equivalent to f parallel scalar channels

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

Assumption: \boldsymbol{H} is random and known only at the RxChannel capacity:$$
C=\max _{p(\boldsymbol{x}), \mathrm{E}\left\{\|\boldsymbol{x}\|^{2} \leq P\right\}} I(\boldsymbol{x} ;(\boldsymbol{y}, \boldsymbol{H}))
$$

$I=$ mutual information

Solution:

$$
C=\mathrm{E}_{\boldsymbol{H}}\left\{\sum_{i=1}^{f} \log \left(1+\left(P / N_{t}\right) \sigma_{i}^{2}\right)\right\}
$$

Recall: $\left(\sigma_{1}, \ldots, \sigma_{f}\right)=$ nonzero singular values of $\boldsymbol{H}, f=\min \left\{N_{r}, N_{t}\right\}$

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

$\square \boldsymbol{H}$ is random and $\boldsymbol{H}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{H}$ (SVD)

Capacity: when $\left[\boldsymbol{H}_{i j}\right] \stackrel{\text { iid }}{\sim} \mathbb{C N}(0,1)$
$C=\int_{0}^{\infty} \log \left(1+\left(P / N_{t}\right) \lambda\right) \sum_{k=0}^{f-1} \frac{k!}{(k+g-f)!}\left(L_{k}^{g-f}(\lambda)\right)^{2} \lambda^{g-f} e^{-\lambda} d \lambda$
$g=\max \left\{N_{r}, N_{t}\right\}$ and $L_{j}^{i}=$ Laguerre polynomials

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

Bibliography:

\diamond "Keyholes, correlations and capacities of multielement transmit and receive antennas", D. Chizhik, IEEE Trans. Wireless Comm., vol. 1, pp. 361-368, April 2002
\diamond "Capacity scaling in MIMO wireless systems under correlated fading", C. Chuah, IEEE Trans. Information Th., vol. 48, pp. 637-650, March 2002
\diamond "Capacity of mobile multiple-antenna communication link in Rayleigh flat-fading", T. Marzetta et al., IEEE Trans. Information Th., vol. 45, no. 1, pp. 139-157, January 1999
\diamond "On limits of wireless communications in fading environment when using multiple antennas", G. Foschini and M. Gans, Wireless Personal Communications, vol. 6, no.3, pp. 311-355, 1998
\diamond "Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas", G. Foschini, Bell Labs Technical Journal, vol. 1, no. 2, pp. 41-59, 1996
\diamond "Capacity of multi-antenna Gaussian channels", I. Telatar, AT\&T Bell Labs, Internal Technical Memorandum, 1995

Applications of DG: Information Geometry

Problem: Given a parametric statistical family $\mathcal{F}=\{p(\boldsymbol{x} ; \boldsymbol{\theta}): \boldsymbol{\theta} \in \Theta\}$ assign a distance function $d: \Theta \times \Theta \rightarrow \mathbb{R}$Example: $\mathcal{F}=\left\{p(\boldsymbol{x} ; \boldsymbol{\theta}) \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}): \boldsymbol{\theta} \in \Theta=\mathbb{R}^{n}\right\} \quad$ (note: $\boldsymbol{\Sigma}$ is fixed) Naive choice (Euclidean distance): $d(\boldsymbol{\theta}, \boldsymbol{\eta})=\|\boldsymbol{\theta}-\boldsymbol{\eta}\|$This method does not produce "intrinsic" distances (parameter invariant)

Applications of DG: Information Geometry

\square With $\boldsymbol{\theta}^{*}=\boldsymbol{A} \boldsymbol{\theta}: \mathcal{F}=\left\{p\left(\boldsymbol{x} ; \boldsymbol{\theta}^{*}\right) \sim \mathcal{N}\left(\boldsymbol{A}^{-1} \boldsymbol{\theta}^{*}, \boldsymbol{\Sigma}\right): \boldsymbol{\theta}^{*} \in \Theta^{*}=\mathbb{R}^{n}\right\}$
\square Example: $\boldsymbol{\theta}=(0,0), \boldsymbol{\eta}=(-3,3), \boldsymbol{\lambda}=(1,1), \boldsymbol{A}=\left[\begin{array}{ll}5 / 3 & 4 / 3 \\ 4 / 3 & 5 / 3\end{array}\right]$

$$
d(\boldsymbol{\theta}, \boldsymbol{\lambda})<d(\boldsymbol{\theta}, \boldsymbol{\eta})
$$

$$
d\left(\boldsymbol{\theta}^{*}, \boldsymbol{\lambda}^{*}\right)>d\left(\boldsymbol{\theta}^{*}, \boldsymbol{\eta}^{*}\right)
$$

Applications of DG: Information Geometry

Rao suggested the information metric to obtain distances between pdf'sDifferential geometric interpretation: The Fisher Information Matrix is adopted as the Riemannian tensor on Θ
\square Insight: A parametric statistical family is an autonomous geometrical object

Applications of DG: Information Geometry

Information distance:$$
d(\boldsymbol{\theta}, \boldsymbol{\eta})=\inf \{\text { length }(c): c \text { is a curve on } \Theta \text { connecting } \boldsymbol{\theta} \text { to } \boldsymbol{\eta}\}
$$The information distance is invariant to reparameterizations

Link with Kullback-Leibler distance: $d_{\mathrm{KL}}(\boldsymbol{\theta}, \boldsymbol{\eta})=\frac{1}{2} d(\boldsymbol{\theta}, \boldsymbol{\eta})^{2}+O\left(d(\boldsymbol{\theta}, \boldsymbol{\eta})^{3}\right)$

Applications of DG: Information Geometry

Some examples:

$\diamond \mathcal{F}=\left\{p(\boldsymbol{x} ; \boldsymbol{\theta}) \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}): \boldsymbol{\theta} \in \Theta=\mathbb{R}^{n}\right\} \quad(\boldsymbol{\Sigma}$ is fixed $)$ $d(\boldsymbol{\theta}, \boldsymbol{\eta})=\sqrt{(\boldsymbol{\theta}-\boldsymbol{\eta})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\theta}-\boldsymbol{\eta})} \quad$ [Mahalanobis distance]

Euclidean distance (geodesic)

Information distance (geodesic)

Applications of DG: Information Geometry

$$
\begin{aligned}
\diamond \mathcal{F} & =\{p(\boldsymbol{x} ; \boldsymbol{\Sigma}) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}): \boldsymbol{\Sigma} \in \Theta=\mathbb{P}(n)\} \quad(\boldsymbol{\mu} \text { is fixed }) \\
d(\boldsymbol{\Sigma}, \mathbf{\Upsilon}) & =\sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(\log \lambda_{i}\right)^{2}}, \quad\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\text { generalized eigenvalues of }(\boldsymbol{\Sigma}, \mathbf{\Upsilon})
\end{aligned}
$$

\square Recall: $\mathbb{P}(n)=$ set of $n \times n$ positive definite matrices

Applications of DG: Information Geometry

$\diamond \mathcal{F}=\left\{p(\boldsymbol{x} ; \boldsymbol{\pi}) \sim \operatorname{multinomial}(n, \boldsymbol{\pi}): \boldsymbol{\pi} \in \Theta=\operatorname{simplex}\left(\mathbb{R}^{m}\right)\right\}$ $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{N}^{m}, \sum_{i=1}^{m} x_{i}=n, \boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{m}\right), \sum_{i=1}^{m} \pi_{i}=1$
$p(\boldsymbol{x} ; \boldsymbol{\pi})=\frac{n!}{x_{1}!\cdots x_{m}!} \pi_{1}^{x_{1}} \cdots \pi_{m}^{x_{m}} \quad d(\boldsymbol{\pi}, \boldsymbol{\omega})=2 \sqrt{n} \arccos \left(\sum_{i=1}^{m} \pi_{i} \omega_{i}\right)$

Applications of DG: Information Geometry

Bibliography:\diamond "Differential Geometry and Statistics", M. Murray et al., Chapman \& Hall, 1993
\diamond "The geometry of asymptotic inference", R. Kass, Statistical Science, vol. 4, no. 3, pp. 188-234, 1989
\diamond "Differential Geometry in Statistical Inference", S. Amari et al., Institute of Mathematical Statistics, Lecture Notes, 1987
\diamond "The role of differential geometry in statistical theory", O.E. Barndorff-Nielsen et al., International Statistical Review, 54, pp. 83-96, 1986
\diamond "Information and accuracy attainable in the estimation of statistical parameters", C. Rao, Bull. Calcutta Math. Soc., 37, pp. 81-91, 1945

Applications of DG: Geometrical Interpretation of Jeffreys' Prior

\square Problem: Given a parametric statistical family $\mathcal{F}=\{p(\boldsymbol{x} ; \boldsymbol{\theta}): \boldsymbol{\theta} \in \Theta\}$ assign a non-informative prior $p(\boldsymbol{\theta})$ for the parameter $\boldsymbol{\theta}$Example: $\mathcal{F}=\left\{p(x ; \theta) \sim \mathcal{N}\left(0, \theta^{2}\right): \theta \in \Theta=(1 / 2,1)\right\}$
Naive choice (uniform distribution):
This method does not produce "intrinsic" priors (parameter invariant)

Applications of DG: Geometrical Interpretation of Jeffreys' Prior

\square With $\theta=\sin (\gamma): \mathcal{F}=\left\{p(x ; \gamma) \sim \mathcal{N}\left(0, \sin ^{2}(\gamma)\right): \gamma \in \Gamma=(\pi / 6, \pi / 2)\right\}$

\square Jeffreys' prior: $p(\boldsymbol{\theta}) \propto \sqrt{\operatorname{det}(\boldsymbol{I}(\boldsymbol{\theta}))}$ where $\boldsymbol{I}(\boldsymbol{\theta})$ is the Fisher information matrix

Applications of DG: Geometrical Interpretation of Jeffreys' Prior

\square For the current example: $p(\theta) \propto \frac{1}{\theta}$ and $p(\gamma) \propto \operatorname{cotg}(\gamma)$

$$
p(\theta)
$$

Applications of DG: Geometrical Interpretation of Jeffreys' Prior

\square Differential geometric interpretation: Jeffreys' prior is simply the Riemannian volume element induced by the Fisher metric!Insight: A parametric statistical family is an autonomous geometrical object carrying its own "uniform" prior (applies equal mass to sets of equal area)

$$
\operatorname{Area}(A)=\operatorname{Area}(B) \Rightarrow \operatorname{Prob}(\boldsymbol{\theta} \in A)=\operatorname{Prob}(\boldsymbol{\theta} \in B)
$$

Applications of DG: Geometrical Interpretation of Jeffreys' Prior

Bibliography:\diamond "The geometry of asymptotic inference", R. Kass, Statistical Science, vol. 4, no. 3, pp. 188-234, 1989
\diamond "Differential Geometry in Statistical Inference", S. Amari et al., Institute of Mathematical Statistics, Lecture Notes, 1987
\diamond "The role of differential geometry in statistical theory", O.E. Barndorff-Nielsen et al., International Statistical Review, 54, pp. 83-96, 1986
\diamond "Theory of Probability", 3rd ed., H. Jeffreys, Oxford University, 1961
\diamond "An invariant form for the prior probability in estimation problems", H. Jeffreys, Proc. Royal Soc. London Ser. A, 196, pp. 453-461, 1946

Application of DG: bounds

\square Classical Euclidean setup:

Cramér-Rao Bound (CRB):

$$
\operatorname{var}_{\theta}(\widehat{\theta})=\mathrm{E}_{\theta}\left\{d(\theta, \widehat{\theta}(Y))^{2}\right\} \geq \operatorname{tr}\left(I_{\theta}^{-1}\right) \quad\left(I_{\theta}=\text { Fisher matrix }\right)
$$

Application of DG: bounds

Riemannian setup:
\square Intrinsic Variance Lower Bound (IVLB):

$$
\operatorname{var}_{\theta}(\widehat{\theta})=\mathrm{E}_{\theta}\left\{d(\theta, \widehat{\theta}(Y))^{2}\right\} \geq ?
$$

Applications of DG: bounds

\square Theorem (IVLB). Suppose:
\triangleright The sectional curvature of Θ is upper bounded by $C \geq 0$
$\triangleright+$ some technical conditions
Then,

$$
\operatorname{var}_{\theta}(\widehat{\theta}) \geq \begin{cases}\lambda_{\theta} & , \quad \text { if } C=0 \\ \frac{\lambda_{\theta} C+1-\sqrt{2 \lambda_{\theta} C+1}}{C^{2} \lambda_{\theta} / 2} & , \quad \text { if } C>0\end{cases}
$$

where:
$\triangleright \lambda_{\theta}=\operatorname{tr}\left(I_{\theta}^{-1}\right) \quad\left(I_{\theta}=\right.$ Fisher tensor $)$

Example: inference on S^{p-1}

$\mathrm{S}^{p-1}=\left\{x \in \mathbb{R}^{p}:\|x\|=1\right\}$ is the unit-sphere in \mathbb{R}^{p}

Geometry of $\Theta: d(\theta, \widehat{\theta}(y))=\operatorname{acos}\left(\theta^{T} \widehat{\theta}(y)\right)$ and $C=1$

Example: inference on S^{p-1}

\square Observation: $y=\theta+w \in \mathbb{R}^{p}(p=10)$
$\triangleright \theta \in \Theta=\mathrm{S}^{p-1}$
$\triangleright w \sim \mathcal{N}\left(0, \sigma^{2} I_{p}\right)$Maximum-likelihood estimator:

$$
\widehat{\theta}(y)=\frac{y}{\|y\|}
$$Signal-to-noise ratio:

$$
\mathrm{SNR}=\frac{\mathrm{E}\left\{\|\theta\|^{2}\right\}}{\mathrm{E}\left\{\|w\|^{2}\right\}}=\frac{1}{p \sigma^{2}}
$$

Example: inference on S^{p-1}

Example: inference on S^{p-1}

Example: inference on $\mathrm{SO}(3, \mathbb{R})$

$\mathrm{SO}(3, \mathbb{R})$ is the special orthogonal group:

$$
\mathrm{SO}(3, \mathbb{R})=\left\{Q \in \mathbb{R}^{3 \times 3}: Q^{T} Q=I_{3}, \operatorname{det}(Q)=1\right\}
$$

Geometry of $\Theta: d(\theta, \widehat{\theta}(y))=\sqrt{2} \operatorname{acos}\left(0.5\left[\operatorname{tr}\left(\theta^{T} \widehat{\theta}(y)\right)-1\right]\right)$ and $C=1 / 8$

Example: inference on $\mathrm{SO}(3, \mathbb{R})$

Observation: $Y=\theta X+W \in \mathbb{R}^{3 \times k}(k=10)$$\triangleright \theta \in \Theta=\mathrm{SO}(3, \mathbb{R})$: unknown rotation matrix [Procrustean analysis]
$\triangleright X=\left[x_{1} x_{2} \cdots x_{k}\right]$: constellation of known k landmarks in $\mathbb{R}^{3}\left(X X^{T}=I_{3}\right)$
$\triangleright W=\left[w_{1} w_{2} \cdots w_{k}\right], w_{i} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2} I_{3}\right)$: additive observation noiseMaximum-likelihood estimator:

$$
\widehat{\theta}(Y)=\cdots(\text { closed }- \text { form })
$$Signal-to-noise ratio:

$$
\mathrm{SNR}=\frac{\mathrm{E}\left\{\|\theta X\|^{2}\right\}}{\mathrm{E}\left\{\|W\|^{2}\right\}}=\frac{1}{k \sigma^{2}}
$$

Example: inference on $\mathrm{SO}(3, \mathbb{R})$

Applications of DG: Bounds

Bibliography:

\diamond "Covariance, subspace, and intrinsic Cramér-Rao bounds," S. Smith, IEEE Trans. on Signal Proc., vol. 53, no.5, May 2005
\diamond "Intrinsic variance lower bound (IVLB): an extension of the Cramér-Rao bound to Riemannian manifolds", J. Xavier and V. Barroso, IEEE Int. Conf. on Acoust., Sp. and Sig. Proc. (ICASSP), March 2005
\diamond "The Riemannian geometry of certain parameter estimation problems with singular Fisher matrices", J. Xavier and V. Barroso, IEEE Int. Conf. on Acoust., Sp. and Sig. Proc. (ICASSP), May 2004
\diamond "Hilbert-Schmidt lower bounds for estimators on matrix Lie groups for ATR", U. Grenander et al., IEEE Trans. on Patt. Anal. and Mach. Intell., vol. 20, no. 8, pp. 790-801, August 1998
\diamond "On the Cramér-Rao bound under parametric constraints", P. Stoica et al., IEEE Sig. Proc. Lett., vol. 5, no. 7, pp. 177-179, July 1998
\diamond "Intrinsic analysis of statistical estimation", J. Oller et al., The Annals of Stat., vol. 23, no. 5, pp. 1562-1581, 1995
\diamond "A Cramér-Rao type lower bound for estimators with values in a manifold", H. Hendricks, Journal of Multivar. Anal., no. 38, pp. 245-261, 1991

Course's Table of Contents

Three main topics:
\triangleright Topological manifolds
\triangleright Differentiable manifolds
\triangleright Riemannian manifolds

Three layers of structure:

Riemannian structure	Length of curves; Geodesics; Distance ; Connections ; etc	
Differentiable structure	Tangent vectors; Smooth maps; Tensors; Integration ; etc	
Topological structure	Boundary of sets; Convergent sequences; Continuous maps ; etc	
Plain set		

Course's Table of Contents

Topological manifolds: "Introduction to Topological Manifolds", J. Lee, Springer-Verlag\diamond Ch.2: Topological spaces
\diamond Ch.3: New spaces from old
\diamond Ch.4: Connectedness and compactenessSmooth manifolds: "Introduction to Smooth Manifolds", J. Lee, Springer-Verlag
\diamond Ch.2: Smooth maps
\diamond Ch.3: The tangent bundle
\diamond Ch.5: Submanifolds
\diamond Ch.7: Lie group actions
\diamond Ch.8: Tensors
\diamond Ch.9: Differental forms
\diamond Ch.10: Integration on manifolds

Course's Table of Contents

Riemannian manifolds: "Riemannian Manifolds", J. Lee, Springer-Verlag\diamond Ch.3: Definitions and examples of Riemannian metricsCh.4: Connections
\diamond
Ch.5: Riemannian geodesics

Bibliography for the Course

Topological manifolds

\diamond "Introduction to Topological Manifolds", J. Lee, Springer-Verlag, 2000
\diamond "Introduction to Topology and Modern Analysis", G. Simmons, 1963

Smooth manifolds

\diamond "Introduction to Smooth Manifolds", J. Lee, Springer-Verlag, 2002
\diamond "An Introduction to Differentiable Manifolds and Riemannian Geometry", 2nd ed., W.Boothby, Academic Press, 1986
\diamond "Manifolds, Tensor Analysis and Applications", R. Abraham et al., Springer-Verlag, 1988
\diamond "A Comprehensive Introduction to Differential Geometry", vol.I, M. Spivak, Publish or Perish, 1979
\diamond "Lectures on Differential Geometry", S. Chern, W. Chern and K. Lam, World Scientific, 1999Riemannian manifolds
\diamond "Riemannian Manifolds", J. Lee, Springer-Verlag
\diamond "Riemannian Geometry", M. Carmo, Birkhauser, 1992

Bibliography

Other references (introductory):\diamond "Differential Forms with Applications to the Physical Sciences", H. Flanders, Dover, 1963
\diamond "Differential Forms with Applications", M. Carmo, Springer-Verlag, 1994

Other references (advanced):

\diamond "Riemannian Geometry", S. Gallot, D. Hulin and J. Lafontaine, Springer-Verlag, 1987
\diamond "A Comprehensive Introduction to DG", vol.II-V, M. Spivak, Publish or Perish, 1979
\diamond "Riemannian Geometry: A Modern Introduction", I. Chavel, Cambridge Press, 1993
\diamond "Riemannian Geometry and Geometric Analysis", J. Jost, Springer-Verlag, 1998
\diamond "Foundations of Differential Geometry", vol. I-II, S. Kobayashi and K. Nomizu, Wiley 1969
\diamond "DG, Lie Groups and Symmetric Spaces", S. Helgason, Academic Press, 1978Many others. . .

Grading

Grade $=$ Homework (60\%) + Project (40\%)Homeworks:| $\#$ | Received | Due |
| :---: | :---: | :---: |
| 1 | March, 29 | April, 19 |
| 2 | April, 19 | May, 10 |
| 3 | May, 10 | May, 31 |
| 4 | May, 31 | June, 21 |Project (individual): A paper will be assigned for each student to study

Output: public presentation of the paper
Start: May, 10 End: July, 31

Discussion, questions, etc

