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� Motivation: Signal Processing & Related Applications of Differential Geometry

� Optimization

� Kendall’s theory of shapes

� Random Matrix Theory

� Coherent Capacity of Multi-Antenna Systems

� Information Geometry

� Geometrical Interpretation of Jeffreys’ Prior

� Performance Bounds for Constrained or Non-Identifiable Parametric Estimation

� Course’s Table of Contents

� Topological manifolds

� Differentiable manifolds

� Riemannian manifolds



�

�

�

�

Outline
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� Additional material (short notes on specialized topics)
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Applications of DG: Optimization

� Unconstrained minimization problem:

x∗ = arg min
x∈Rn

f(x)

� Iterative line search:

given initial point x0

for k = 0, 1, . . .

choose descent direction dk

solve t∗ = arg mint≥0 f(xk + tdk)

xk+1 = xk + t∗dk

end



�

�

�

�

Applications of DG: Optimization

� Sketch:

xk

xk+1

dk

xk+2

dk+1

� Descent direction: dgrad = −∇f(xk), dnewton = − [∇2f(xk)
]−1 ∇f(xk)
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Applications of DG: Optimization

� Constrained minimization problem:

x∗ = arg min
h(x)=0

f(x)

� Iterative line search with projected gradient:

given initial point x0

for k = 0, 1, . . .

compute dk = Π (−∇f(xk))

solve t∗ = arg mint≥0 f(xk + tdk)

x̂k+1 = xk + t∗dk

return to the constraint surface xk+1 = arg minh(x)=0 ‖x− x̂k+1‖2

end
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Applications of DG: Optimization

� Sketch:

xk

−∇f(xk)

dk

xk+1

x̂k+1

h(x) = 0
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Applications of DG: Optimization

� Differential geometry enables a descent algorithm with feasible iterates

� Iterative geodesic search:

given initial point x0

for k = 0, 1, . . .

choose descent direction dk

solve t∗ = arg mint≥0 f(γk(t))

(γk(t)= geodesic emanating from xk in the direction dk)

xk+1 = γk(t∗)

end
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Applications of DG: Optimization

� Sketch:

xk

γk(t)

xk+1

dk

h(x) = 0

� Descent direction: generalizations of dgrad and dnewton are available

� Theory works for abstract spaces (e.g. projective spaces)
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Applications of DG: Optimization

� Example: Signal model

y[t] = Qx[t] + w[t] t = 1, 2, . . . , T

Q: orthogonal matrix (QT Q = IN ), x[t]: known and w[t]
iid∼ N (0, C)

� Maximum-Likelihood Estimate:

Q∗ = arg max
Q∈O(N)

p (Y ; Q)

� O(N)= group of N × N orthogonal matrices

� Y = [ y[1] y[2] · · · y[T ]] and X = [ x[1] x[2] · · · x[T ]]
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Applications of DG: Optimization

� Optimization problem: Orthogonal Procrustes rotation

Q∗ = arg min
Q∈O(N)

‖Y − QX‖2
C−1

= arg min
Q∈O(N)

tr
{

QT C−1QR̂xx

}
− tr
{

QT C−1R̂yx

}
� R̂yx = 1

T

∑T
t=1 y[t]x[t]T and R̂xx = 1

T

∑T
t=1 x[t]x[t]T

� Note: the eigenstructure of C controls the Hessian of the objective

κ(C−1) =
λmax(C

−1)
λmin(C

−1)
condition number of C−1
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Applications of DG: Optimization

� Example: N = 5, T = 100, C = diag(1, 1, 1, 1, 1), κ(C−1) = 1
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Iteration

◦=projected gradient �=gradient geodesic descent �=Newton geodesic descent
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Applications of DG: Optimization

� Example: N = 5, T = 100, C = diag(0.2, 0.4, 0.6, 0.8, 1), κ(C−1) = 5
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Iteration

◦=projected gradient �=gradient geodesic descent �=Newton geodesic descent
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Applications of DG: Optimization

� Example: N = 5, T = 100, C = diag(0.02, 0.05, 0.14, 0.37, 1), κ(C−1) = 50
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Iteration

◦=projected gradient �=gradient geodesic descent �=Newton geodesic descent
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Applications of DG: Optimization

� Important: Following geodesics is not necessarily optimal. See:

“Optimization algorithms exploiting unitary constraints”, J. Manton, IEEE Trans. on

Signal Processing, vol. 50, no. 3, pp. 635–650, March 2002



�

�

�

�

Applications of DG: Optimization

� Bibliography:

� “The geometry of weighted low-rank approximations”, J. Manton et al., IEEE Trans. on

Signal Processing, vol. 51, no. 2, pp. 500–514, February 2003

� “Efficient algorithms for inferences on Grassmann manifolds”, K. Gallivan et al, Proc. 12th

IEEE Workshop Statistical Signal Processing, 2003

� “Adaptive eigenvalue computations using Newton’s method on the Grassmann manifold”, E.

Lundstrom et al., SIAM J. Matrix Anal. Appl., vol. 23, no. 3, pp. 819–839, 2002

� “A Grassmann-Rayleigh quotient iteration for computing invariant subspaces”, P. Absil et al.,

SIAM Review, vol. 44, no. 1, pp. 57–73, 2002

� “Algorithms on the Stiefel manifold for joint diagonalization”, M. Nikpour et al., IEEE Int.

Conf. on Acoust. Speech and Signal Proc. (ICASSP), vol. 2, pp. 1481–1484, 2002

� “Optimization algorithms exploiting unitary constraints”, J. Manton, IEEE Trans. on Signal

Processing, vol. 50, no. 3, pp. 635–650, March 2002

� “Contravariant adaptation on structured matrix spaces”, T. Moon and J. Gunther, Signal

Processing, 82, pp. 1389–1410, 2002
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Applications of DG: Optimization

� Bibliography (cont.):

� “The geometry of the Newton method on non-compact Lie groups”, R. Mahony and J.

Manton, Journal of Global Optimization, vol. 23, pp. 309–327, 2002.

� “Prior knowledge and preferential structures in gradient descent learning algorithms”, R.

Mahony and Williamson, Journal of Machine Learning Research, pp. 311–355, 2001.

� “Precoder assisted channel estimation in complex projective space”, J. Manton, IEEE 3rd

Workshop on Sig. Proc. Advanc. on Wir. Comm. (SPAWC), pp. 348–351, 2001

� “Optimization on Riemannian manifold”, IEEE Proc. 38th conference on Decision and

Control, pp. 888–893, Dec. 1999.

� “Optimum phase-only adaptive nulling”, S. Smith, IEEE Trans. on Signal Processing, vol.

47, no. 7, pp. 1835–1843, July 1999

� “Motion estimation in computer vision: optimization on Stiefel manifolds”, Y. Ma et al,

IEEE Proc. 38th conference on Decision and Control, vol. 4, pp. 3751–3756, Dec. 1998

� “The geometry of algorithms with orthogonality constraints”, A. Edelman et al., SIAM J.

Matrix Anal. Appl., vol. 20, no. 2, pp. 303–353, 1998
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Applications of DG: Optimization

� Bibliography (cont.):

� “Optimal motion from image sequences: a Riemannian viewpoint”, Y. Ma et al, Electronic

Research Lab Memorandum, UC Berkeley, 1998

� “Optimization tecnhiques on Riemannian manifolds”, S. Smith, Fields Institute

Communications, vol. 3, pp. 113–136, 1994

� “Optimization and Dynamical Systems”, U. Helmke and J. Moore, Springer-Verlag, 1994

� “Geometric optimization methods for adaptive filtering”, S. Smith, PhD Thesis, Harvard

University, 1993

� “Constrained optimization along geodesics”, C. Botsaris, J. Math. Anal. Appl., vol. 79, pp.

295–306, 1981



�

�

�

�

Applications of DG: Kendall’s theory of shapes

Image 1 Image 2

Quotient space [manifold]

Database of shapes

� (invariant) shape recognition

� morphing one shape into another

� statistics (“mean” shape, clustering)
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Applications of DG: Kendall’s theory of shapes

� Bibliography:

� “Multivariate shape analysis”, I. Dryden and K. Mardia, Sankhya: The Indian Journal of

Statistics, 55, pp. 460–480, 1993

� “Procrustes methods in the statistical analysis of shape”, C. Goodall, J. R. Statist. Soc. B,

53, no.2, pp. 285–339, 1991

� “A survey of the statistical theory of shapes”, D. Kendall, Statist. Sci., 4, pp. pp. 87–120,

1989

� “Shape manifolds, Procrustean metrics and complex projective spaces”, D. Kendall, Bull.

London Math. Soc., 16, pp. 81–121, 1984

� “Directional Statistics”, K. Mardia and P. Jupp, Wiley Series in Probability and Statistics



�

�

�

�

Applications of DG: Random Matrix Theory

� Basic statistics: transformation of random objects in Euclidean spaces⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x is a random vector in Rn

x ∼ pX (x)

F : Rn → Rn smooth, bijective

y = F (x)

⇒
y ∼ pY (y) = pX (F−1(y)) J(y)

J(y) = 1
det(DF (F−1(y)))

Rn Rn

F

pX pY
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Applications of DG: Random Matrix Theory

� Generalization: transformation of random objects in manifolds M,N⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x is a random point in M
x ∼ ΩX (exterior form)

F : M → N smooth, bijective

y = F (x)

⇒ y ∼ ΩY = . . .

The answer is provided by the calculus of exterior differential forms

M N

F

ΩX ΩY
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Applications of DG: Random Matrix Theory

� Example A: decoupling a random vector in amplitude and direction⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M = Rn − {0} = {x : x �= 0}
N = R+ × Sn−1 = {(R, u) : R > 0, ‖u‖ = 1}
(R, u) = F (x) =

(
‖x‖ , x

‖x‖
)

x ∼ pX (x)

⇒ p(R, u) = pX (Ru) Rn−1

� Example B: decoupling a random matrix through the polar decomposition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M = GL(n) =

{
X ∈ Rn×n : |X| �= 0

}
N = P(n) × O(n) =

{
(P , Q) : P 	 0, QT Q = In

}
(P , Q) = F (X) ⇔ X = PQ

X ∼ pX (X)

⇒ p(P , Q) = . . . (known)
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Applications of DG: Random Matrix Theory

� Example C: decoupling a random symmetric matrix by eigendecomposition⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M = S(n) =

{
X ∈ Rn×n : X = XT

}
N = O(n) × D(n) =

{
(Q,Λ) : QT Q = In,Λ : diag

}
(Q,Λ) = F (X) ⇔ X = QΛQT

X ∼ pX (X)

⇒ p(Q,Λ) = . . . (known)

� Many other examples. . . (e.g. Cholesky, QR, LU, SVD)



�

�

�

�

Applications of DG: Random Matrix Theory

� Bibliography:

� “Matrix Variate Distributions”, A. Gupta, Chapman & Hall, 1999

� “Jacobians of Matrix Transformations and Functions of Matrix Argument”, A. Mathai,

World Scientific, 1997

� “Random Matrices”, M. Mehta, Academic Press, 1991

� “Eigenvalues and Condition Numbers of Random Matrices”, A. Edelman, PhD Thesis,

Massachusetts Institute of Technology, 1989

� “Multivariate Calculation”, R. Farrell, Springer-Verlag, 1985

� “Aspects of Multivariate Statistical Theory”, R. Muirhead, John Wiley & Sons, 1982

� “Distributions of matrix variates and latent roots derived from normal samples”, A. James,

Annals of Math. Statistics, vol. 35, pp. 475–501, 1964
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RMT and DG concepts in signal processing

� Bibliography (only a small sample):

� “Random Matrix Theory and Wireless Communications”, A. Tulino and S. Verdú, Now

Publishers Inc., 2004.

� “Grassmann-based signal design for non-coherent reception”, I. Kammoun and J. C. Belfiore,

Signal Processing Advances in Wireless Communications, 2003, SPAWC 2003, 4th IEEE

Workshop 2003 (pp.507–511)

� “Communication on the Grassmann manifold: a geometric approach to the nonchoerent

multiple-antenna channel”, L. Zheng and D. Tse, IEEE Transactions on Information Theory,

vol. 48, no. 2, pp. 359–383, February 2002.

� A. Srivastava, “A Bayesian approach to geometric subspace estimation,” IEEE Transactions

on Signal Processing, vol. 48, no. 5, pp. 1390–1400, May 2000.
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Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� Scenario: point-to-point single-user communication with multiple Tx antennas

b Tx

x1

xNt

b̂Rx

h11

h21

hNr,Nt

hNr,1

h1,Nt

y1

y2

yNr
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Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� Data model: y = Hx + n with y, n ∈ CNr , H ∈ CNr×Nt , x ∈ CNt

� Nt = number of Tx antennas

� Nr = number of Rx antennas

Assumption: ni
iid∼ CN (0, 1)

� Decoupled data model:

� SVD: H = UΣV H with U ∈ U(Nr), V ∈ U(Nt), Σ = diag(σ1, . . . , σf ,0),

(σ1, . . . , σf ) = nonzero singular values of H, f = min {Nr, Nt}
� Transform the data: ỹ = UHy, x̃ = V Hx and ñ = UHn

� Equivalent diagonal model: ỹ = Σx̃ + ñ
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Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� Interpretation: The matrix channel H is equivalent to f parallel scalar channels

+

+

x̃1

ñ1

ỹ1

x̃f

ñf

ỹf

σ1

σf



�

�

�

�

Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� Assumption: H is random and known only at the Rx

� Channel capacity:

C = max
p(x),E{‖x‖2≤P}

I(x; (y, H))

I = mutual information

� Solution:

C = EH

⎧⎨⎩
f∑

i=1

log
(
1 + (P/Nt)σ

2
i

)⎫⎬⎭
Recall: (σ1, . . . , σf ) = nonzero singular values of H, f = min {Nr, Nt}
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Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� H is random and H = UΣV H (SVD)

CNr×Nt U(Nr) × D × U(Nt)

SVD

p(H) p (U,Σ, V )

� Capacity: when [Hij ]
iid∼ CN (0, 1)

C =

∫ ∞

0
log(1 + (P/Nt)λ)

f−1∑
k=0

k!

(k + g − f)!
(Lg−f

k (λ))2λg−f e−λ dλ

g = max {Nr, Nt} and Li
j=Laguerre polynomials
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Applications of RMT: Coherent Capacity of Multi-Antenna Systems

� Bibliography:

� “Keyholes, correlations and capacities of multielement transmit and receive antennas”, D.

Chizhik, IEEE Trans. Wireless Comm., vol. 1, pp. 361–368, April 2002

� “Capacity scaling in MIMO wireless systems under correlated fading”, C. Chuah, IEEE Trans.

Information Th., vol. 48, pp. 637–650, March 2002

� “Capacity of mobile multiple-antenna communication link in Rayleigh flat-fading”, T.

Marzetta et al., IEEE Trans. Information Th., vol. 45, no. 1, pp. 139–157, January 1999

� “On limits of wireless communications in fading environment when using multiple antennas”,

G. Foschini and M. Gans, Wireless Personal Communications, vol. 6, no.3, pp. 311–355,

1998

� “Layered space-time architecture for wireless communication in a fading environment when

using multi-element antennas”, G. Foschini, Bell Labs Technical Journal, vol. 1, no. 2, pp.

41–59, 1996

� “Capacity of multi-antenna Gaussian channels”, I. Telatar, AT&T Bell Labs, Internal

Technical Memorandum, 1995
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Applications of DG: Information Geometry

� Problem: Given a parametric statistical family F = {p(x; θ) : θ ∈ Θ} assign

a distance function d : Θ × Θ → R

� Example: F = {p(x; θ) ∼ N (θ,Σ) : θ ∈ Θ = Rn} (note: Σ is fixed)

Naive choice (Euclidean distance): d(θ, η) = ‖θ − η‖

θ

η

� This method does not produce “intrinsic” distances (parameter invariant)
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Applications of DG: Information Geometry

� With θ∗ = Aθ: F =
{
p(x; θ∗) ∼ N (A−1θ∗,Σ) : θ∗ ∈ Θ∗ = Rn

}
� Example: θ = (0, 0), η = (−3, 3), λ = (1, 1), A =

⎡⎣ 5/3 4/3

4/3 5/3

⎤⎦

θ

η

λ

θ∗ = Aθ, η∗ = Aη, λ∗ = Aλ

η∗

λ∗

θ∗

d(θ, λ) < d(θ, η) d(θ∗, λ∗) > d(θ∗, η∗)
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Applications of DG: Information Geometry

� Rao suggested the information metric to obtain distances between pdf’s

� Differential geometric interpretation: The Fisher Information Matrix is

adopted as the Riemannian tensor on Θ

θ
−→v

−→w = ċ(t)
α

Tθ (Θ)

Θ

c(a)

c(b)

c(t)

〈−→v ,−→w〉 = −→v T I(θ)−→w

I(θ) = −Eθ

{∇2
θ log p(x; θ)

}
∣∣−→v ∣∣ =√〈−→v ,−→v 〉

length(c) =
∫ b

a |ċ(t)| dt

α =
〈−→v ,−→w〉∣∣−→v ∣∣ ∣∣−→w∣∣

� Insight: A parametric statistical family is an autonomous geometrical object
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Applications of DG: Information Geometry

� Information distance:

d(θ, η) = inf {length(c) : c is a curve on Θ connecting θ to η}

� The information distance is invariant to reparameterizations

θ

η
θ∗

η∗

Θ Θ∗

reparameterization

d(θ, η) = d(θ∗, η∗)

� Link with Kullback-Leibler distance: dKL(θ, η) = 1
2 d(θ, η)2 + O

(
d(θ, η)3

)
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Applications of DG: Information Geometry

� Some examples:

� F = {p(x; θ) ∼ N (θ,Σ) : θ ∈ Θ = Rn} (Σ is fixed)

d(θ, η) =

√
(θ − η)T Σ−1(θ − η) [Mahalanobis distance]

θθ

ηη

Euclidean distance (geodesic) Information distance (geodesic)
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Applications of DG: Information Geometry

� F = {p(x;Σ) ∼ N (µ,Σ) : Σ ∈ Θ = P(n)} (µ is fixed)

d(Σ,Υ) =

√√√√ 1

2

n∑
i=1

(log λi)2, (λ1, . . . , λn) = generalized eigenvalues of (Σ,Υ)

Σ

Υ
Θ = P(n) symmetric matrices (n × n)

Rn×n

� Recall: P(n) = set of n × n positive definite matrices
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Applications of DG: Information Geometry

� F = {p(x; π) ∼ multinomial(n, π) : π ∈ Θ = simplex(Rm)}
x = (x1, . . . , xm) ∈ Nm,

∑m
i=1 xi = n, π = (π1, . . . , πm),

∑m
i=1 πi = 1

p(x; π) =
n!

x1! · · ·xm!
πx1
1 · · ·πxm

m d(π, ω) = 2
√

n arccos

(
m∑

i=1

πiωi

)

π

ω

Θ1

1

1

Rm
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Applications of DG: Information Geometry

� Bibliography:

� “Differential Geometry and Statistics”, M. Murray et al., Chapman & Hall, 1993

� “The geometry of asymptotic inference”, R. Kass, Statistical Science, vol. 4, no. 3, pp.

188–234, 1989

� “Differential Geometry in Statistical Inference”, S. Amari et al., Institute of Mathematical

Statistics, Lecture Notes, 1987

� “The role of differential geometry in statistical theory”, O.E. Barndorff-Nielsen et al.,

International Statistical Review, 54, pp. 83–96, 1986

� “Information and accuracy attainable in the estimation of statistical parameters”, C. Rao,

Bull. Calcutta Math. Soc., 37, pp. 81–91, 1945
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Applications of DG: Geometrical Interpretation of Jeffreys’ Prior

� Problem: Given a parametric statistical family F = {p(x; θ) : θ ∈ Θ} assign

a non-informative prior p(θ) for the parameter θ

� Example: F =
{
p(x; θ) ∼ N (0, θ2) : θ ∈ Θ = (1/2, 1)

}
Naive choice (uniform distribution):

θ

p(θ)

1
2

√
3

2

Prob(A) = 0.73

1

� This method does not produce “intrinsic” priors (parameter invariant)
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Applications of DG: Geometrical Interpretation of Jeffreys’ Prior

� With θ = sin(γ): F =
{
p(x; γ) ∼ N (0, sin2(γ)) : γ ∈ Γ = (π/6, π/2)

}

γ

p(γ)

π
6

π
3

Prob(“A”) = 0.5!

π
2

� Jeffreys’ prior: p(θ) ∝√det(I(θ)) where I(θ) is the Fisher information matrix
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Applications of DG: Geometrical Interpretation of Jeffreys’ Prior

� For the current example: p(θ) ∝ 1
θ

and p(γ) ∝ cotg(γ)

θ

p(θ)

1
2

√
3

2
1

γ

p(γ)

π
6

π
3

π
2

Prob(A) = Prob(“A”) = 0.79
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Applications of DG: Geometrical Interpretation of Jeffreys’ Prior

� Differential geometric interpretation: Jeffreys’ prior is simply the Riemannian

volume element induced by the Fisher metric!

� Insight: A parametric statistical family is an autonomous geometrical object

carrying its own “uniform” prior (applies equal mass to sets of equal area)

A B

Θ

Area(A) = Area(B) ⇒ Prob(θ ∈ A) = Prob(θ ∈ B)
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Applications of DG: Geometrical Interpretation of Jeffreys’ Prior

� Bibliography:

� “The geometry of asymptotic inference”, R. Kass, Statistical Science, vol. 4, no. 3, pp.

188–234, 1989

� “Differential Geometry in Statistical Inference”, S. Amari et al., Institute of Mathematical

Statistics, Lecture Notes, 1987

� “The role of differential geometry in statistical theory”, O.E. Barndorff-Nielsen et al.,

International Statistical Review, 54, pp. 83–96, 1986

� “Theory of Probability”, 3rd ed., H. Jeffreys, Oxford University, 1961

� “An invariant form for the prior probability in estimation problems”, H. Jeffreys, Proc. Royal

Soc. London Ser. A, 196, pp. 453–461, 1946
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Application of DG: bounds

� Classical Euclidean setup:

θ

Rp Ω = Rn

θ̂(y)

y

Θ

� Cramér-Rao Bound (CRB):

varθ

(
θ̂
)

= Eθ

{
d
(
θ, θ̂(Y )

)2} ≥ tr
(
I−1
θ

)
(Iθ = Fisher matrix )
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Application of DG: bounds

� Riemannian setup:

θ

Ω = Rn

θ̂(y)

y
Θ

� Intrinsic Variance Lower Bound (IVLB):

varθ

(
θ̂
)

= Eθ

{
d
(
θ, θ̂(Y )

)2} ≥ ?
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Applications of DG: bounds

� Theorem (IVLB). Suppose:

� The sectional curvature of Θ is upper bounded by C ≥ 0

� + some technical conditions

Then,

varθ

(
θ̂
)
≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λθ , if C = 0

λθC + 1 −√
2λθC + 1

C2λθ/2
, if C > 0

where:

� λθ = tr(I−1
θ ) (Iθ = Fisher tensor )
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Example: inference on Sp−1

� Sp−1 = {x ∈ Rp : ‖x‖ = 1} is the unit-sphere in Rp

θ

Rp

θ̂(y)

Θ = Sp−1

d(θ, θ̂(y))

� Geometry of Θ: d(θ, θ̂(y)) = acos(θT θ̂(y)) and C = 1
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Example: inference on Sp−1

� Observation: y = θ + w ∈ Rp (p = 10)

� θ ∈ Θ = Sp−1

� w ∼ N (0, σ2Ip)

� Maximum-likelihood estimator:

θ̂(y) =
y

‖y‖

� Signal-to-noise ratio:

SNR =
E
{
‖θ‖2

}
E
{
‖w‖2

} =
1

p σ2
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Example: inference on Sp−1
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Example: inference on Sp−1
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Example: inference on SO(3, R)

� SO(3, R) is the special orthogonal group:

SO(3, R) =
{

Q ∈ R
3×3 : QT Q = I3, det(Q) = 1

}

θ

R3×3 � R9

θ̂(y)

Θ = SO(3, R)

d(θ, θ̂(y))

� Geometry of Θ: d(θ, θ̂(y)) =
√

2 acos(0.5[tr(θT θ̂(y)) − 1]) and C = 1/8
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Example: inference on SO(3, R)

� Observation: Y = θX + W ∈ R3×k (k = 10)

� θ ∈ Θ = SO(3, R): unknown rotation matrix [Procrustean analysis]

� X = [ x1 x2 · · · xk ]: constellation of known k landmarks in R3 (XXT = I3)

� W = [ w1 w2 · · · wk ], wi
iid∼ N (0, σ2I3): additive observation noise

� Maximum-likelihood estimator:

θ̂(Y ) = · · · (closed − form)

� Signal-to-noise ratio:

SNR =
E
{
‖θX‖2

}
E
{
‖W‖2

} =
1

k σ2



�

�

�

�

Example: inference on SO(3, R)

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−2

10
−1

10
0

10
1

SNR (dB)

ML estimator 

IVLB 



�

�

�

�

Applications of DG: Bounds
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Riemannian manifolds”, J. Xavier and V. Barroso, IEEE Int. Conf. on Acoust., Sp. and Sig.

Proc. (ICASSP), March 2005

� “The Riemannian geometry of certain parameter estimation problems with singular Fisher
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� “On the Cramér-Rao bound under parametric constraints”, P. Stoica et al., IEEE Sig. Proc.
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Course’s Table of Contents

� Three main topics:

� Topological manifolds

� Differentiable manifolds

� Riemannian manifolds

� Three layers of structure:

Plain set

Topological structure

Differentiable structure

Riemannian structure

Boundary of sets; Convergent sequences; Continuous maps ; etc

Tangent vectors; Smooth maps; Tensors; Integration ; etc

Length of curves ; Geodesics ; Distance ; Connections ; etc
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Course’s Table of Contents

� Topological manifolds: “Introduction to Topological Manifolds”, J. Lee, Springer-Verlag

� Ch.2: Topological spaces

� Ch.3: New spaces from old

� Ch.4: Connectedness and compacteness

� Smooth manifolds: “Introduction to Smooth Manifolds”, J. Lee, Springer-Verlag

� Ch.2: Smooth maps

� Ch.3: The tangent bundle

� Ch.5: Submanifolds

� Ch.7: Lie group actions

� Ch.8: Tensors

� Ch.9: Differental forms

� Ch.10: Integration on manifolds
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Course’s Table of Contents

� Riemannian manifolds: “Riemannian Manifolds”, J. Lee, Springer-Verlag

� Ch.3: Definitions and examples of Riemannian metrics

� Ch.4: Connections

� Ch.5: Riemannian geodesics
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Bibliography for the Course

� Topological manifolds

� “Introduction to Topological Manifolds”, J. Lee, Springer-Verlag, 2000

� “Introduction to Topology and Modern Analysis”, G. Simmons, 1963

� Smooth manifolds

� “Introduction to Smooth Manifolds”, J. Lee, Springer-Verlag, 2002

� “ An Introduction to Differentiable Manifolds and Riemannian Geometry”, 2nd ed.,

W.Boothby, Academic Press, 1986

� “Manifolds, Tensor Analysis and Applications”, R. Abraham et al., Springer-Verlag, 1988

� “A Comprehensive Introduction to Differential Geometry”, vol.I, M. Spivak, Publish or

Perish, 1979

� “Lectures on Differential Geometry”, S. Chern, W. Chern and K. Lam, World Scientific, 1999

� Riemannian manifolds

� “Riemannian Manifolds”, J. Lee, Springer-Verlag

� “Riemannian Geometry”, M. Carmo, Birkhauser, 1992
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� Other references (advanced):

� “Riemannian Geometry”, S. Gallot, D. Hulin and J. Lafontaine, Springer-Verlag, 1987

� “A Comprehensive Introduction to DG”, vol.II-V, M. Spivak, Publish or Perish, 1979

� “Riemannian Geometry: A Modern Introduction”, I. Chavel, Cambridge Press, 1993

� “Riemannian Geometry and Geometric Analysis”, J. Jost, Springer-Verlag, 1998

� “Foundations of Differential Geometry”, vol. I-II, S. Kobayashi and K. Nomizu, Wiley 1969

� “DG, Lie Groups and Symmetric Spaces”, S. Helgason, Academic Press, 1978

� Many others. . .



�

�

�

�

Grading

� Grade = Homework (60%) + Project (40%)

� Homeworks:

# Received Due

1 March, 29 April, 19

2 April, 19 May, 10

3 May, 10 May, 31

4 May, 31 June, 21

� Project (individual): A paper will be assigned for each student to study

Output: public presentation of the paper

Start: May, 10 End: July, 31
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Discussion, questions, etc


