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Abstract— We find the large deviation rate I for convergence

in probability of the product Wk · · · W1W0 of temporally de-

pendent random stochastic matrices. As the model for temporal

dependencies, we adopt the Markov chain whose set of states

is the set of all possible graphs that support the matrices Wk.

Such model includes, for example, 1) token-based protocols,

where a token is passed among nodes to determine the order

of processing; and 2) temporally dependent link failures, where

the temporal dependence is modeled by a Markov chain. We

characterize the rate I as a function of the Markov chain

transition probability matrix P . Examples further reveal how

the temporal correlations (dependencies) affect the rate of

convergence in probability I .

I. INTRODUCTION

We study large deviations rates for products of temporally
dependent, random, symmetric, stochastic matrices {Wt}t�0

.
Products of stochastic matrices arise, e.g., in the analysis
of consensus or gossip algorithms, e.g., [1], [2], [3], con-
sensus+innovations algorithms, e.g., [4], [5] and diffusion
algorithms, e.g., [6]. It is well-known that the product
WkWk�1

· · ·W
0

converges in probability to J = (1/N)11

>,
if the second largest (in modulus) eigenvalue of E [Wk] is
strictly less than one and Wt have positive diagonals. We
have recently computed [7] the large deviation rate for the
convergence in probability (here k · k denotes the spectral
norm):

I := lim

k!1
�1

k
log P (kWkWk�1

· · ·W
0

k � ✏) , ✏ 2 (0, 1),

(1)
when the sequence {Wt}t�0

is independent identically dis-
tributed (i.i.d.) The quantity I in (1) is an important metric
and appears naturally in studying consensus+innovations
distributed inference, e.g., distributed detection [4]. Refer-
ence [4] shows that performance of consensus+innovations
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distributed detector significantly depends on I and in a highly
nonlinear way. (See [4] for details.)

In this paper, we calculate the rate I in (1) for a random
model with temporally dependent matrices Wt. Specifically,
we consider the model where the underlying graphs Gt –
the graphs that support the matrices Wt – follow a Markov
chain model. We associate to each realizable graph (out of
M graphs) a state of the Markov chain; the distribution of
Gt is then determined by a specified M ⇥ M transition
probability matrix P . This model subsumes, e.g., the token-
based protocols similar to [8], or temporally dependent link
failure models, where the on/off state of each link follows a
Markov chain.

We characterize the rate I in (1) as a function of the
transition probability matrix P . We refer to Theorem 4 for
details, but here we convey the general idea. Namely, we find
that the probability that the Markov chain stays for t time
steps in a sub-collection H of graphs behaves as (⇢(PH))

t,
where ⇢(PH) is the spectral radius of the submatrix of P
associated with the sub-collection H. Then, the rate I equals
⇢(PH?

), where H? is the sub-collection whose graphs are
disconnected in union, and that gives the largest spectral
radius ⇢(PH?

). Further, we illustrate the results on two
examples, namely gossip with Markov dependencies and
temporally correlated link failures. The example with tempo-
rally correlated link failures shows that “negative temporal
correlations” of the links’ states (being ON or OFF) increase
(improve) the rate I when compared with the uncorrelated
case, while positive correlations decrease (degrade) the rate.
This result is in accordance with standard large deviations
results on temporally correlated sequences, see, e.g., [[9],
exercise V.12, page 59.]

Paper organization. The next paragraph introduces notation.
Section II describes the problem setup and states our main
result on the rate I . Section III proves the result. Section IV
gives two examples, the gossip with Markov dependencies,
and temporally correlated link failures. Finally, Section V
concludes the paper.

Notation. We denote by: Aij or [A]ij the entry in ith row
and jth column of a matrix A; Al and Al the l-th row and
column, respectively; ⇢(A) the spectral radius of A; I and
J := (1/N)11

> the identity matrix, and the ideal consensus
matrix, respectively; 1 and ei the vector with unit entries,
and ith canonical vector (with ith entry equal to 1 and the
rest being zeros), respectively. Further, for a vector a, the
inequality a > 0 is understood component wise. Given a
selection S ✓ {1, ..., N} of rows and columns of a matrix



A: {Al : l 2 S} and {Al
: l 2 S}, we denote by AS the

submatrix of A corresponding to the selection S. Similarly, if
S is a selection of rows, we denote by ASl the part of Al that
corresponds to the selection S. Likewise, for the selection of
columns S, we denote by AlS the part of Al that corresponds
to S.

II. PROBLEM SETUP AND STATEMENT OF MAIN RESULT

In this section, we state the assumptions of the paper in
Subsection II-A, introduce several key concepts needed for
our analysis in Subsection II-B, and state the main result on
the large deviation rate I in Subsection II-C.
A. Assumptions

We study the sequence of random matrices {Wt}t�0

, Wt :

⌦ 7! RN⇥N , defined on a probability space (⌦,F , P) (Wt

is (F ,B(RN⇥N
))-measurable, for all t � 1). We denote by

! 2 ⌦ an arbitrary element of ⌦. We make the following
assumption on the random matrices Wt.

Assumption 1 (Matrices Wt) 1) Wt(!) is symmetric and
stochastic (row sums equal 1 and the entries are non-
negative), 8!.
Further, there exists � > 0 such that the following two
conditions are satisfied.

2) [Wt(!)]ii � �, 8i,8t,8!.
3) The entries [Wt(!)]ij are bounded away from zero

whenever positive, that is, for any i, j, t,! [Wt(!)]ij �
� whenever [Wt(!)]ij > 0.

Thus, we assume that Wt(!) has positive diagonals and,
also, that the positive entries of Wt(!) are bounded away
from zero, for all !. Throughout, for a fixed !, we refer to
Wt(!) as a realization. To explain the temporal dependence
in the matrix sequence, we need to introduce the sequence
of graphs that underly the matrices Wt.

For a stochastic symmetric N by N matrix W , we define
its induced graph, denoted by G(W ), by

G(W ) =

⇢

V,

⇢

{i, j} 2
✓

V

2

◆

: Wij > 0, i 6= j

��

, (2)

where V = {1, ..., N}. Thus, G(W ) is a graph on N nodes,
without self-loops, with edges between those nodes i and
j for which the entry Wij is positive. As W is symmetric,
G(W ) is undirected. We denote by Gt the induced graph of
the random matrix Wt, for t = 0, 1, . . ., i.e., Gt = G(Wt).
Intuitively, the graph Gt underlying Wt at some time t � 0

is the collection of all communication links that are active
at time t. Also, as Wt can assume realizations with different
underlying graphs, Gt is in general random. (Formally, Gt is
a random map from ⌦ to the set of all graphs on N vertices.)

Consider now the sequence of random graphs {Gt}t�0

.
Let G = {H

1

, . . . ,HM} be the minimal set of subgraphs of
⇣

V,
�V

2

�

⌘

(on the same set of vertices V )1 such that Gt(!) 2
G, for all ! and all t. Then, the induced graph Gt = G(Wt)

along the sequence {Wt}t�0

draw their realizations from G.

1As
�V

2

�

is a finite set, such a minimal set of subgraphs G exists.

Graph temporal dependence. We consider temporally cor-
related matrices Wt. We encode the temporal dependence
through random graphs Gt, by assuming that the process Gt

follows a Markov chain model. To each Hl, l = 1, ...,M ,
we associate a state (indexed by l) of a (finite state) Markov
chain; the corresponding M by M transition matrix we
denote by P .

Assumption 2 (Graph temporal dependence) There exist a
nonnegative matrix P 2 RM⇥M and a nonnegative vector
v 2 RM satisfying

PM
m=1

Plm = 1 for all l = 1, . . . ,M
and

PM
l=1

vl = 1, such that for all t and all l
0

, . . . , lt 2
{1, . . . ,M}
P (G0 = Hl

0

, G1 = Hl
1

, . . . , Gt = Hlt) = vl
0

Pl
0

l
1

· · · Plt�1

lt .

We assume in the sequel that v > 0

2. Examples of the model
are considered in Section IV.

B. Key objects

This subsection recalls the concepts from [7] that are our
main analytical tools in the computation of I .
Random supergraph �(s, t) and the error matrix

e

�(s, t).
For a collection of graphs H ✓ G, let �(H) denote the graph
that contains all edges from all graphs in H. That is, �(H) is
the minimal graph (i.e., the graph with the minimal number
of edges) that is a supergraph of every graph in H:

�(H) := (V,
[

G2H
E(G)), (3)

where E(G) denotes the set of edges of graph G.
We denote by �(s, t) the random graph that collects the

edges from all the graphs Gr that appeared from time r = t
to r = s, s > t, i.e.,

�(s, t) := �({Gs, Gs�1

, . . . , Gt}).
Denote �(s, t) := WsWs�1

· · ·Wt, and e

�(s, t) :=

�(s, t)�J , for s � t � 0. The norm of e�(s, t) characterizes
the distance of the product Ws · · ·Wt from the perfect
consensus matrix J and we call e�(s, t) the error matrix. We
have the following lemma that relates the supergraph �(s, t)
and the error matrix e

�(s, t). The proof of Lemma 1 can be
found in [7].

Lemma 1 For all s � t � 0,
�

�

�

e

�(s, t)
�

�

�

< 1 if and only
if �(s, t) is connected. Furthermore, if �(s, t) is connected,
then

�

�

�

e

�(s, t)
�

�

�


⇣

1� c�2(s�t+1)

⌘

1

2

, (4)

where c = 2(1 � cos

⇡
N ) is the Fiedler value (the second

smallest eigenvalue �F ) of the path graph on N vertices, i.e.,
the minimum of �

F

(L(G)) > 0 over all Laplacians L(G) of
connected graphs G on N vertices [10].

2The large deviation result from Section III holds also under a less
restrictive condition that the Markov chain can start in every initial (source)
communication class with positive probability. The result for this case is
omitted due to lack of space and will be pursued elsewhere.



Lemma 1 says that the norm of the error matrix drops
exactly at the times when the supergraph �(s, t) becomes
connected. This is an intuitive result, as it simply says that
there cannot be any improvement in the error until a network-
wide information exchange has occurred.

The event whose probability determines the rate I , as
we show in the proof of Theorem 4, is the event in which
the supergraph �(s, t) stays disconnected over a long time
interval. We compute this probability by relating it with the
concept of disconnected collection, which we introduce next.

Definition 2 A collection H ✓ G is a disconnected collection
on G if its supergraph �(H) is disconnected.

Thus, a disconnected collection is any collection of realizable
graphs such that the union of all the edges of its graphs yields
a disconnected graph. We also define the set of all possible
disconnected collections on G:

⇧(G) = {H ✓ G : H is a disconnected collection on G} .

Observation 3 If for some realization of the graph sequence
the supergraph �(s, t) is disconnected for some 0  t  s,
then there must exist H 2 ⇧(G) such that Gr 2 H, for all
t  r  s.

C. Statement of the main result

Theorem 4 Consider the sequence {Wt}t�0

of stochastic
symmetric matrices satisfying Assumptions 1 and 2. Then,
for any ✏ 2 (0, 1]

lim

k!+1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

= �I, (5)

where
I =

⇢ |log ⇢
max

| , if ⇧(G) 6= ;
+1, otherwise

, (6)

and ⇢
max

= maxH2⇧(G)

⇢ (PH).

III. PROOF OF THEOREM 4

This section proves Theorem 4: Subsection III-B proves
the large deviation lower bound, while Subsection III-C
proves the upper bound. Before the large deviation bounds,
Subsection III-A derives certain intermediate results on the
Markov chain temporal correlation model.

A. Intermediate results

The following lemma explains how to estimate the prob-
ability of the event that �(s, t) is disconnected using the
probability that the graph realizations remain in a certain
disconnected collection H 2 ⇧(G).

Lemma 5 For every H 2 ⇧(G) and every 0  t  s

P(Gr 2 H, t  r  s)  P(�(s, t) is disconnected)


X

H2⇧(G)

P(Gr 2 H, t  r  s). (7)

Proof: By Observation 3 we have

{�(s, t) is disconnec.} =

8

<

:

[

H2⇧(G)

{Gr 2 H, t  r  s}
9

=

;

.

(8)

Applying now the union bound to the probability of the
union of events in (8), the right hand side inequality in (7)
follows. The left hand side inequality follows by bounding
the probability of the union of events by the probability of
a single event from the union.

Lemma 6 For s > t � 0, S ✓ G and 1  l,m  M , if
P (Gt = Hl) > 0,

P (Gr 2 S, t + 1  r  s, Gs+1

= Hm|Gt = Hl)

= PlSP s�t�1

S PSm. (9)

We omit the proof of Lemma 6 for brevity. The lemma is a
simple result for Markov chains: if we start from the state
Hl at time t, end up in the state Hm at time s + 1, and
we restrict the trajectory (Gr, t + 1  r  s) to belong to
a subset of states S, then the corresponding probability is
determined by the submatrix PS .

Lemma 7 Let A 2 RN⇥N be a nonnegative matrix. For
every & > 0, there exists C& such that for all t � 1

⇢(A)

t  1

>At
1  C& (⇢(A) + &)t . (10)

Proof of Lemma 7 is omitted for brevity; the lemma essen-
tially follows from the simple relation kAtk

1

 1

>At
1 

NkAtk
1

and Gelfand’s formula [11].
Corollary 8 follows by combining the results of Lem-

mata 5-7.

Corollary 8 For any & > 0, there exists C& such that, for all
1  t  s and Hm such that P(Gt�1

= Hm) > 0,

P (�(s, t) is disconnected|Gt�1

= Hm)

 |⇧(G)|C&(⇢max

+ &)s�t.

Proof: Combining the results of Lemma 5 and
Lemma 6 we get

P (�(s, t) is disconnected|Gt�1

= Hm) 
X

H2⇧(G)

1

>P s�t
H 1,

(11)
where we used the simple bound PmHP s�t

H 1  1

>P s�t
H 1.

Now, by Lemma 7, for any & > 0 and H 2 ⇧(G) there exists
CH,& such that 1

>P s�t
H 1  CH,&(⇢(PH + &))s�t. Bounding

each term in the sum in (11) by C&(⇢max

+ &)s�t, where
C& = maxH2⇧(G)

CH,& , yields the claim.

We next prove Theorem 4 for the case when ⇧(G) 6= ;
by showing the upper and the lower large deviation bound:

lim inf

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

� log ⇢
max

(12)

lim sup

k!1

1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

 log ⇢
max

. (13)



We prove the lower bound (12) in Subsection III-B and the
upper bound (13) we prove in Subsection III-C. The proof
for the case when ⇧(G) = ; can be derived by using similar
arguments to the ones given in [7] (when ⇧(G) = ;) and is
omitted here.

B. Lower bound

The proof of the lower bound is based on the intuitive
fact that the norm of the error matrix will stay equal to 1

and never drop (and thus remain above ✏), if the sequence
of graphs Gt continues to be drawn in time from some
disconnected collection H 2 ⇧(G). By Lemma 6, the
probability of the event that the Markov chain reduces to
a subset of states S ✓ G is determined by the submatrix of
the transition matrix corresponding to this subset of states
S. Next lemma combines these two facts to derive a family
of lower bounds, indexed by H 2 ⇧(G), on the probability
of the event of interest.

Lemma 9 For any H 2 ⇧(G)

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

� v>HP k
H1. (14)

Proof: Using the result of Lemma 1, we have that for
any fixed realization of the sequence {Wt}t�0

and for any
k � 1 ke�(k, 0)k � 1 if and only if �(k, 0) is disconnected,
and so

P
⇣

ke�(k, 0)k � ✏
⌘

� P
⇣

ke�(k, 0)k � 1

⌘

= P (�(k, 0) is disconnected) .

Applying Lemma 5 for fixed H 2 ⇧(G) together with
Lemma 6 yields

P (�(k, 0) is disconnected)

� P (G
0

2 H, G
1

2 H, . . . , Gk 2 H) = v>HP k
H1.

Combining the result of Lemma 9 with Lemma 7, we get

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

� v
min

1

>P k
H1 � v

min

⇢k
(PH) ,

where v
min

= min

1lM vl > 0. Taking the log, dividing
by k, and taking the lim inf over k ! +1 yields

lim inf

k!1
1

k
log P

⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

� log ⇢ (PH) .

Finally, since the previous bound holds for arbitrary H 2
⇧(G), we obtain the best bound by finding the maximal
spectral radius ⇢ (PH) over all H 2 ⇧(G). This completes
the proof of the lower bound.
C. Upper bound

As we have seen in the previous subsection, to derive the
lower bound (12), we only had to consider the event that
�(k, 0) remains disconnected when k ! 1. This argument
is no longer applicable for the upper bound (13) and one has
to consider all possible realizations of the matrix sequence
that satisfy

�

�

�

e

�(k, 0)

�

�

�

� ✏. We handle the combinatorial

nature of the upper bound through the sequence of stopping
times Ti which we introduced in [7].
Sequence of stopping times. Define the sequence of stop-
ping times Ti, i = 1, 2, . . . by:

Ti = min{t � Ti�1

+ 1 : �(t, Ti�1

) is connected}, i � 1,

and T
0

= 0. The sequence {Ti}i�1

registers the times
along the graph sequence when the union graph becomes
connected, and, equivalently, when the norm of the error
matrix drops.

We also borrow from [7] the increasing sequence Mk

which counts the number of improvements along the graph
sequence. For fixed time k � 1, we define Mk to be
the number of improvements until time k, which can be
expressed through stopping times Ti by:

Mk = max {i � 0 : Ti  k} . (15)

The idea that we use to solve the upper bound is to
partition the probability space according to the number
of improvements Mk. Namely, for fixed ↵ 2 (0, 1) we
consider separately two disjoint events, {Mk > d↵ke} and
{Mk  d↵ke}, and apply the law of total probability:

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

= P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏, Mk > d↵ke
⌘

+ P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏, Mk  d↵ke
⌘

. (16)

We will show that, conditioned on the first event
{Mk > d↵ke}, our event of interest

n

�

�

�

e

�(k, 0)

�

�

�

� ✏
o

has
probability zero for sufficiently large k. In other words, we
will show that, if the number of improvements until time k
is on the order of k, then it is not possible that the norm of
the error matrix stays above any fixed number ✏ > 0 as k
increases, and thus the first term in (16) becomes firm zero
for k sufficiently large. This is formally stated in Lemma 10,
the proof of which can be found in [7]3. We only remark
here that the key property from which this result follows is
Lemma 1.

Lemma 10 For every ↵ 2 (0, 1), there exists k
0

= k
0

(↵, ✏)
such that for every k � k

0

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏, Mk > d↵ke
⌘

= 0.

Thus, the first term in (16) vanishes for k � k
0

, which further
yields for k � k

0

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

= P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏, Mk  d↵ke
⌘

 P (Mk  d↵ke) .

We now focus on computing the probability of the event
{Mk  d↵ke}. By definition of Mk, this event is the same
as the event

�

Td↵ke+1

> k
 

, implying that, for k � k
0

,

P
⇣

�

�

�

e

�(k, 0)

�

�

�

� ✏
⌘

 P
�

Td↵ke+1

> k
�

. (17)

3Although reference [7] considers the case of independent and identically
distributed random matrices Wt, the result of Lemma 10 holds for arbitrary
random model.



We give without proof, which is left for a companion journal
paper, the following lemma on the asymptotic behavior of
the probability in the right hand side of (17). We remark
here that the proof can be derived from the exponential
Markov inequality and from the property that the increments
of the stopping times Ti+1

� Ti are independent given
realizations of random graphs GTi (at the stopping times
Ti), i = 1, ..., d↵ke.

Lemma 11 For every & > 0 and � < | log(⇢
max

+ &)|
1

k
log P

�

Td↵ke+1

> k
�  d↵ke+ 1

k

✓

log(|G||⇧(G)|C&) +

|log (⇢
max

+ &)| + log

e�(|log(⇢
max

+&)|��)

1� e�(|log(⇢
max

+&)|��)

◆

� � (18)

where C& is given in Corollary 8.

Consider now eq. (18) for fixed & > 0. Taking the limit
k ! +1, and then inf over ↵ > 0, yields

inf

↵>0

lim

k!+1
1

k
log P

�

Td↵ke+1

> k
�  ��.

Since the last inequality holds for all � < |log (⇢
max

+ &)|
and every & > 0, we have

inf

↵>0

lim

k!+1
1

k
log P

�

Td↵ke+1

> k
�  inf

&>0

inf

�<|log(⇢
max

+&)|
��

= � |log ⇢
max

| .
This completes the proof of the upper bound (14) and the
proof of Theorem 4.

IV. EXAMPLES

In this section, we give two instances for the Markov
chain model described in Section II and we compute the
rate I for each of the given examples. The first example is a
gossip-type averaging protocol with Markov dependencies,
similar to the protocol in [8] (except that protocol in [8]
corresponds to directed graphs). One particular instance of
this protocol is a random walk of a token along the edges
of a given graph, according to a given transition probability
matrix. In the second example, we consider a network with
temporal correlations of the link failures, where we model the
correlations by a Markov chain. We detail these two instances
of the Markov chain model in the next two subsections.

A. Gossip with Markov dependencies

Let G = (V,E) be a connected graph on N vertices.
We assume that at each time t � 0 only one link of G
can be active; if e = {u, v} 2 E is active at time t, then
Wt = I� 1

2

(eu�ev)(eu�ev)

>. The sequence of active one
link graphs Gt, t � 0 is generated according to a Markov
chain:

P(G
0

= (V, e)) = ve, for e 2 E

P(Gt+1

= (V, f)|Gt = (V, e)) = Pef , for e, f 2 E,

where ve > 0, Pef � 0,
P

f2E Pef = 1, for each e 2 E,
and

P

e2E ve = 1. The set of states of the Markov chain is

therefore
GGossip

= {(V, e) : e 2 E}
and there are M = |E| states. A disconnected collection on
GGossip is of the form {(V, e) : e 2 E \ F}, for some set of
edges F that disconnects G. Thus, the set of all disconnected
collections on GGossip is

⇧(GGossip

) = {HF : F disconnects G} .

where HF =:= {(V, e) : e 2 E \ F}, for F ✓ E. By
Theorem 4, we get the formula for ⇢

max

:

⇢
max

= max

F✓E: F disconnects G
⇢(PHF ).

Computing ⇢
max

for this model is difficult in general, as it
involves computing the spectral radius for all submatrices
PHF of the transition matrix P associated with discon-
nected collections HF . A simple approximation for ⇢

max

can be obtained using the row-sum based lower bound
for the spectral radius. We explain this next. For any
fixed disconnected collection HF , we denote by c(PHF )

the minimal row sum of its associated submatrix PHF :
c(PHF ) = mini=1,...,|HF |

P|HF |
j=1

[PHF ]ij We then have, for
any HF [11]: c(PHF )  ⇢(PHF ), implying

max

F✓E: F disconnects G
c(PHF )  ⇢

max

. (19)

In particular, for gossip on a tree, we get a very simple lower
bound on ⇢

max

that involves no computations (it involves
only O(M2

) comparisons of certain entries of the matrix
P .) When G = (V,E) is a tree, removal of any edge f 2 E
disconnects G. Also, for any F 0 ✓ F ✓ E, the matrix PHF

is a submatrix of PHF 0 , and so c(PHF )  c(PHF 0 ), i.e., the
minimal row sum can only grow as the edges are removed
from F . This implies that we can decrease the space of search
in (19) to the set of edges of G:

max

F✓E: F disconnects G
c(PHF ) = max

f2E
c(PHf )  ⇢

max

. (20)

Now, for any fixed f 2 E, since P is stochastic, it holds that
c(PHf ) = 1�maxe2E\f Pef ; that is, to compute the minimal
row sum of PHf , we only have to find the maximal entry
of the column P f , with entry Pff excluded. This finally
implies:

⇢
max

� max

f2E
1� max

e2E\f
Pef = 1�min

f2E
max

e2E\f
Pef . (21)

We can see an interesting phenomenon in the lower bound
on ⇢

max

in eq. (21): when maxe2E\f Pef is high for every
link e, that is, when the gossip token is more likely to
jump to a different link f 6= e, rather than to stay on the
same link e (Pef >> Pee, for some f 6= e), the bound in
eq. (21) has a small value. Assuming that ⇢

max

follows the
tendency of its lower bound, we obtain a high rate I for
this case of “negative correlations”. This is in accordance
with the intuition: if every link has a low probability Pee to
be repeated (repeating a link is a wasteful transmission in
gossip), the convergence of gossip is faster and thus the rate
I is higher.



B. Link failures with temporal correlations

Let G = (V,E) be a connected graph on N vertices. For
each e 2 E and t � 0, let Ye,t 2 {0, 1} be a random variable
that models the occurrence of the link e at time t: if Ye,t = 1

then e is online at time t, and e is offline otherwise. For
each link e, we assume that the failures of e occur in time
according to a Markov chain. Also, the failures of different
links are independent. More precisely, we assume that Ye,t

and Yf,s are independent for all t, s � 0 if e 6= f , and, for
e 2 E and t � 1:

P(Ye,t+1

= 1|Ye,t = 1) = pe,

P(Ye,t+1

= 0|Ye,t = 0) = qe,

P(Ye,0 = 1) = ve, for some pe, qe, ve 2 (0, 1). In other
words, the joint state of all the links in the network evolves
according to the |E| independent Markov chains, where each
Markov chain determines the state of one link. Given the
network realization Gt, the averaging matrix Wt can be
chosen, e.g., as the Metropolis or an equal weight matrix [1].

We compute the rate I for this model, following the
reasoning in the proof of Theorem 4, and exploiting the
decoupled single-link Markov chains. We first find the set of
all network realizations at time t. Due to the independence in
space of the link failures, and the fact that each link is on/off
at time t with positive probability, the set of all network
realizations at time t is the set of all subgraphs of G:

GLink fail.
= {(V,E0) : E0 ✓ E} .

Consider now a fixed disconnected collection H on GLink fail.

and let F be �(H) = E \ F ; note that F disconnects G.
Then H is necessarily a subset of the (bigger) collection
HF = {(V,E0) : E0 ✓ E \ F} and thus P(Gt 2 H, 0  t 
k)  P(Gt 2 HF , 0  t  k). The latter implies that, in
order to find the most likely H that determines the rate I ,
we can search over the smaller set {HF : F disconnects G}.
Thus, we focus on the right hand side of the latter inequality:

P(Gt 2 HF , 0  t  k) = P(Ye,t = 0, for e 2 F, 0  t  k)

=

Y

e2F

P(Ye,t = 0, 0  t  k) =

Y

e2F

(1� ve)q
k
e ; (22)

the second equality in (22) follows by the independence of
failures of different links. The rate at which the probability
in (22) decays is equal to

P

e2F | log qe|, and thus the rate
I equals

I = I({qe}) = min

F✓E: F disconnects G

X

e2F

| log qe|. (23)

Optimization problem in (23) is the minimum cut prob-
lem [12], with the cost of edge e 2 E equal to | log qe|.
(Recall that qe is the probability that the link e stays
offline, given that in the previous time it was also offline.)
Problem (23) is a convex problem, and there are efficient
numerical algorithms to solve it, e.g., [12].

To get some intuition on the effect of temporal correla-
tions, we let q = qe = pe, for all e 2 E, i.e., all the links

have the same symmetric 2⇥ 2 transition matrix. Note that
q = 1/2 corresponds to the temporally uncorrelated link
failures. When q < 1/2, a link is more likely to change its
state (on/off) with respect to its state in the previous time
(“negative correlation”) than to maintain it. From (23), the
rate I(q) > I(1/2) for q < 1/2. We conclude that a “neg-
ative correlation” increases (improves) the rate. Likewise, a
“positive correlation” (q > 1/2) decreases (degrades) the
rate.

V. CONCLUSION

We studied the products WkWk�1

· · ·W
0

of temporally
dependent random stochastic matrices. We modeled the tem-
poral dependence through a Markov chain with a transition
matrix P , whose set od states is the set of all possible graphs
that support the matrices Wk. For this model, we calculated
the large deviations rate I for convergence in probability
of the product WkWk�1

· · ·W
0

. We found that the rate I
is determined by the spectral radii of the submatrices of
P associated with the sub-collections of graphs that are
disconnected in union. We supported our analysis with two
example models, namely token-based averaging protocol and
temporally dependent link failures. The examples showed
that the “negative temporal correlations” of the links binary
states (being on or off) increase (improve) the rate I with
respect to the temporally independent links.
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