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Abstract— We consider the tradeoffs between sensing

and communication in a consensus+innovations distributed

detection problem when the local communications among

agents are noisy. Intuitively, we can expect that the error

performance of the distributed detector is affected by both

the sensing noise and the noise corrupting the communica-

tion among agents in the network. Too little communication

(cooperation) and the distributed detector error perfor-

mance will be dominated by the sensing noise. Too much

communication and the detector error performance is dom-

inated by the communication noise. We make this tradeoff

precise through a large deviations analysis, i.e., by studying

the exponential decay rate of the probability of error of the

consensus+innovations distributed detector at each agent.

Under a mild assumption of network connectedness, we

show: 1) the weight sequences affecting the consensus and

innovations potentials in the distributed detector need to be

carefully designed for the error probability at every agent

detector to decay exponentially fast; 2) the network exhibits

a phase transition with respect to the communication

noise power. Below a threshold on the communication

noise power, cooperation (communication) among agents

improves the error detection performance; above thresh-

old, inter-agent communication does not enhance the error

detection performance.

I. INTRODUCTION

We study the large deviations performance of con-
sensus+innovations distributed detection under commu-
nication noise. We consider N agents, connected in
a generic network; agents sense the environment and
communicate over noisy links to detect the event of
interest. The agents employ a consensus+innovations
distributed detector, which operates as follows. At a time
k, agent i first communicates its decision variable to its
neighbors, and receives from neighbors their decision
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variables. This inter-agent communication is corrupted
by an additive communication noise with certain vari-
ance. Upon reception of the neighbors’ noisy copies
of their decision variables, agent i makes a weighted

average of its own and the neighbors’ decision variables,
and incorporates the log-likelihood ratio from its newly
acquired measurement.

In this paper, we ask the following two questions.
First, can we design the time varying consensus weights
so that, at each agent i, detection error probability decays
to zero exponentially fast ⇠ e�kCi,coop (with Ci,coop

strictly positive), even if all except at least one agent
cannot detect the event of interest in isolation? Second,
under what conditions do we have a communication
payoff, so that the worst agent under communication
performs better than the best agent without communi-
cation? More precisely, suppose that agent i has the
detection error’s exponential decay rate Ci,isol when in
isolation, and Ci,coop with the consensus+innovations
detector. Then, we ask when is mini=1,...,N Ci,coop >
maxi=1,...,N Ci,isol? Regarding the first question, we
answer it affirmatively. We show that, with the weights
of type ↵k = b

0

/(a + k), where a > 0, and b
0

> 0 is
greater than a certain threshold, all agents i achieve a
positive decay rate Ci,coop, irrespective of the communi-
cation noise power. With respect to the second question,
we consider equal agents (with equal positive Ci,isol’s),
and we show that a phase transition occurs: below a
threshold on the communication noise power, agents
achieve a communication payoff. Further, we quantify
this threshold in terms of the system parameters –
sensing signal and noise, and the network’s connectivity.

We further show by a numerical example that the
agents’ exponential decay rates Ci,coop’s significantly
depend on the choice of the parameter b

0

. We also
analytically demonstrate how the optimal choice of
b
0

balances two opposing effects: the increase of b
0

increases the “information flow” from the neighbors
(positive effect), but it also injects more communication
noise in the agent i’s decision variable (negative effect).

We end the introduction with a brief literature re-
view on the consensus+innovations distributed detec-
tion. References [1], [2], [3] construct distributed de-
tectors based on the LMS and RLS based diffusion



distributed estimators, e.g., [4]. Reference [5] proposes a
distributed algorithm for the change detection problem.
Reference [6] proposes and analyzes the running con-
sensus distributed detector; running consensus is further
analyzed in, e.g., [7], [8]. All the references above as-
sume no additive communication noise, and either static
or failing underlying network’s links. In contrast, we
study here, and also in a companion journal paper [9],
consensus+innovations distributed detection under addi-
tive communication noise (and no link failures). Refer-
ence [10] also allows for additive communication noise
(and no link failures). Unlike [10], where the detector
proposed therein has a sub-exponential decay of the error
probability under unequal agents (unequal Ci,isol’s), the
distributed detector here achieves an exponential decay
of the error probability, at each agent i.

The remainder of the paper is organized as follows.
The next paragraph introduces notation. Section II de-
scribes the problem model. Section III presents the
consensus+innovations distributed detector. Section IV
presents our main results, by addressing our first ques-
tion – exponential decay of the error probability at each
agent, and our second question – communication payoff.
Section IV also illustrates by a numerical example the
performance of the distributed detector. Finally, Sec-
tion V concludes the paper.

Throughout, we adopt the following notation. We use
lower and upper boldface letters to represent vectors
and matrices; Aij or [A]ij are the (i, j)-th entry of
a matrix A; ai or [a]i are the i-th entry of a vector
a; A

> and A

�1 are the transpose and inverse of A;
A � 0 means that the matrix A is positive definite; I, 1,
and ei are the identity matrix, the column vector with
unit entries, and the i-th column of I; J := (1/N)11

>

is the N ⇥ N ideal averaging matrix; k · k = k · k
2

is the Euclidean (respectively, spectral) norm; �i(·) the
i-th smallest eigenvalue; ⌦ the Kronecker product of
matrices; Diag (a) the diagonal matrix with the diag-
onal equal to the vector a; a = Vec(A) is the vector
that stacks columns of A, and the “inverse” operation
is A = Vec

�1

(a); |A| is the cardinality of A; E [·],
Var(·), Cov(·), and P (·) are the expected value, the
variance, the covariance, and probability operators.

II. PROBLEM MODEL

Subsection II-A introduces the sensing and commu-
nication models that we assume, and Subsection II-B
presents the consensus+innovations distributed detector.

Sensing model. We consider the binary hypothesis
test H

1

versus H
0

. Each agent i, at each time k, obtains
a scalar measurement yi(k), modeled as follows:

H
1

: yi(k) = mi + ⇣i(k) (1)
H

0

: yi(k) = ⇣i(k). (2)

Here, mi is a constant signal, and ⇣i(k) is a zero mean
additive sensing noise. The prior probabilities are 0 <
P (H

1

), P (H
0

) < 1. Introduce the following compact
notation:

y(k) = (y
1

(k), · · · , yN (k))> (3)

m = (m
1

, · · · ,mN )

>

⇣(k) = (⇣
1

(k), · · · , ⇣N (k))> .

We assume the following sensing model.

Assumption 1 (Sensing model) The sensing noise
{⇣(k)} is a zero mean i.i.d. Gaussian sequence (possibly
spatially correlated) with Cov (⇣(k)) = S⇣ � 0.
Furthermore, there exists an agent i such that mi 6= 0.

Note that certain entries mj may be equal zero.
Communication graph. Agents i 2 V := {1, ..., N}

are situated in a graph G = (V, E), where E is the set
of undirected links. We assume the following.

Assumption 2 (Communication graph) Graph G is con-
nected, undirected, and simple (no self/multiple links).

Introduce also the N ⇥ N symmetric graph Laplacian
matrix L: [L]ij = �1, if {i, j} 2 E , i 6= j; [L]ij = 0

if {i, j} /2 E , i 6= j; and [L]ii = |Oi|, where Oi is the
agent i’s neighborhood set Oi := {j : {i, j} 2 E , j 6=
i}.

Communication noise. With our consen-
sus+innovations distributed detector, each agent i,
at each time k, receives its neighbor j’s decision
variable xj(k) (j 2 Oi), corrupted by additive

communication noise:

zij(k) = xj(k) + ⌫ij(k). (4)

Here ⌫ij(k) is the communication noise. Similarly, agent
j 2 Oi at time k receives from agent i zji(k) = xi(k)+
⌫ji(k), where ⌫ij(k) and ⌫ji(k) are different random
variables. Note that, for each k, there is one distinct
variable ⌫ij(k) per each directed pair (i, j) such that
{i, j} 2 E . Also, introduce:

vi(k) =
X

j2Oi

⌫ij(k), i = 1, · · · , N (5)

v(k) = (v
1

(k), · · · , vN (k))> .

We make the following assumption on the communica-
tion noise.

Assumption 3 (Communication noise) The communica-
tion noise {v(k)} is a Gaussian, temporally i.i.d. se-
quence, with Cov(v(k)) =: Sv � 0. Furthermore,
vi(k) and ⇣j(s) are mutually independent over all
i, j, k, s.



III. CONSENSUS+INNOVATIONS DISTRIBUTED
DETECTOR

We now present our consensus+innovations dis-
tributed detector. The detector has a form similar to that
of the running consensus detector [6]. The difference
is in the time varying consensus weights; the choice
of the weights will be specified in Subsection III-A.
Specifically, at each time k, each agent i thresholds its
decision variable against the zero threshold to decide
between the two hypothesis:

xi(k)
H

1

?
H

0

0. (6)

Agent i updates recursively the decision variable xi(k)
through the following rule:

xi(k + 1) =

k

k + 1

(1� di↵k)xi(k) (7)

+

k

k + 1

↵k

X

j2Oi

(xj(k) + ⌫ij(k)) +
1

k + 1

⌘i(k + 1),

for k = 1, 2, ..., with the initialization xi(1) = ⌘i(1).
Here, ↵k is the time varying consensus weight, specified
in Subsection III-A, and ⌘i(t) is the local innovation:

⌘i(t) =
h
S

�1

⇣ m

i

i

⇣
yi(t)�

mi

2

⌘
. (8)

Note that
PN

i=1

⌘i(t) = m

>
S

�1

⇣

�
y(t)� m

2

�
– the

(hypothetical) log likelihood ratio based on the sample
from all agents y(t). Quantity ⌘i(t) is an affine function
of agent i’s locally available measurement yi(t). To
calculate ⌘i(t), agent i needs the statistics

h
S

�1

⇣ m

i

i
and

mi. We assume that these are acquired in the network
training period.

Matrix format. We re-write (7) in matrix format.
Define the decision vector x(k), the innovations vector
⌘(k), and the weight matrix W(k):

x(k) = (x
1

(k), · · · , xN (k))> (9)
⌘(k) = (⌘

1

(k), ..., ⌘N (k))>

W(k) = I� ↵kL.

Innovations’ statistics. For subsequent analysis, we
need the first and second moments of ⌘(k); it can be
shown that these equal:

E [⌘(k)|H
1

] = �E [⌘(k)|H
0

] := m⌘ (10)

=

1

2

Diag

�
S⇣

�1

m

�
m

Cov(⌘(k)) := S⌘ (11)
= Diag

�
S⇣

�1

m

�
S⇣ Diag

�
S⇣

�1

m

�
.

IV. MAIN RESULTS

Subsection III-A addresses our first question: Can
we design the weights ↵k in (7) such that each agent

achieves an exponential decay of the error probability.
Subsection III-B considers equal agents and addresses
the second question: When does the communication pay
off?

A. Exponential decay of the error probability

In this subsection, we design the weights ↵k in (7),
so that each agent achieves an exponential decay of the
error probability. We first define formally the exponential
decay rate. Consider P e

i,coop(k) – the (Bayes) error
probability with detector (7) at time k and agent i.
We define the agent i’s exponential decay of the error
probability by:

0  Ci,coop := lim

k!1
�1

k
logP e

i,coop(k).

It can be shown that the above limit exists. Further, if
Ci,coop = 0, then detection error probability either stays
non zero, or decays to zero slower than exponentially.
The next Theorem finds exactly Ci,coop, for all agents i.
(For a proof of the Theorem, see [9].)

Theorem 1 (Exponential decay rate) Consider the con-
sensus+innovations distributed detector in (7) under As-
sumptions 1–3. Set the weights ↵k to:

↵k =

b
0

a+ k
, k = 1, 2, ..., (12)

where b
0

, a > 0. Then:
(1) For every agent i,

Ci,coop =

1

2

[µ1]

2,+
i

[⌃1]ii
,

where z2,+ = (max(z, 0))2 and:

µ1 = lim

k!1
E [x(k)|H

1

] = (I+ b
0

L)

�1

m⌘

⌃1 = lim

k!1
kCov (x(k))

= Vec

�1{(I+ b
0

(L⌦ I+ I⌦L))

�1

⇥
�
Vec (S⌘) + b2

0

Vec (Sv)
�
}.

(2) If the parameters b
0

, a satisfy:

b
0

> max

8
<

:0,

2Nkm⌘k
m>S�1

⇣ m
� 1

�
2

(L)

9
=

;

a > b
0

�N (L),

then Ci,coop > 0, 8i, i.e., each agent achieves the
exponential decay rate.

Theorem 1 finds the exponential decay rate Ci,coop � 0

in terms of the first and second moments of the vector
decision variable x(k). Furthermore, the Theorem says
that, if b

0

and a are above certain thresholds, then



Ci,coop is strictly positive, for all i, and the exponential
decay is achieved.

Numerical demonstration. We now illustrate by a
numerical example that the weight choice ↵k in (12)
leads to an exponential decay at every agent under
communication noise. We consider a geometric graph
with N = 10 agents deployed uniformly randomly over
a 2D unit square; the agent whose distance is less than a
radius are connected by an edge. The resulting graph is
connected and has 20 undirected links. The sensing mi

signal is generated randomly. Each entry is generated
independently; for each entry i, we toss an unfair coin
with Heads probability 0.2; if Heads come out, mi from
the uniform distribution over [0, 1]; else, mi is set to
zero. The resulting mi has 3 nonzero and 7 zero entries,
and kmk ⇡ 0.84. The sensing noise is zero mean
Gaussian, spatio-temporally independent; the covariance
S⇣ is diagonal; each entry [S⇣ ]ii is generated randomly
form the uniform distribution on [0, 6]. The resulting
S⇣ has the norm kS⇣k ⇡ 5.50. With each directed
pair (i, j) ({i, j} 2 E), we generate the communication
noise to be spatio-temporally independent; the noise
⌫ij(k) is Gaussian, with zero mean and variance 0.04;
kSvk = 0.24. We set b

0

= 5, and a = 36.73. We
estimate the detection error probability at each agent via
8,000 Monte Carlo runs per each hypothesis. Figure 1
plots the estimated detection error probability versus
time steps k for each agent i in a semi-log scale. With
each agent i, we can observe a straight line decay, which
indicates an exponential decay of the error probability.
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Fig. 1. Monte Carlo estimate of the detection error probability versus
time step k for each agent i in the network.

B. Communication payoff

We now address our second question – whether
communication (cooperation) through the consen-

sus+innovations detector pays off. We consider the iden-
tical agents case, with mi = mj =: m 6= 0, for all i 6= j,
and S⇣ = �2

⇣I. The case of nonidentical agents is treated
numerically in [9].

We first define formally the communication payoff.
Consider the scenario where agent i does not communi-
cate with other agents; rather, agent i performs detection
based only on its own measurements yi(1), yi(2), ... It
is well known (see, e.g., [9]) that, under identical agents
with mi 6= 0, Gaussian sensing noise, and the local
log-likelihood ratio detector, detection error probability
P e
i,isol(k) has the following exponential decay rate:

Ci,isol := lim

k!1
�1

k
logP e

i,isol(k) =
m2

8�2

⇣

> 0.

Denote, as before, by Ci,coop the exponential decay rate
at agent i with the distributed detector (7). We say that
agent i achieves a communication payoff if:

Ci,coop > Ci,isol.

We have the following Theorem. The Theorem can be
derived from Corollary 4 in [9].

Theorem 2 (Communication payoff) Consider the con-
sensus+innovations distributed detector in (7) under As-
sumptions 1–3, with the weights ↵k as in (12). Further,
suppose that the agents are identical, with the sensing
signal m 6= 0, and the sensing variance �2

⇣ 6= 0. Suppose
that:

kSvk  1

8

✓
N � 1

2N

◆
3 m2

�2

⇣

(�
2

(L))

2 .

Then, for b
0

set to

b•
0

=

1

(�
2

(L))

1/3
2

1/3

 
m2

�2

⇣kSvk

!
1/3

,

each agent i achieves a communication payoff.

Theorem 2 says that there is a threshold on the com-
munication noise power below which each agent is
guaranteed to achieve a communication payoff. The
Theorem is intuitive. For example, when the sensing
quality is better (m

2

�2

⇣
is higher), the communication noise

payoff threshold increases; the latter means that better
sensing quality can sustain more communication noise.

V. CONCLUSION

We studied consensus+innovations distributed detec-
tion under noisy communication links. We addressed
two fundamental questions. First, can we design the
time-varying consensus weights, so that each agent i
achieves an exponential decay of the detection error
probability, even when almost all (except at least one)



agent(s) cannot detect the event of interest in isolation?
Second, we asked when do we have a communication
payoff, i.e., when is the worst agent under commu-
nication better than the best agent without communi-
cation? For the first question, we showed that each
agent achieves a strictly positive exponential decay when
the consensus weights are set to b

0

/(a + k), with b
0

larger than a certain threshold. For the second question,
we quantified a communication noise power threshold
below which agents achieve a communication payoff.
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