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Important: The homework is due April, 28.

Homework 5

Instructions: read sections 5.1 and 5.2 of [1].

Problem A. (Distance between polyhedrons) Let P1 = {x : A1x ≤ b1} and P2 = {x : A2x ≤ b2} be two
given non-empty polyhedrons, with Ai ∈ Rm×n and bi ∈ Rm for i = 1, 2. The distance between
the polyhedrons, denoted d(P1, P2), is the optimal value of the optimization problem

minimize ‖x1 − x2‖
subject to A1x1 ≤ b1

A2x2 ≤ b2,

(1)

with (x1, x2) being the optimization variable. In this problem, we derive an alternative represen-
tation for d(P1, P2) via duality.

(a) Let s ∈ Rn be given. Show that

inf
{
‖x‖ − s>x : x ∈ Rn

}
=

{
0 , if ‖s‖ ≤ 1
−∞ , if ‖s‖ > 1.

Hint: the Cauchy-Schwartz inequality is useful.

(b) Obtaining the dual problem of (1) might be challenging (give it a try!). Here is an interesting
trick: consider the equivalent problem

minimize ‖y‖
subject to y = x1 − x2

A1x1 ≤ b1
A2x2 ≤ b2,

(2)

with optimization variable (y, x1, x2). The point is that the variables x1 and x2 are no longer
coupled in the objective; this will facilitate taking the dual. Obtain the dual of (2), simplify
it, and show that it is equivalent to

maximize −µ>1 b1 − µ>2 b2
subject to A>1 µ1 +A>2 µ2 = 0∥∥A>1 µ1

∥∥ ≤ 1,
∥∥A>2 µ2

∥∥ ≤ 1
µ1, µ2 ≥ 0.

(3)

Side remark: We could have dropped one of the inequalities
∥∥A>i µi

∥∥ ≤ 1 in (3), since the
first constraint makes it redundant. But this would make the problem less symmetric and,
therefore, not so beautiful.

(c) Invoke one of the strong duality theorems from the lecture slides (mention which one) to prove
that the optimal value of (2) (hence, the optimal value of (1)) is equal to the optimal value
of (3).

Side remark: The representation in (3) has many applications. For example, we see that
d(P1, P2) is a convex function of (b1, b2); indeed, the equality

d(P1, P2) = sup
{
−µ>1 b1 − µ>2 b2 : A>1 µ1 +A>2 µ2 = 0,

∥∥A>i µi

∥∥ ≤ 1, µi ≥ 0, i = 1, 2
}



expresses d(P1, P2) has the pointwise supremum of convex functions (in fact, affine) of (b1, b2).
Convexity of d(P1, P2) with respect to (b1, b2) can also be established from (1), but (3) makes
it really obvious. As another application, suppose you computed d(P1, P2) by solving (3). Let
µ?
1 and µ?

2 be the solution. Now, we change slightly the bi’s by adding a small perturbation,

i.e., consider b̂i = bi + δi, for small δi; we want to compute d̂(P1, P2), the distance between

the polyhedrons corresponding to the novel b̂i’s. We may re-solve (3) to get the answer.
However, there is a computationally cheap, approximate answer: pretend that µ?

1 and µ?
2 are

also the solution of the perturbed problem. Plugging them into (3), yields the approximation

d̂(P1, P2) ' d(P1, P2)− (µ?
1)>δ1 − (µ?

2)>δ2. (This heuristic argument is worth to be revisited
once you learn about subgradients which, unfortunately, falls outside of the scope of this
course.)
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