Nonlinear Optimization (18799 B, PP) IST-CMU PhD course Spring 2013 Instructor: jxavier@isr.ist.utl.pt TAs: augustos@andrew.cmu.edu, ric.s.cabral@gmail.com

Important: The homework is due April, 19.

Homework 4

Instructions: read section 4.6 of [1]. Solve **one** problem from the list below. If you solve two, we will pick the one with best score.

Problem A. (Optimal covariance design) Consider the problem of estimating the parameter $\theta \in \mathbb{R}^m$ from the measurement $y = A\theta + w$, where $A \in \mathbb{R}^{n \times m}$ is a full column-rank matrix, and $w \sim \mathcal{N}(0, R)$ denotes zero-mean Gaussian noise. The matrix A and the noise covariance matrix R (assumed positive definite) are known. The minimum variance estimator is given by $\hat{\theta} = (A^{\top}R^{-1}A)^{-1}A^{\top}R^{-1}y$, and leads to the mean-square error

$$MSE(R) = \mathbb{E}\left(\left\|\widehat{\theta} - \theta\right\|^{2}\right) = tr\left(\left(A^{\top}R^{-1}A\right)^{-1}\right)$$

Now, suppose that y is the output of a channel activated by a malicious eavesdropper that is trying to discover your "message" θ . (That is, there is also a legitimate channel, say, $z = B\theta + v$ with $v \sim \mathcal{N}(0, S)$, but this is of no concern to us in this problem.) Assume that you can tweak some system parameters and control the covariance R; more precisely, assume that you can choose R from the set

$$\mathcal{R} = \left\{ R \in \mathbb{R}^{n \times n} : \|r_i - c_i\| \le \rho_i, \text{ for } i = 1, \dots, n \right\}.$$

Here, $r_i \in \mathbb{R}^i$ denotes the *i*th truncated column of R,

$$r_i = \begin{bmatrix} R_{1i} \\ R_{2i} \\ \vdots \\ R_{ii} \end{bmatrix}, \quad \text{for } i = 1, \dots, n.$$

The vectors $c_i \in \mathbb{R}^i$ and the scalars $\rho_i > 0$ are given. The symbol R_{ij} denotes the (i, j)th entry of R. In words, you can control the diagonal of R and all entries above it (hence, by symmetry, the whole R). Assume that all $R \in \mathcal{R}$ are positive-definite matrices.

We want to find the covariance matrix R from the set \mathcal{R} that maximizes the mean-square error of the eavesdropper,

maximize
$$\operatorname{tr}\left(\left(A^{\top}R^{-1}A\right)^{-1}\right)$$
 (1)
subject to $R \in \mathcal{R}$.

Formulate (1) as a SDP.

Hint: learn about Schur complements.

Problem B. (A simple SDP) Consider the subset of $n \times m$ matrices

 $\mathcal{A} = \{A : ||a_i - c_i|| \le R_i, \text{ for } i = 1, \dots, n\}.$

Here, a_i denotes the *i*th column of A. The vectors $c_i \in \mathbb{R}^n$ and the scalars $R_i > 0$ are given. Let B be a given $n \times m$ matrix with full column-rank. Assume that $A^{\top}B + B^{\top}A$ is positive definite for all $A \in \mathcal{A}$. We want to solve

minimize
$$\operatorname{tr}\left(A\left(I_m + B^{\top}A + A^{\top}B\right)^{-1}A^{\top}\right)$$
 (2)
subject to $A \in \mathcal{A}$.

The symbol I_m denotes the $m \times m$ identity matrix. Formulate (2) as a SDP.

References

[1] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.