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Important: The homework is due March, 15.

Homework 2

Instructions: read sections 3.1, 3.2, 3.3, and 3.5 of [1].

Problem A. (Convex functions)

(a) Let f : Rn → R, f(x) = x>Ax + b>x + c, where A ∈ Rn×n, b ∈ Rn, and c ∈ R are
given. Moreover, the following property holds:

x>Ax ≥ 0, for all x ∈ Rn.

Note that we are not assuming that A is a symmetric matrix. Show that f is a convex
function.

(b) Let C ⊂ Rn be a closed convex set containing the origin as an interior point. The
function f : Rn → R defined by

f(x) = inf {t > 0 : x ∈ tC}

is called the gauge of C. Show that f is a convex function.

Hint : start by showing that f is positively homogeneous, i.e., f (αx) = αf (x), for
α ≥ 0 and x ∈ Rn; then, prove that f is subadditive, i.e., f (x+ y) ≤ f(x) + f(y), for
x, y ∈ Rn.

(c) Let g : Rn → R be a convex, continuous function. Show that the function f : R++ → R

f(x) = inf {g(y) : ‖y‖ ≤ x} ,

is convex.

Hint : use Weierstrass’ extreme value theorem; it states that a continuous function
attains its infimum over any compact (closed, bounded) set.

A side note: the assumption on continuity of g is actually superfluous, since any finite-
valued convex function on Rn is automatically continuous.

(d) Let a ∈ Rn. Show that the function f : Sn++ → R,

f(X) = a>X−1a,

is convex.

(e) Let A ∈ Sn+. Show that the function f : Sn++ → R,

f(X) = exp
(
tr
(
X−1A

))
,

is convex.

Hint : use part (d) and the fact that the matrix A can be written as A = BB> for some
B ∈ Rn×n.



Problem B. (Projections)

(a) Let C and D be closed, convex subsets of Rn with non-empty intersection. Is it true
that pC∩D(x) = pC (pD(x)) for any x? In words, can we find the projection of a given
x ∈ Rn onto the intersection C ∩D by first projecting onto D, and then onto C? You
should either prove the result, or find a counter-example.

(b) Consider the polyhedron P =
{

(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1
}

. The set

C =
{
x ∈ R2 : pP (x) = (0, 1)

}
denotes the set of points whose projection onto P

is (0, 1). Make a sketch of both P and C.

(c) Consider the set of monotonically non-decreasing signals of length n, i.e.,

K = {(x1, . . . , xn) ∈ Rn : x1 ≤ x2 ≤ · · · ≤ xn} .

Note that K is a closed, convex cone. Let C denote the set of points whose projection
onto K is the origin. Show that

C = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0 and xi + · · ·+ xn ≤ 0 for i = 2, . . . , n} .

Problem C. (Perron’s theorem)

(a) Let x = (x1, . . . , xn) be given, and let m = min{x1, . . . , xn} and M = max{x1, . . . , xn}.
Assume that m < M , that is, the vector x contains at least two distinct coordinates.
Let λi > 0 for i = 1, . . . , n, and λ1 + · · ·+ λn = 1. Show that

m <

n∑
i=1

λixi < M,

that is, any convex combination of the xi’s with positive weights cannot touch the
extremes m and M .

(b) Let P = (Pij) be an n× n positive matrix, i.e., Pij > 0 for 1 ≤ i, j ≤ n. Moreover, all
rows of P sum to one,

P1 = 1. (1)

Equation (1) shows that the vector 1 is a right-eigenvector of P , associated with the
eigenvalue 1. It follows from linear algebra that P has a left-eigenvector, say q ∈ Rn,
associated with the eigenvalue 1,

q>P = q>. (2)

Use Farkas’ lemma to prove that, in fact, we can choose q to be positive; that is, show
that there exists q > 0 such that (2) holds.

Hint: a vector v is positive if and only if there exists a positive scalar δ such that v ≥ δ1.

A side note: the fact that q can be chosen to be positive is a consequence of Perron’s
theorem, a famous result in the theory of nonnegative matrices. Thus, we have asked
you to prove (part of) Perron’s theorem via Farkas’ lemma.
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