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IST-CMU PhD course
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Important: The homework is due February, 21.

Homework 1

Instructions: read sections 2.1, 2.2, and 2.3 of [1].

Problem A. (Markov chains) Consider a discrete-time (homogeneous) Markov chain (Xt)t≥0,
with state space A = {α1, α2, . . . , αn} ⊂ R. Let P = (Pij) be the n × n transition matrix.
Thus, the (i, j)th entry of P is the probability of switching from αi to αj :

Pij = P(Xt+1 = αj |Xt = αi), t ≥ 0.

Note that P ≥ 0 and each of its rows sums to one. The matrix P is fixed throughout this
problem.

Let the row vector π be a distribution for the initial state, i.e., πi = P(X0 = i), for i =
1, . . . , n. Naturally, π is in the probability simplex ∆ = {x ∈ Rn : x ≥ 0, 1>x = 1}.
It is well known that π, jointly with P , determine the distribution of Xt (state of chain at
time t) for all t ≥ 0. More precisely, the distribution of Xt is given by the row vector πP t.

We let Eπ (·) denote the expectation operator; note that we made explicit the dependence on
the initial distribution. For example, the mean value of the random variable Xt, denoted by

µt := Eπ (Xt) ,

is a function of π. In fact, it is easy to see that µt = πP tα, where α := (α1, . . . , αn). Similarly,
the variance of Xt, denoted by

varπ(Xt) = Eπ
(
(Xt − µt)2

)
,

is a function of π.

We are interested in the set

S = {π ∈ ∆ : varπ(Xt) ≥ ε, for all t ≥ 0} , (1)

for a given ε > 0. In words, any initial distribution π ∈ S imposes a minimum of “fluctuation”
of the chain state, for all t. The main goal of this problem is to show that S is convex (assume
it is non-empty).

We proceed by small steps.

(a) Let c1, c2, d ∈ R be given. Show that the set

B =
{

(x1, x2) ∈ R2 : c1x1 + c2x2 − x21 ≥ d
}

is convex.

Hint : you may find useful the inequality ab ≤ (a2 + b2)/2, for a, b ∈ R.

(b) Assume that the set
C =

{
x ∈ Rn : c>x− x>aa>x ≥ d

}
is convex for a given a, c ∈ Rn and d ∈ R.

Let Q be an n× n orthogonal matrix, i.e., QQ> = Q>Q = In, where In is the identity
matrix. Show that the set

D =
{
x ∈ Rn : c>Q>x− x>Qaa>Q>x ≥ d

}
is convex.



(c) Let c1, c2, a1, a2, d ∈ R be given. Show that the set

E =
{

(x1, x2) ∈ R2 : c1x1 + c2x2 − (a1x1 + a2x2)
2 ≥ d

}
is convex.

Hint : reduce to part (a), by using part (b).

(d) Let c = (c1, c2, 0, . . . , 0) ∈ Rn and a = (a1, a2, 0, . . . , 0) ∈ Rn be given. Show that the
set

F =
{
x ∈ Rn : c>x− x>aa>x ≥ d

}
is convex.

Caution: the set F lies in Rn, whereas E is in R2.

(e) Prove that the set S in (1) is convex.

Hint : use parts (b) and (d), and represent varπ (Xt) as a quadratic function of π.

Problem B. (Martingales) Let X and Y be discrete random variables taking values in the alpha-
bet A = {α1, α2, . . . , αn}. Let the n × n matrix P = (Pij) represent their joint probability
mass distribution:

Pij = P (X = αi, Y = αj) .

Note that P is a nonnegative matrix and all its entries sum to one, i.e., P belongs to the set

S =
{
X ∈ Rn×n : X ≥ 0, 1>X1 = 1

}
. (2)

Usual probability constructs are a function of P . For example, the conditional probability

P(Y = αj |X = αi) =
P(Y = αj , X = αi)

P(X = αi)
=

Pij∑n
k=1 Pik

is a function of P . Similary, the conditional expectation

E (Y |X = αi) =

n∑
j=1

αjP(Y = αj |X = αi)

is a function of P . (Contrary to problem A, the dependence on P is now hidden in the
notation: we could have written EP (Y |X = αj) . . .)

(a) Show that the set S is convex.

(b) Show that the set

T = {P ∈ S : E (Y |X = αi) = αi, for i = 1, . . . , n}

is convex.

Note: an ordered pair of random variables (X,Y ) with the property in T is said to be
a martingale.
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