## Problem set \#5

Probability Theory and Cramer-Rao Bound

## Probability Theory

1. Consider a random variable x with normal distribution $N(\mu, \sigma)$. Determine the moments $E\{x\}, E\left\{(x-\mu)^{2}\right\}$.
2. Consider a random variable x with exponential distribution $p(x)=\frac{1}{\beta} e^{-x / \beta} u(x)$ with parameter $\beta$. Determine the moments $E\{x\}, E\left\{x^{2}\right\}$.
3. Consider a random variable x with Rayleigh distribution $p(x)=\frac{x}{f} e^{-\frac{x^{2}}{2 f}} u(x)$ with parameter $f$. Determine the moments $E\{x\}, E\left\{x^{2}\right\}$.

## Cramer-Rao Lower Bound

1. Consider a sequence of iid random variables $x_{1}, x_{2}, \ldots, x_{n}$ with exponential distribution $p(x)=\frac{1}{\beta} e^{-x / \beta} u(x)$ with parameter $\beta$.
i) Determine the Cramer-Rao lower bound.
ii) Consider the estimator $\hat{\beta}=\bar{x}$ where $\bar{x}$ is the arithmetic mean of the observations. Determine the variance of $\hat{\beta}$ and check if the estimator is efficient.
2. Repeat the previous problem assuming that the distribution is parametrized in terms of $\alpha=1 / \beta$ i.e., $p(x)=\alpha e^{-\alpha x} u(x)$. Consider the estimator $\hat{\alpha}=1 / \bar{x}$. Compute the Cramer-Rao bound and check if it is still possible to compute the variance of the estimator.
3. Consider a sequence of iid random variables $x_{1}, x_{2}, \ldots, x_{n}$ with Rayleigh distribution with parameter $f$.
i) Determine the Cramer-Rao lower bound.
ii) Consider the estimator

$$
\hat{f}=\frac{1}{2 N} \sum_{k=1}^{N} x_{k}^{2}
$$

Determine its variance and check if it achieves the CRLB i.e., if the estimator is efficient.
4. Consider a sequence of iid random variables $x_{1}, x_{2}, \ldots, x_{n}$ with normal distribution $N\left(\mu, \sigma^{2}\right)$. Determine the Cramer-Rao lower bounds for the estimates of $\mu$ and $\sigma^{2}$. (we assume that we know one of the parameters and estimate the other)
Consider the estimators $\hat{\mu}=\bar{x}, \hat{\sigma}^{2}=\sum_{k=1}^{N}\left(x_{k}-\mu\right)^{2}$. Determine the variance of both estimators and check if they achieve the CRLB.
5. Consider a sequence of iid random variables $x_{1}, x_{2}, \ldots, x_{n}$ with normal distribution $N\left(\mu, \sigma^{2}\right)$. Determine the information matrix and Cramer-Rao lower bound for the joint estimation of $\mu$ and $\sigma^{2}$.
Consider the estimators $\hat{\mu}=\bar{x}, \hat{\sigma}^{2}=1 / N \sum_{k=1}^{N}\left(x_{k}-\mu\right)^{2}$. Determine the variance of both estimators and check if they achieve the CRLB.
6. Consider a sequence of iid discrete variables $x_{1}, x_{2}, \ldots, x_{n}$ and suppose that each variable may have M possible values with probability $P\left(x_{k}=i\right)=\alpha_{i}$. Determine Fisher information matrix and the Cramer-Rao lower bound for the estimation of the $\alpha$ 's.

Bom trabalho!
Jorge Salvador Marques

