Problem set #5 Probability Theory and Cramer-Rao Bound

Probability Theory

- 1. Consider a random variable x with normal distribution $N(\mu, \sigma)$. Determine the moments $E\{x\}, E\{(x \mu)^2\}.$
- 2. Consider a random variable x with exponential distribution $p(x) = \frac{1}{\beta}e^{-x/\beta}u(x)$ with parameter β . Determine the moments $E\{x\}, E\{x^2\}$.
- 3. Consider a random variable x with Rayleigh distribution $p(x) = \frac{x}{f}e^{-\frac{x^2}{2f}}u(x)$ with parameter f. Determine the moments $E\{x\}, E\{x^2\}$.

Cramer-Rao Lower Bound

1. Consider a sequence of iid random variables x_1, x_2, \ldots, x_n with exponential distribution $p(x) = \frac{1}{\beta} e^{-x/\beta} u(x)$ with parameter β .

i) Determine the Cramer-Rao lower bound.

ii) Consider the estimator $\hat{\beta} = \bar{x}$ where \bar{x} is the arithmetic mean of the observations. Determine the variance of $\hat{\beta}$ and check if the estimator is efficient.

- 2. Repeat the previous problem assuming that the distribution is parametrized in terms of $\alpha = 1/\beta$ i.e., $p(x) = \alpha e^{-\alpha x} u(x)$. Consider the estimator $\hat{\alpha} = 1/\bar{x}$. Compute the Cramer-Rao bound and check if it is still possible to compute the variance of the estimator.
- 3. Consider a sequence of iid random variables x_1, x_2, \ldots, x_n with Rayleigh distribution with parameter f.
 - i) Determine the Cramer-Rao lower bound.
 - ii) Consider the estimator

$$\hat{f} = \frac{1}{2N} \sum_{k=1}^{N} x_k^2$$

Determine its variance and check if it achieves the CRLB i.e., if the estimator is efficient.

4. Consider a sequence of iid random variables x_1, x_2, \ldots, x_n with normal distribution $N(\mu, \sigma^2)$. Determine the Cramer-Rao lower bounds for the estimates of μ and σ^2 (we assume that we know one of the parameters and estimate the other)

Consider the estimators $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = \sum_{k=1}^{N} (x_k - \mu)^2$. Determine the variance of both estimators and check if they achieve the CRLB.

5. Consider a sequence of iid random variables x_1, x_2, \ldots, x_n with normal distribution $N(\mu, \sigma^2)$.

Determine the information matrix and Cramer-Rao lower bound for the joint estimation of μ and $\sigma^2.$

Consider the estimators $\hat{\mu} = \bar{x}, \hat{\sigma}^2 = 1/N \sum_{k=1}^{N} (x_k - \mu)^2$. Determine the variance of both estimators and check if they achieve the CRLB.

6. Consider a sequence of iid discrete variables x_1, x_2, \ldots, x_n and suppose that each variable may have M possible values with probability $P(x_k = i) = \alpha_i$. Determine Fisher information matrix and the Cramer-Rao lower bound for the estimation of the α 's.

Bom trabalho! Jorge Salvador Marques