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Resumo

Melanoma é um dos tipos de cancro mais mortı́feros. Tal como para outros tipos de cancro, a probabili-

dade de cura depende da precocidade do diagnóstico. Por este motivo, muitos esforços têm sido feitos

no sentido de usar aprendizagem automática para automatizar o processo de deteção de melanoma.

Esta tese integra-se neste grupo de trabalhos através do uso de técnicas de representação esparsa

incluı́das num sistema completo de diagnóstico de melanomas, que incorpora os passos de extracção

de caracterı́sticas e de classificação, com o intuito de fazer deteção de melanoma em imagens der-

moscópicas.

Os métodos usados na tese baseiam-se na representação esparsa dos dados e no uso de di-

cionários aprendidos a partir dos dados. A eficácia de dicionários e códigos esparsos discriminativos

é estudada, bem como a aplicação de agrupamento hierárquico dos átomos dos dicionários para elim-

inar quaisquer redundâncias. Finalmente o impacto de aprendizagem profunda no sistema descrito é

testada através do uso de caracterı́sticas extraidas de uma rede convolucional pré-treinada, nomeada-

mente a VGG19 [1]. O sistema final proposto nesta tese atinge uma sensibilidade de 56, 41% e uma

especificidade de 71, 43% no conjunto de imagens dermoscópicas da competição de 2017 da Interna-

tional Skin Imaging Collaboration (ISIC) e uma sensibilidade de 64, 84% e uma especificidade de 88, 82%

no conjunto de imagens do Interactive Atlas of Dermoscopy (EDRA) que, tendo em conta a simplicidade

dos sistemas propostos, são resultados promissores.

Palavras-chave: Deteção de Melanoma, representações esparsas, SVM, redes convolu-

cionais, clustering hierárquico, aprendizagem discriminativa

vii



viii



Abstract

Melanoma of the skin is one of the deadliest cancer types. As for most types of cancer, its chances

of being cured greatly increase with the swiftness of its diagnosis. Due to this, great efforts have been

put into using machine learning to automate the process of melanoma detection. This thesis joins that

field of work by making use of sparse coding techniques embedded in a complete system for melanoma

diagnosis that incorporates feature extraction and classification.

The methods used in this thesis are based on the sparse representation of data and dictionaries

learned from data. The effectiveness of discriminative dictionaries and sparse codes is studied, as well

as the application of hierarchical clustering to the dictionary atoms in order to further cut redundancies.

Finally, the impact of deep learning in the aforementioned system is inspected through the use of deep

features extracted from a pre-trained convolutional neural network (CNN), namely the VGG19 [1]. The

systems proposed in this thesis achieve a sensitivity of 56, 41% and a specificity of 71, 43% for the image

dataset from 2017 challenge from the International Skin Imaging Collaboration (ISIC) and a sensitivity

of 64, 84% and a specificity of 88, 82% for the image dataset from the Interactive Atlas of Dermoscopy

(EDRA) which, taking in account the simplicity of the systems, show promise.

Keywords: melanoma detection, sparse coding, svm, convolutional neural networks, hierarchi-

cal clustering, discriminative learning

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Goals and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sparse Coding 7

2.1 Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Two Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Sparse code computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Dictionary learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Solving the Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Sparse code update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Dictionary update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Baseline Architecture 11

3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Data augmentation and pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Patch feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Dictionary learning and sparse coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Image features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



4 Discriminative Dictionariy Learning 21

4.1 Concatenation of class-specific dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Concatenation of class-specific Sparse Codes . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Clustering of dictionary atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Deep Features 27

5.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Deep features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Deep features applied in baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2 Deep features applied in discriminative dictionaries . . . . . . . . . . . . . . . . . . 29

5.2.3 Deep features applied in discriminative sparse codes . . . . . . . . . . . . . . . . 29

5.2.4 Deep features in system with clustering of dictionary atoms . . . . . . . . . . . . . 30

6 Comparison and Assessment of the Proposed System 32

6.1 In the context of the ISIC 2017 challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2 Relevance of Dictionary Initialization and Datasets . . . . . . . . . . . . . . . . . . . . . . 33

6.2.1 Dictionary initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.2 ISIC and EDRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Conclusion 37

7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

A Support Vector Machine 47

A.1 Linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.2 Non linearly separable data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.3 Higher dimentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Evaluation Metrics 50

C VGG 19 51

C.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



List of Tables

1.1 Results for some computer-aided diagnostic systems. . . . . . . . . . . . . . . . . . . . . 4

1.2 Distribution of images in the ISIC dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Distribution of images in the EDRA dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 classifier performances on the test set for the ISIC dataset. . . . . . . . . . . . . . . . . . 19

3.2 classifier performances by nested cross-validation for the EDRA dataset. . . . . . . . . . 19

4.1 Individual classifier performances and performance on the test set for ISIC dataset applied

to baseline with concatenation of class-specific dictionaries. . . . . . . . . . . . . . . . . . 22

4.2 Individual classifier performance and nested cross-validation performance for the EDRA

dataset applied to baseline with concatenation of class-specific dictionaries. . . . . . . . . 22

4.3 Individual classifier performances and overall test performance for ISIC dataset applied to

baseline with concatenation of class-specific sparse codes. . . . . . . . . . . . . . . . . . 23

4.4 Individual classifier performances and overall test performance for EDRA dataset applied

to baseline with concatenation of class-specific sparse codes. . . . . . . . . . . . . . . . . 24

4.5 Individual classifier performances and test performance for ISIC dataset applied to the

baseline system with atom clustering applied to a concatenation of class-specific dictio-

naries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.6 Individual classifier performances and test performance for EDRA dataset applied to the

baseline system with atom clustering applied to a concatenation of class-specific dictio-

naries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Individual classifier performances and test performance for ISIC dataset with the inclusion

of deep features in the baseline system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Individual classifier performances and test performance for EDRA dataset with the inclu-

sion of deep features in the baseline system. . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Individual classifier performances and test performance for ISIC dataset with the inclusion

of deep features in the system with class-specific dictionaries. . . . . . . . . . . . . . . . . 29

5.4 Individual classifier performances and test performance for EDRA dataset with the inclu-

sion of deep features in the system with class-specific dictionaries. . . . . . . . . . . . . . 29

5.5 Individual classifier performances and test performance for ISIC dataset with the inclusion

of deep features in the system with class-specific sparse codes. . . . . . . . . . . . . . . 30

xiii



5.6 Individual classifier performances and test performance for EDRA dataset with the inclu-

sion of deep features in the system with class-specific sparse codes. . . . . . . . . . . . . 30

5.7 Individual classifier performances and test performance for ISIC dataset with the inclusion

of deep features in the system with atom clustering applied to a concatenation of class-

specific dictionaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.8 Individual classifier performances and test performance for EDRA dataset with the inclu-

sion of deep features in the system with atom clustering applied to a concatenation of

class-specific dictionaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Results for some contestants of the 2017 ISIC challenge. . . . . . . . . . . . . . . . . . . 33

6.2 Proposed system performance on ISIC test set when trained with a mergure of the EDRA

dataset and the ISIC training and validation sets. . . . . . . . . . . . . . . . . . . . . . . . 36

xiv



List of Figures

1.1 Skin lesions diagnosis tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Examples of dermoscopic images extracted from the ISIC dataset [7] . . . . . . . . . . . 3

3.1 Block diagram of baseline system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Examples of images with lesions of different size (left) and their cropping (right). Original

images extracted from [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Dermoscopic images taken with different dermatoscopes and lighting conditions, before

(left) and after (right) color normalization. Original images extracted from [7] . . . . . . . . 14

3.4 Block diagram of the baseline system taking in consideration the different types of features 16

3.5 Image classification in the ISIC dataset: (a) True positive (b) False positive (c) True nega-

tive (d) False negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Image classification in the EDRA dataset: (a) True positive (b) False positive (c) True

negative (d) False negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Block diagram of classification system with discriminative dictionaries obtained through

concatenation of class-specific dictionaries. The highlighted block in green is the one

modified with respect to the baseline system . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Block diagram of classification system with concatenation of class-specific sparse codes.

The highlighted blocks in green are the ones modified with respect to the baseline system 23

4.3 Block diagram of classification system with clustering of dictionary atoms. The highlighted

blocks in green are the ones modified with respect to the baseline system . . . . . . . . . 25

5.1 Example of a convolutional neural network. Source [70] . . . . . . . . . . . . . . . . . . . 28

6.1 Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for

the ISIC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for

the ISIC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for

the ISIC dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1 Optimal hyperplane with linearly separable data in SVM algorithm . . . . . . . . . . . . . 48

xv



C.1 VGG 19 architecture. Source [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xvi



Chapter 1

Introduction

This chapter motivates the use of sparse methods in skin cancer detection, presents the objective of this

thesis and outlines its organization.

1.1 Motivation

Cancer is one of the most deadly diseases that currently afflicts the humankind. Amongst all types of

cancer, skin cancer is the most common one and melanoma is the most aggressive and deadly type [2].

The American Cancer Intitute estimates that a total of 96, 480 new cases of melanoma skin cancer will

be diagnosed in 2019 and 7, 230 people will die from it in the United States [2]. Considering stage-one

melanoma patients, and comparing to those that get treatment within 30 days of being biopsied, the

ones that get treatment within 30 to 59 days after the biopsy have 5% increased risk of dying and those

that are treated more that 119 days after being biopsied have 41% risk of death [3]. This goes to show

that early diagnosis is pivotal in order to reduce the mortality rate of this type of cancer.

Because of this, and with the uprise of machine learning and deep learning methods, increasing

effort has been put into place in order to apply these methods to automate the process of skin cancer

detection [4], [5].

1.2 Problem formulation

There are several types of skin lesions not all harmful to humans. Figure 1.1 shows the different types

of skin lesions and their organization.

Melanocytes are the cells lodged in the deeper layer of the epidermis and are responsible for pro-

ducing a brown pigment called melanin, which gives the skin its tan or brown color. Melanocytic skin

lesions are those that originate from these cells. Most melanocytic skin lesions are benign, harmless,

if the DNA is not damaged in such a way that the melanocytic cells have malignant proliferation and

potentially metastasize [6]. This type of benign melanocytic lesions are called nevus, which in turn also

encompasses several types, such as Clark nevus, Dermal Nevus or Spitz nevus, amongst others. How-
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Figure 1.1: Skin lesions diagnosis tree

ever, when there is a malignant proliferation and the cell metastasizes, the skin lesion is then considered

a melanoma [6].

The remaining types of skin cancer originate from other types of cells in the intricate layers of the skin.

These encompass benign lesions, such as vascular lesions, seborrheic keratosis, and dermatofibroma,

and malignant lesions, such as basal cell carcinoma.

Even though basal cell carcinomas are malignant and harmful, they have a low level of metastasis,

meaning the cancer cells do not spread fast, which makes them easier to treat. Melanoma skin lesions

however have a very high level of metastasis, this means that the cancer cells will spread to other

tissues at a quick rate, greatly hindering treatment, which is why an early diagnosis of melanoma is very

important.

Even though some lesions can be diagnosed by a medical professional through naked eye inspection,

the use of specific instruments is often required, such as the dermoscope, dermaphot or the stereomi-

croscope. The last two mentioned devices produce the so called dermoscopic images, some examples

of which are presented in Figure 1.2, that are used by computer-aided diagnostic systems (CAD) to

perform melanoma detection.

There are medical procedures that are used by medical experts to diagnose skin lesions, the most

prominent ones being pattern analysis [8], ABCD rule [9], and seven-point checklist [10]. What all these

have in common is that they focus on the analysis of dermoscopic features in the lesion, also called

dermoscopic criteria. These include global features, such as shape and pattern of the lesion, and local

features, which encompass pigment network, dots/globules, streaks, pigmentation, blue-whitish veil and

vascular structures, to name but a few.

For example, the ABCD rule, which can only be applied to melanocytic lesions, assigns scores

for four different criteria: asymmetry, border, color, and differential structure, are assigned a score,

assessed semiquantitatively, which are then multiplied by given weight factors and a final dermatoscopy

score (TDS) is obtained. Depending on this score, the lesion can then be classified as a benign lesion,

a suspicious lesion, or highly suspicious for melanoma. The seven-point checklist algorithm is another

important procedure and, as the name suggests, consists of observing in the lesion a few of 7 criteria

(features normally associated with melanoma lesions). These 7 criteria are broken into major criteria

(atypical pigment network, blue-whitish veil and atypical vascular pattern), which get 2 points each, and
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Examples of dermoscopic images extracted from the ISIC dataset [7]

minor criteria (irregular streaks, irregular pigmentation, irregular dots/globules and regression structures)

which get 1 point each. A skin lesion is classified as a melanoma if the total of points for that lesions is

equal or higher than 3.

The presence of these features varies for every type of skin lesion, and, even within the same type,

every lesion is unique, which is why it is sometimes so difficult to correctly diagnose them. Hence, CAD

systems trained from thousands of images may play an important role in assisting medical doctors in

skin cancer detection. The goal of this thesis is focused on the development of such computer-aided

diagnostic systems.

1.3 Related work

For the past three decades, different approaches have been proposed to tackle the problem of skin

cancer detection. The first aproaches took decisions based on global hand-crafted features such as

color features (e.g, [11], [12]), texture features (e.g, [13], [14], [15]), border features (e.g, [16], [17], [18],

[19]), and asymmetry features, including shape symmetry (e.g, [19], [20], [21]) and color and structure

symmetry (e.g, [19], [22]). Classifiers trained on dictionary-based features, that allowed for information

on local image features to be extracted, such as bag-of-words or sparse coding (e.g, [23], [15], [24]) were

rarely used. Recently, deep learning started to be employed and is gradually becoming the standard in

the area, making use of methods such as deep neural networks and transfer learning to achieve state-

of-the-art results (e.g, [25], [26], [27]).

The performance of machine learning methods for image classification greatly depends on the cho-

sen representation for the image itself and on the quality of the extracted features. Methods that use

sparse representations have achieved good results in the past, in several image analysis and processing

problems, such as image denoising, deblurring, inpainting, and super resolution [28]. Despite this, few
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works have employed sparse representation in the context of skin cancer detection. Notorious excep-

tions are [29], [23], which achieved promising results.

In [29], the effectiveness of different types of features is ascertained, including an ensemble of low-

level features, deep features and sparse codes, all used to train separate independent classifiers which

are combined through the fusion of classifier output (late fusion). Another comparision between types

of local features is also made in [23], in this case between a bag-of-features method and sparse coding,

where sparse coding achieved superior results. In both these works, as well as in most challenging

machine learning problems, the features are of extreme importance and have a strong influence on the

end result. Acknowledging this, [30] made a study of the several type of features used in computer-aided

diagnosis systems for skin cancer in the past, which include hand-crafted features, dictionary-based

features, deep learning features, and clinically inspired features. Because of this, this thesis is also

focused on the type of features extracted, with emphasis on sparse coding.

Table 1.1 summarizes the performance of a few CAD systems. Some systems achieve very good

scores but it should be noted that the performances are evaluated on datasets of different size and

difficulty, which does not allow for a meaningful comparison.

Table 1.1: Results for some computer-aided diagnostic systems.

Paper Date Dataset SE (%) SP (%) BACC (%)

[13] 2007 Images from universities 92.34 93.33 92, 84

[12] 2007 subset of EDRA 87.0 77.3 82.15

[14] 2008 Images from universities 85.3 83.33 84, 315

[42] 2013 Images from Hospital 98.0 79.0 88.5

[11] 2014 EDRA 61.63 75.83 68, 73

[24] 2016 PH2 100.0 90.3 95, 15

[23] 2017 EDRA 85.5 75.1 80, 3

[25] 2017 ISIC 85, 6 81, 2 83, 4

1.4 Datasets

This thesis will make use of mainly two different datasets: the dataset associated with the interactive

atlas of dermoscopy (EDRA) [31] and the recently-proposed dataset from the International Skin Imaging

Collaboration (ISIC) 2017 [7].

ISIC holds a competition every year, centered on the topic of skin cancer. The dataset used in this

thesis is the one from the 2017 competition, which has around 2000 images for training, of which less

than 400 are labeled as melanoma. It also includes a separate validation set with 150 images and a

set of 600 images that serve as test set. ISIC also provides segmentation masks for every image in the
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dataset, which classifies each pixel as belonging to the lesion or healthy skin.

The EDRA dataset is smaller in comparison to ISIC; a subset of around 800 images will be used, of

which around 240 correspond to melanomas.

The exact numbers of images and their division between melanoma and non-melanoma are pre-

sented in tables 1.2 and 1.3.

Both datasets will be used to train and test every classification system introduced in this thesis which

will also allow for a comparison to be made between both datasets.

Table 1.2: Distribution of images in the ISIC dataset

Subset Melanoma Non-melanoma Total

Train 374 1626 2000

Validation 30 120 150

Test 117 483 600

Table 1.3: Distribution of images in the EDRA dataset

Melanoma Non-melanoma Total

241 563 804

1.5 Goals and Outline

This thesis aims to study the effectiveness of sparse coding techniques applied to the problem of

melanoma skin cancer detection. This will be done through a number of experiments with different

methods and algorithms in order to achieve the best possible result, while also comparing it to a com-

mon baseline system.

This thesis will thus be organized as follows:

1. Chapter 1: Introduction - This chapter motivates the work described in the thesis, formulates the

problem, and presents a brief discussion of related works.

2. Chapter 2: Sparse Coding - In this chapter, the problem of sparse coding and dictionary learning

are discussed and formulated as optimization problems.

3. Chapter 3: Baseline System - This chapter presents the baseline system with sparse features. It

will serve as a comparison to the more sophisticated approaches that follow.

4. Chapter 4: Discriminative Dictionary Learning - This chapter introduces a collection of systems

focused on the use of discriminative dictionaries for sparse coding.
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5. Chapter 5: Deep features - Here, systems that make use of deep learning methods such as convo-

lutional neural networks are introduced for feature extraction, where sparse coding will afterwards

be applied.

6. Chapter 6: Comparison and Assessment of the Proposed System - The final system is selected, its

performance is compared to other contestants in the ISIC challenge of 2017. A few considerations

on the influence of data and dictionary initialization are also made.

7. Chapter 7: Conclusion - This chapter will wrap up the thesis and present the conclusion obtained

on the effectiveness of the methods presented for melanoma skin cancer detection.
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Chapter 2

Sparse Coding

2.1 Sparse Coding

Methods based on sparse representations of signals have achieved excellent results in a wide range of

signal processing problems e.g, in image [28], [32], [33] and audio [34], [35] processing. At the core of

these methods is sparse coding, which aims to represent an input vector x ∈ Rn through a sparse linear

combination of an over-complete set of basis vectors,

x ≈
k∑
j=1

djαj , (2.1)

where dj ∈ Rn, j = 1, ..., k are the basis vectors, commonly known as atoms, and α = [α1, ..., αk] is

the vector of coefficients that will be called the sparse code of x. A sparse linear combination is one

in which only a small subset of the coefficients are different from zero, which means that only a few

atoms contribute to represent x. The set of atoms D = [d1, ...,dk] is called a dictionary. By having an

over-complete set of atoms, that is, the dimension of the dictionary, k, is greater than the dimension of

the input, n, a better representation and characterization of the input x can be achieved.

Sparsity is a desirable property for a representation model, as it means that the input can be repre-

sented using less information and maintain high fidelity. This means that sparsity may eliminate redun-

dancies in the input, while maintaining its important features.

Equation (2.1) represents a single input vector. This idea can be expanded to include several inputs,

with equal dimensions, as follows

X ≈ D × A

n× p n× k k × p
(2.2)

where X is a matrix whose columns are the input vectors, n is the dimension of each vector and p the

number of vectors. D is the dictionary with k atoms of dimension n, and A is the matrix with the sparse

codes, each with dimension k and one for every vector in X.

In order to apply sparse coding, both the dictionary and the sparse codes must be computed and
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that is achieved by solving two optimization problems.

2.2 Two Optimization Problems

2.2.1 Sparse code computation

The goal of sparse representations is to replicate the input as closely as possible through a linear

combination of atoms, as done in (2.1), while enforcing sparsity of the vector of coefficients. How

close the sparse representation is to the input can be expressed as ||x − Dα||22, which measures the

reconstruction error, where || · ||22 represents the square of the Euclidean norm (l2 norm). A sparse vector

is one such that most of its elements are zero. Thus, a good measure of sparsity is the ”l0 norm” of the

vector of coefficients, which actually counts the number elements different from zero. But since it is a

cardinal function, it is non-differentiable and difficult to optimize over. Therefore it is often replaced by

the l1 norm, which is applied to the estimation of the sparse codes:

||α||1 =

k∑
j=1

|αj |. (2.3)

The l1 norm sums the absolute value of the elements of a vector and makes the problem of obtaining α

convex, which facilitates the computation [36]. So, given an input x, and a dictionary D, the sparse code

is obtained by solving the optimization problem

min
α

1

2
||x−Dα||22 + λ||α||1. (2.4)

The trade-off between the two terms in the optimization problem is controlled by the variable λ. A

high λ would put too much emphasis on the sparsity of αi, but this could mean that the reconstruction

error would be bigger. While a very low λ puts emphasis on the reconstruction error in detriment of

sparsity, which is not desirable. An balance between both effects should be achieved [37], [38].

2.2.2 Dictionary learning

In most applications, the dictionary needs to be estimated from a set of training data. This is done by

encapsulating the optimization over the sparse codes (2.4) with another optimization over the dictionary,

which will use the input data and the estimate of the sparse codes to learn a dictionary. Assuming that

instead of a single input vector x, there is a set of input vectors X = [x1, ...,xp], dictionary learning

involves solving the optimization problem

min
D

1

p

p∑
i=1

min
αi

1

2
||xi −Dαi||22 + λ||αi||1, (2.5)

where, for every training sample, there is a minimization with respect to the sparse code αi, which

involves a trade-off between minimizing the reconstructing error and enforcing the sparsity of the sparse
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code. This optimization problem translates into solving two alternating, iterative optimization problems,

one over the dictionary and the other over the sparse codes, until convergence.

A precaution must be taken, however. Since sparsity is desired, the algorithm will try to lower the

l1 norm of the sparse code, reducing its values. Since the sparse code αi is reduced, in order to

compensate this, the norms of the atoms will increase and this may lead to bad results. Therefore, the

atoms must be constrained so that their norm is lower than a given constant ‖dj‖2 < ε.

2.3 Solving the Optimization problems

Optimizing the cost function (2.5), as mentioned earlier, is commonly known as dictionary learning. A

commonly used method for dictionary learning is Online Dictionary Training (ODT) [39], which is adopted

in this thesis. This algorithm breaks the dictionary learning problem into two optimization problems, as

mentioned before: sparse code update and dictionary update. It iterates throughout the training data,

alternatingly solving these problems for each training instance. The two steps will be briefly described

next.

2.3.1 Sparse code update

In the sparse code update, the dictionary is fixed and the cost functional is minimized with respect to

each sparse code. There are a few different algorithms to obtain the sparse code given a dictionary

D = [d1, ...,dk] and input vectors X = [x1, ...,xp], such as orthogonal matching pursuit (OMP) [40] and

least angle regression (LARS) [41]. In this thesis, the LARS algorithm is used. Let X̂ be the sparse

representation of X, ri = xi− x̂i the residual of the i-th vector, and αji the coefficient that multiplies atom

dj in the sparse representation of xi. The LARS algorithm is as follows:

1. for a sparse code αi, it starts by making all its entries equal to zero.

2. finds the atom dj that is the most correlated to the residual ri

3. increases the coefficient αji in the direction of the sign of this correlation. Do this until some other

atom dq is just as correlated with ri.

4. increase αji and αqi so that their atoms remain equally correlated with ri (increase in their joint

least squares direction), until another atom dm has as much correlation with ri

5. continue until some stopping condition.

2.3.2 Dictionary update

The overall dictionary learning algorithm presented in [39] goes through all the training data and updates

the dictionary at every iteration. It starts by initializing the dictionary and creating two matrices A0 and

B0 and making them equal to zero. Then, for iteration i, it takes xi and the dictionary built thus far to

solve the LARS and compute the sparse code for xi. It then updates the Ai and Bi matrices as follows:
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Ai = Ai−1 + αiα
T
i and Bi = Bi−1 + xiα

T
i . (2.6)

Then, with D denoting the dictionary built thus far, the algorithm iterates through the n atoms in the dic-

tionary and updates them individually. This pass through the atoms is done as many times as necessary

until convergence of the reconstruction error ||xi −Dαi||. With Ai = [a1, ...,ak] and Bi = [b1, ...,bk], for

iteration j, it computes an intermediary variable uj :

uj =
1

Ajj
(bj − Daj) + dj , (2.7)

and uses it to update the atom dj :

dj =
1

max(||uj ||2, 1)
uj (2.8)
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Chapter 3

Baseline Architecture

This chapter describes a basic CAD system, based on sparse representation of data.

3.1 System overview

This thesis aims to a develop computer-aided diagnosis system for melanoma detection on dermoscopic

images. In this chapter an initial baseline system is proposed and described. The problem addressed is

a binary classification problem: given a dermoscopic image of a skin lesion, the system should be able

to distinguish between melanoma and benign skin lesions.

The baseline system will serve as a stepping stone for improvement and comparison troughout this

thesis. The architecture of the baseline system is shown in figure 3.1 and was inspired by the system

proposed in [42].

Figure 3.1: Block diagram of baseline system

The CAD system involves two modes (training and testing), each of them comprising several tasks. In

training, a dataset of dermoscopic images is received, these images are processed in order to normalize

their size, as some images are much larger than others, and have different magnifications, and also to

normalize their color spectrum, thus standardizing them. Data augmentation is also performed to ensure

both classes are approximately equally represented in the training dataset. Two elements need to be
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trained, the dictionary and the classifier. The dictionary is trained with local image features extracted

from image patches and the classifier is then trained with global image features (histograms of sparse

codes computed using the previously learned dictionaries).

In testing, the learned dictionaries and classifier obtained in the training phase are used and a label

for every image is produced as output, guessing whether the given image is a melanoma or not. The

blocks of which the baseline system is composed will be further discussed in detail, in this section.

3.2 Data augmentation and pre-processing

Before feature extraction and classification is done, the images must be loaded and pre-processed. Both

datasets are unbalanced class-wise, especially the ISIC dataset, where melanoma skin lesions account

for only roughly 20% of the full dataset. The small presence of one of the classes hampers the training of

the classifier which may produce subpar results. To tackle this problem, data augmentation techniques

were used. For every melanoma image in the training set, three additional images were generated by

rotating the image by multiples of 90o. Therefore, for every melanoma image, three additional images

were produced, thus balancing the dataset.

Both datasets provide binary masks for the skin lesion in the images that can be used for segmen-

tation. Segmentation is important in this problem, since the size of the skin lesion and the percentage

of the image it occupies varies greatly among the dataset, which means some images show a lot of the

neighboring skin while others do not, as is depicted in Figure 3.2.

(a) (b)

(c) (d)

Figure 3.2: Examples of images with lesions of different size (left) and their cropping (right). Original
images extracted from [7]
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The segmentation step crops a bounding box around the lesion, in order to focus the feature extrac-

tion procedure on the lesion, discarding the healthy skin. This procedure discards information associ-

ated to healthy skin and emphasizes lesion features. This maximizes the differences in features between

melanoma and non-melanoma skin lesions, since skin features, which are similar whatever the lesion is,

are dismissed. It is also important, however, to avoid cropping immediately at the border of the lesion,

since transition from healthy skin to lesion convey useful information about malignancy. Finally, it is also

important to maintain the aspect ratio of the images, which varies from image to image. This means that

all images can not be of the same size without being distorted, so a limit of 1000 pixels is imposed for

each dimension of the image as standard. Therefore, there is no image greater than 1000 pixels high or

wide.

Since the images are provided by different hospitals, they are captured by using different dermato-

scopes and under different conditions, which results in images with different color spectra. This intro-

duces significant color differences across images, which makes the classification task more difficult,

since similarities between in-class images are harder to find. To overcome this difficulty, every image,

after being loaded and cropped, goes through a color normalization function [43] that makes use of

the Shades of Gray algorithm [44]. The results of the color normalization function are demonstrated in

Figure 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Dermoscopic images taken with different dermatoscopes and lighting conditions, before (left)
and after (right) color normalization. Original images extracted from [7]
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3.3 Patch feature extraction

Once a given image is loaded and goes through pre-processing, its features are extracted. In order to

do this, the image is broken into non-overlapping patches of size 16 × 16 pixels and local features are

extracted from each of these. Two types of features were used: color and texture features, which are the

two main sources of information for a dermoscopic image.

As further described in [42], there are several options for both color and texture features. Regarding

color, the most used features within dermoscopy problems are the color mean and variance within the

patch [45], [46]. In this baseline system, however, a slightly more complex type of features will be used:

color histograms, which have been successfully adopted in other works [30].

Each pixel in the patch has three color components ( RGB channels). The color content of each patch

is characterized by three color histograms. The histograms hold the information for the distribution of the

three color channels in that specific patch, for that color channel. So, for every patch Pc, c ∈ {1, 2, 3},

three histograms hc with B = 16 bins each are computed as

hc(i) =
1

L2

L∑
x=1

L∑
y=1

bi(Pc(x, y)), i = 1, ..., B, (3.1)

where L× L is the size of patch Pc, and bi(·) is the characteristic function of the ith bin of histogram hc

bi(Pc(x, y)) =

1, if pixel Pc(x, y) belongs to the ith bin

0, otherwise.
(3.2)

As for the color features, there are also several options for texture features. Examples include statis-

tics of pairs of neighboring pixels, leading to the co-occurrence matrix [47], aplication of image trans-

forms, such as Fourier transform [48], linear filters [49], Laplacian pyramids [50], or wavelets [51]. In the

baseline system, gradient histograms were chosen.

The gradient of an image conveys information on the intensity changes near each pixel. In this case,

the gradient of the gray-scale image is computed for every patch. At every pixel (x, y), the horizontal

and vertical components of the gradient, g1(x, y) and g2(x, y), are computed using Sobel masks. These

two components are then used to calculate the gradient magnitude ||g(x, y)|| and orientation φ(x, y)

||g(x, y)|| =
√
g21(x, y) + g22(x, y), φ(x, y) = tan−1

(
g2(x, y)

g1(x, y)

)
. (3.3)

The gradient magnitude and orientation information are then used to build two more texture his-

tograms, for every patch, in a similar way to what is done with the color histograms:

hm(i) =
1

N

L∑
x=1

L∑
y=1

bi(||g(x, y)||), i = 1, ..., Bm, (3.4)

hφ(i) =
1

N

L∑
x=1

L∑
y=1

bi(φ(x, y)), i = 1, ..., Bφ. (3.5)
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The gradient orientation is an angle in to the interval [−π, π[, therefore these are used as minimum

and maximum. For the magnitude histogram, first the maximum magnitude is found across all images

in the training set, with the minimum being zero.

3.4 Dictionary learning and sparse coding

As discussed in chapter 2, sparse coding represents input vectors using an overcomplete dictionary.

This idea was applied to feature vectors associated to each patch. In the system described thus far,

we have three different sets of features (color histograms, gradient magnitude and gradient orientation

histograms), which extract different types of information from the image. Due to this, three dictionaries

were learned, one for each type of features. The structure of the system, taking in consideration the

three types of features, is shown in Figure 3.4.

Figure 3.4: Block diagram of the baseline system taking in consideration the different types of features

The dictionaries were built using the ODL, described in Section 2.3. The input for dictionary learning

are the local feature histograms obtained before, from all the training patches. The sparse representation

of a given type of features, which is essentially the matrix notation for sparse coding introduced in section

2.1, can then be written as

X ≈ D A, (3.6)

where in the input X ∈ Rn×p, n is the size of the feature vector for one patch, p is the total number of

patches in the dataset, D ∈ Rn×k is the dictionary, with k atoms and A ∈ Rk×p are the sparse codes.

3.5 Image features extraction

In order to predict the image label, a set of image features must be extracted. Image features, as the

name indicates, are global features that characterize the image as a whole. Therefore, the available

sparse codes for a given image, one per patch, must be transformed into a single vector that describes

the image.
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A sparse code, by definition is a sparse vector of weights that multiplies the atoms in the dictionary to

approximate the patch features. If looked at in a different perspective, a sparse code gives information

on which atoms are important to characterize its respective patch features. In the context of this problem,

the aggregation of sparse codes for a given image gives the importance of each atom in representing

the image. These weights are the features chosen to represent the image. However, since the images

have different sizes, the number of sparse codes also varies from image to image, which means that

they cannot be directly used as features. To circumvent this, a histogram is made averaging the sparse

codes of a given image

hs =
1

p

p∑
i=1

αi, (3.7)

which in turns gives the average use of every atom in representing the patches of that image. In (3.7),

for a given image, its histogram hs is computed by averaging the p sparse codes, corresponding to the p

patches that form the image.

3.6 Classifier

The final step of this initial CAD system is the classifier, trained with the training data: the global image

features and the corresponding labels, in a supervised way.

The chosen classifier for the baseline system is the Support Vector Machine (SVM) [52]. The SVM

is a popular classifier that has been applied to a wide range of problems. In its simplest version, it tries

to learn an hyperplane that separates the training samples from two classes. The hyperplane can be

replaced by more complex surfaces by using kernel functions. A brief discussion of the SVM method is

found in appendix A.

Separate classifiers were trained for each type of features: color, gradient magnitude, and gradi-

ent orientation. The final predicted label for a given image comes from averaging the class-specific

probabilities of that image, given by all three classifiers.

3.7 Experimental setup

This section describes the experimental set up used to tune the baseline CAD system.

The system was implemented in python and the SVM classifier was imported from the package

Scikit-learn [53]. Other packages, like Numpy and Scipy, amongst others, were used to build several

additional functionalities necessary, as well as the Spams package for dictionary learning and sparse

code computation [54].

With the standard parameters, the SVM classifier could not distinguish between melanoma and non-

melanoma skin lesions as it would assign every sample to one of the classes. Further tuning was thus

required.

The simpler way to tune a classifier is to train it using the training samples and use the validation
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samples to tune it. As the ISIC dataset supplies both training and validation data, this would be possible,

but a different method was chosen instead. To tune the classifier, k-folds cross-validation was used

instead. This consists in splitting the training set into k parts (folds), one of which is used for validation

and the others are used to train the classifier. The validation fold will rotate at each iteration such that all

folds serve as validation fold. Each of these folds has approximately the same number of samples and

is well balanced, that is, has roughly the same amount of samples from both classes. The training set

to train and tune the classifier was constituted by the original training and validation data. The test data

was never used.

A different procedure was adopted with the EDRA dataset, as it does not have separate sets for

training and testing, nested cross-validation was used. Nested cross-validation consists of two cycles,

an inner cycle that performs normal cross-validation for model tuning and an outer cycle that evaluates

the chosen model on the portion of the dataset that was not used in inner cycle of cross-validation. This

allows for a computation of an average test score for the dataset.

The parameters that were tuned during the process for the SVM classifier were: i) the penalty pa-

rameter C for an error ii) the rbf (see appendix A) kernel coefficient γ iii) the number of atoms in the

dictionaries.

3.8 Results

In order to evaluate the performance of the CAD system, three evaluation metrics were selected: sen-

sitivity (SE), specificity (SP) and balanced accuracy (BACC). These evaluation metrics are further de-

scribed in appendix B.

The baseline system described in this chapter was trained and evaluated on the aforementioned

datasets. In Table 3.1 the average scores for the color, gradient magnitude, and gradient orientation

classifiers are presented as well as the global scores for the test set of the ISIC dataset.

In Table 3.2, similar average scores for the individual classifiers are presented, but for the EDRA

dataset as well as the average test score obtained in the nested cross-validation.

In both Tables 3.1 and 3.2 two test scores are presented, one that uses all three previously men-

tioned classifiers to reach the decision and another that uses only the classifiers that are built with the

color and gradient magnitude features. This was done because during the cross-validation process, the

classifier trained with the gradient orientation features presented quite lower results comparing to the

other two. A comparison between these two will then be made to ascertain the viability of using the

gradient orientation features and classifier in the baseline system.
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Table 3.1: classifier performances on the test set for the ISIC dataset.

Classifier SE (%) SP (%) BACC (%)

Color 43, 59 75, 16 59, 37

Magnitude 56, 41 63, 77 60, 09

Orientation 57, 27 54, 04 55, 65

Fusion with 3 classifiers 47, 01 73, 71 60, 36

Fusion with 2 classifiers 47, 01 75, 36 61,19

Table 3.2: classifier performances by nested cross-validation for the EDRA dataset.

Classifier SE (%) SP (%) BACC (%)

Color 64, 67 82, 18 73, 42

Magnitude 55, 50 77, 97 66, 73

Orientation 55, 53 71, 28 63, 41

Fusion with 3 classifiers 60, 11 87, 63 73, 87

Fusion with 2 classifiers 61, 40 86, 51 73,96

As can be observed, there is a big difference in the results obtained in both datasets. This difference

is mainly due to the variety and difficulty of the images in these datasets. Both of them can be considered

as difficult datasets, compared with others which have been used in dermoscopy analysis. However, the

ISIC dataset is significantly harder.

It should also be noted that the proposed CAD system achieves better results for both datasets if

the classifier trained on the orientation features is excluded. Therefore, orientation features will be

excluded from now on, in this thesis.

Figures 3.5 and 3.6 show examples of images correctly and incorrectly classified, for the ISIC and

EDRA datasets, respectively. Just by observing the many similarities between correctly and incorrectly

classified images, one can get an idea of just how difficult this classification problem is.

The baseline system to be considered is then the one presented in this chapter but with the exclu-

sion of the gradient orientation features and their classifier. Therefore, there are two types of features,

which are used to train to dictionaries and consequently, two classifiers whose decision scores are

averaged to reach a final decision on whether a skin lesion is a melanoma or not.
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(a) (b)

(c) (d)

Figure 3.5: Image classification in the ISIC dataset: (a) True positive (b) False positive (c) True negative
(d) False negative.

(a) (b)

(c) (d)

Figure 3.6: Image classification in the EDRA dataset: (a) True positive (b) False positive (c) True negative
(d) False negative.
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Chapter 4

Discriminative Dictionariy Learning

When sparse coding was first introduced in image representation tasks, it was used to reduce the dimen-

sionality of the data [28] [55] and improve the performance of different tasks, such as image denoising.

With the adoption of sparse representations in image classification tasks, it was not only necessary for

the learned dictionaries to accurately represent the image, but also to provide discriminative information

regarding the different classes. Therefore, different works started to propose strategies to enhance the

discriminative properties of the dictionaries [56], [57], [58].

A discriminative dictionary contains specific subsets of atoms that are more specialized in repre-

senting a given class. For example, given two classes A and B, a set of atoms in the dictionary is more

consistently used by the inputs of class A, while another set of atoms is more consistently used for inputs

of class B. This means that if the inputs show a high inter-class variability and low intra-class differences,

they will tend to select the same atoms within the dictionary, as other inputs of the same class [56]. This

enhances the ability to distinguish between inputs of different classes since their sparse codes would be

very different, which is the goal of classification.

4.1 Concatenation of class-specific dictionaries

In the current problem (melanoma detection), there are two classes, melanoma skin lesions and non-

melanoma skin lesions. As mentioned above, a discriminative dictionary is one that contains separate

atoms to represent each of the classes. The simplest strategy to obtain a discriminative dictionary is

to simply learn one dictionary using melanoma training images and learn another dictionary using non-

melanoma images, and then concatenate them.

The block diagram for this new classification system is shown in figure 4.1. It is identical to the

baseline system apart from the dictionary learning step, marked in green, which was modified.
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Figure 4.1: Block diagram of classification system with discriminative dictionaries obtained through con-
catenation of class-specific dictionaries. The highlighted block in green is the one modified with respect
to the baseline system

In order to assess the impact of using this type of discriminative dictionaries, the baseline was slightly

modified to include these dictionaries and the results are shown in Table 4.1 for the ISIC dataset and

Table 4.2 for the EDRA dataset. As mentioned in section 3.8, the orientation features and its classifier

were dropped due to poor results, thus only the color and magnitude of gradient will be considered.

Table 4.1: Individual classifier performances and performance on the test set for ISIC dataset applied to
baseline with concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)

Color 47, 09 61, 49 54, 25

Magnitude 45, 3 72, 26 58, 78

Fusion 44, 44 72, 88 58, 66

Table 4.2: Individual classifier performance and nested cross-validation performance for the EDRA
dataset applied to baseline with concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)

Color 65, 65 84, 23 74, 93

Magnitude 57, 46 76, 64 67, 05

Fusion 64, 84 88, 82 76, 83

The results evolved in opposite directions for both datasets. Applying discriminative dictionaries to

the ISIC dataset led to worse performances for both the individual and combined classifiers. However,

the application of discriminative dictionaries to the EDRA dataset improved the results. The perfor-

mances of all the classifiers slightly improve, as well as the overall balanced accuracy. The sensibility

improved 3, 44%, the specificity improved 2, 11%, while the balanced accuracy improved 2, 87%, which

shows promise.
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The main limitation of the method used in this section is that there is no guarantee that it learns

a dictionary that has completely separated atoms to represent the two classes, since melanoma and

non-melanoma skin lesions share several properties. Thus, there will be some atoms that can be easily

used by both classes. Making sure the dictionaries represent only their specific class might improve

the result, since the resulting histograms that serve as image features will have a bigger incidence in

different sets of bins for different classes.

4.2 Concatenation of class-specific Sparse Codes

Instead of concatenating the class-specific dictionaries and computing the sparse codes for the resulting

dictionary, we will instead estimate two sparse codes for each image patch: one for the melanoma

dictionary and another one for the non-melanoma. Then, we will concatenate them into one single

sparse code. This is done for both types of features and two classifiers are trained, identically to the

baseline.

The block diagram for this new classification system is shown in Figure 4.2. The modified sparse

coding block is highlighted in green.

Figure 4.2: Block diagram of classification system with concatenation of class-specific sparse codes.
The highlighted blocks in green are the ones modified with respect to the baseline system

The results for the ISIC and EDRA datasets are presented, respectively, in Tables 4.3 and 4.4.

Table 4.3: Individual classifier performances and overall test performance for ISIC dataset applied to
baseline with concatenation of class-specific sparse codes.

Classifier SE (%) SP (%) BACC (%)

Color 39, 32 76, 81 58, 06

Magnitude 50, 43 64, 39 57, 41

Fusion 41, 03 75, 57 58, 3
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Table 4.4: Individual classifier performances and overall test performance for EDRA dataset applied to
baseline with concatenation of class-specific sparse codes.

Classifier SE (%) SP (%) BACC (%)

Color 63, 27 84, 77 74, 02

Magnitude 60, 00 79, 35 67, 67

Fusion 61, 24 87, 59 74, 41

This method achieved worse results than the methodology described in Section 4.1. Once again,

the results for the ISIC dataset were overall worse than the ones achieved by the baseline. For the

EDRA dataset, this method still managed to obtaine a marginal improvement of 0, 45% with respect to

the baseline.

4.3 Clustering of dictionary atoms

As mentioned in the previous sections, one of the possible reasons for discriminative dictionaries not

working as well as expected is the similarity between inter-class images, which results in the existence

of atoms that are common to both classes in the class-specific dictionaries. A logical step to address

this issue would be to remove the common atoms, in order to improve the discriminative properties

of the dictionaries. This may constrain the images to use more class-specific atoms, improving the

classification.

Ensuring that the class-specific dictionaries do not share common atoms has already been adopted

in other works. In [56], the optimization problem for the dictionary learning is changed such that there

are class-specific dictionaries that contain the most distinctive atoms which are used for classification,

as well as a common dictionary, only used for representation. A different strategy is adopted in this work.

First, a separate dictionary is learned for each of the classes. Then, the two dictionaries are concatened.

Finally, similar atoms are removed using a hiearchical clustering algorithm. In the following subsection

we detail the adopted clustering approach.

4.3.1 Hierarchical clustering

Given a collection of vectors, the goal of agglomerative hiearchical clustering is to iteratively group them

until there is only a single cluster, such that at the beginning each vector represents a cluster and by

the end only one cluster will remain. At each step of the algorithm, two clusters are grouped together if

they are the most ”similar” ones. The ”similarity” between clusters can be measured using a single or

complete-linkage strategy. Different metrics can be used to compute the distances, such as Euclidean

distance, correlation, cosine distance, among others [59] [60].

In context of this thesis, in the first step of the algorithm, each cluster corresponds to an atom in

the dictionary. It is not desirable that only one cluster remains, that is, only one atom. Hierarchical
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clustering must be performed until a stopping criterion is met. The criterion used in this thesis is that

the maximal distance between clusters must be below a given threshold. This distance, defined as

clustering threshold, is considered to be a hyperparameter of the model, which is tuned using cross-

validation, similarly to the other hyperparameters. The atoms identified as common to both classes are

placed in a separate dictionary and discarded. The remaining atoms from both class-specific dictionaries

will be concatenated, as in section 4.1.

The block diagram for this new classification system is shown in figure 4.3. It differs from the baseline

system by an additional block, marked in red, which applies single-linkage clustering to the learned

discriminative dictionaries.

Figure 4.3: Block diagram of classification system with clustering of dictionary atoms. The highlighted
blocks in green are the ones modified with respect to the baseline system

The results for the ISIC and EDRA datasets are presented, respectively, in Tables 4.5 and 4.6.

Table 4.5: Individual classifier performances and test performance for ISIC dataset applied to the base-
line system with atom clustering applied to a concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 45, 3 68, 32 56, 81

Magnitude 55, 56 57, 143 56, 35

Fusion 51, 28 68, 74 60, 01

Table 4.6: Individual classifier performances and test performance for EDRA dataset applied to the
baseline system with atom clustering applied to a concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 60, 7 82, 04 71, 52

Magnitude 55, 95 73, 91 64, 93

Fusion 61, 52 83, 79 72, 66

With respect to the ISIC dataset, performing hierarchical clustering of dictionary atoms improved the

results comparing to the discriminative approach presented in Section 4.1. Despite this, it still fell slightly

short of the performance of the baseline system. For the EDRA dataset, with a balanced accuracy

of 72, 66%, this method proved to be worse than all methods tested in this chapter and the baseline
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system.
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Chapter 5

Deep Features

Thus far, the focus on the improvement on the baseline system has been in the dictionary learning and

sparse coding section, using the hand-crafted features detailed in Section 3.3. This chapter aims at

investigating the use of a different kind of features, extracted with a convolutional neural network (CNN).

5.1 Deep learning

With the exponential improvement of computing capacity in recent years, paired with an increase in the

number of images available for model training, deep learning methods and convolutional neural networks

(CNNs) in particular, became the state of the art in a wide range of image classification tasks [61] [62]

[63], including skin cancer detection [64] [26] [27] [25] [65].

Unlike other pattern recognition methods, such as the one presented in Chapter 3, which require the

design of hand-crafted features, neural networks are able to learn the features themselves, directly from

the images. This makes them easy to use, which also fuels their popularity.

An example of a CNN is shown in Figure 5.1. The basic architecture of a convolutional neural network

typically comprises three different types of layers [66]. The convolution layers consist of a number of

small filters, which are applied to the input image, or to the outputs of previous layers. This results in a

bank of feature maps. These maps then go through an activation function such as the rectified linear

unit (ReLu) [67] [68]. This convolutional process may be followed by a pooling layer, which reduces the

spatial size of of its input. A commonly used pooling function is max pooling [69]. Max pooling passes

a filter through the feature maps, keeping only the highest value caught by the filter. At the end of the

CNN, there are fully connected layers, responsible for performing classification. The final layer normally

has the same number of units as the number of classes in the classification problem. In this case, the

activation function is a softmax function that transforms the output into a number in the range [0, 1], which

gives the probability of a given image belonging to a given class.
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Figure 5.1: Example of a convolutional neural network. Source [70]

5.2 Deep features

This section describes the experiments using features extracted with a CNN, namely, the VGG19 [1], a

convolutional neural network with 19 layers, trained on the ImageNet database [71]. A brief explanation

of the VGG19, as well as the extracted features is found in appendix C.

5.2.1 Deep features applied in baseline

First of all, the deep features were used in the baseline system, replacing the hand-crafted ones. This

means that instead of two types of features (color and magnitude of gradient) that are used to obtain two

dictionaries and classifiers, we will estimate only one dictionary and classifier.

The results for the baseline using exclusively the deep features are presented in Tables 5.1 and 5.2

for the ISIC and EDRA datasets, respectively, as well as the previous results for the baseline system

and the fusion of the 3 classifiers.

Table 5.1: Individual classifier performances and test performance for ISIC dataset with the inclusion of
deep features in the baseline system.

Classifier SE (%) SP (%) BACC (%)
Color 43, 59 75, 16 59, 37

Magnitude 56, 41 63, 77 60, 09

Deep 51, 28 62, 11 56, 7

Fusion with 2 classifiers 47, 01 75, 36 61,19

Fusion with 3 classifiers 47, 01 75, 16 61, 08

Table 5.2: Individual classifier performances and test performance for EDRA dataset with the inclusion
of deep features in the baseline system.

Classifier SE (%) SP (%) BACC (%)
Color 64, 67 82, 18 73, 42

Magnitude 55, 50 77, 97 66, 73

Deep 52, 19 78, 86 65, 53

Fusion with 2 classifiers 61, 40 86, 51 73, 96

Fusion with 3 classifiers 63, 37 86, 95 75,16
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The system based on deep features seems to achieve lower performances than both of the hand-

crafted ones. Similarly to the experiments with the baseline model, the late fusion between the hand-

crafted and deep classifiers was performed (see the bottom rows of the two tables). This late fusion

produced different results for the datasets. While for the ISIC dataset, the balanced accuracy remained

somewhat the same, the results for the EDRA dataset benefited from the inclusion of deep features with

an overall increase in sensitivity, specificity and balanced accuracy.

5.2.2 Deep features applied in discriminative dictionaries

The deep features are now incorporated in the system that uses discriminative dictionaries, described

in Section 4.1. Using this system, the deep features once again replaced the hand-crafted ones and a

single classifier was used to classify the test images whose results are presented in Tables 5.3 and 5.4

for the ISIC and EDRA datasets, respectively. Adopting the same strategy to report the results as in the

previous section, we also show the performances for the fusion of the three classifiers.

Table 5.3: Individual classifier performances and test performance for ISIC dataset with the inclusion of
deep features in the system with class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 47, 09 61, 49 54, 25

Magnitude 45, 30 72, 26 58, 78

Deep 56, 41 54, 24 55, 33

Fusion with 2 classifiers 44, 44 72, 88 58, 66

Fusion with 3 classifiers 47, 01 73, 09 60,05

Table 5.4: Individual classifier performances and test performance for EDRA dataset with the inclusion
of deep features in the system with class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 65, 65 84, 23 74, 93

Magnitude 57, 46 76, 64 67, 05

Deep 54, 22 79, 02 66, 62

Fusion with 2 classifiers 64, 84 88, 82 76,83

Fusion with 3 classifiers 62, 21 88, 54 75, 38

The combination of deep features with discriminative dictionaries showed different behaviours for the

two datasets. The inclusion of deep features and a third classifier in the late fusion improved the results

comparing to using only two classifiers, with the ISIC dataset.

5.2.3 Deep features applied in discriminative sparse codes

The deep features are now incorporated in the system presented in Section 4.2, i.e., the one that com-

putes separate sparse codes for each class. The performances of the individual classifiers and the late
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fusion with and without the classifier trained with deep features are presented in tables 5.5 and 5.6 for

the ISIC and EDRA datasets, respectively.

Table 5.5: Individual classifier performances and test performance for ISIC dataset with the inclusion of
deep features in the system with class-specific sparse codes.

Classifier SE (%) SP (%) BACC (%)
Color 39, 32 76, 81 58, 06

Magnitude 50, 43 64, 39 57, 41

Deep 51, 28 59, 63 55, 46

Fusion with 2 classifiers 41, 03 75, 57 58, 30

Fusion with 3 classifiers 47, 01 76, 19 61,6

Table 5.6: Individual classifier performances and test performance for EDRA dataset with the inclusion
of deep features in the system with class-specific sparse codes.

Classifier SE (%) SP (%) BACC (%)
Color 63, 27 84, 77 74, 02

Magnitude 60, 00 79, 35 67, 67

Deep 55, 42 79, 78 67, 60

Fusion with 2 classifiers 61, 24 87, 59 74, 41

Fusion with 3 classifiers 61, 29 88, 82 75,06

The inclusion of deep features in this system has improved the performance in both datasets. Even

though the system presented in Section 4.2 achieved lower results than the baseline system for the ISIC

dataset, the inclusion of a dictionary and a classifier based on deep features, in the decision process

increased the results on the test set, both with respect to the results presented in 4.2 and the previous

approaches presented in this chapter.

The performance of this system with the inclusion of deep features in the EDRA dataset also im-

proved the results comparing to the one presented in Section 4.2.

5.2.4 Deep features in system with clustering of dictionary atoms

The deep features are now included in the system presented in Section 4.3. The performances of

the individual classifiers and the late fusion with and without the classifier trained with deep features

are presented in Tables 5.5 and 5.6 for the ISIC and EDRA datasets, respectively. Once again, the

inclusion of deep features and a third classifier in late fusion achieved better results for both datasets.

Even though other configurations achieved better performances for the EDRA dataset, this is the best

performing model for ISIC.
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Table 5.7: Individual classifier performances and test performance for ISIC dataset with the inclusion of
deep features in the system with atom clustering applied to a concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 45, 30 68, 32 56, 81

Magnitude 55, 56 57, 14 56, 35

Deep 54, 7 62, 94 58, 82

Fusion with 2 classifiers 51, 28 68, 74 60, 01

Fusion with 3 classifiers 56, 41 71, 43 63,50

Table 5.8: Individual classifier performances and test performance for EDRA dataset with the inclusion of
deep features in the system with atom clustering applied to a concatenation of class-specific dictionaries.

Classifier SE (%) SP (%) BACC (%)
Color 60, 70 82, 04 71, 52

Magnitude 55, 95 73, 91 64, 93

Deep 55, 74 79, 45 67, 60

Fusion with 2 classifiers 61, 52 83, 79 72, 66

Fusion with 3 classifiers 61, 37 86, 29 73,83
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Chapter 6

Comparison and Assessment of the

Proposed System

In this section, we compare our best performing system, presented in Section 5.2.4, with the participants

of the 2017 ISIC challenge [72]. Some experiments to assess the the relevance of initialization in the

dictionary estimation and the amount of data are also performed.

6.1 In the context of the ISIC 2017 challenge

As mentioned before, the ISIC dataset is provided by the International Skin Imaging Collaboration, which

holds a challenge every year on skin cancer detection. This particular dataset is from the 2017 edition

[72]. Thus it is possible to compare the proposed model with the contestants of that edition.

There are three sub-challenges each year: lesion segmention, lesion dermoscopic feature extraction,

and lesion classification. The lesion classification challenge also ranks and awards the contestants in

three categories:

• ROC AUC for melanoma classification;

• ROC AUC for seborrheic keratosis classification;

• ROC AUC for melanoma and seborrheic keratosis classifications combined (mean value).

Since this thesis is solely focused on melanoma classification, only that segment of the challenge

will be considered. The receiving operator characteristics curve (ROC curve) is a graph that compares

sensitivity and specificity at all classification thresholds [73]. The SVM classifier assigns all images a

score in the range [0, 1] and the classification threshold is the value at which the decision is made. This

probabilities are calibrated using Platt scaling [74]. For example, if the classification threshold is 0.5,

all scores below 0.5 are assigned to one class and all values above it are assigned to the other. The

area under the curve (AUC) of the ROC curve gives a measurement of performance across all possible

classification thresholds [73] [75].
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The ROC AUC score for our system, as well as the scores of a small selection of the contestants

is presented in Table 6.1. The table not only presents the ROC AUC scores of the contestants, but

also their sensitivity, specificity and BACC as well as their final position on the category for melanoma

classification.

Paper Position ROC AUC SE (%) SP (%) BACC (%)

[76] 1o 87, 40 54, 70 95 74, 85

[77] 5o 83, 60 35, 00 96, 5 65, 75

[78] 9o 79, 10 17, 10 99 58, 05

[79] 11o 78, 30 47, 00 91, 5 69, 25

[80] 15o 75, 90 30, 80 95, 9 63, 35

[81] 17o 71, 50 40, 20 81, 2 60, 70

Proposed −− 64, 48 56, 41 71, 43 63, 50

[82] 19o 63, 60 10, 30 93, 2 51, 75

[83] 20o 62, 30 41, 90 82, 8 62, 35

[84] 22o 49, 50 47, 00 51, 1 49, 05

Table 6.1: Results for some contestants of the 2017 ISIC challenge.

In the context of the ISIC 2017 competition leader board for the melanoma classification category,

our system is on the 78, 26% percentile, which means that 78, 26% of the contestants achieved a higher

ROC AUC than us, which is not very good. However, if the leader board was arranged according to the

BACC, the proposed system would rank in the 39.13% percentile, which is significantly higher.

It should be noted that the ISIC challenge allows for the use of external data, not provided by them.

A fraction of contestants use external data and it may be unfair to compare their systems with those that

are trained without extra data, given the relevant role training data plays in classifier performance. If the

systems trained with extra data are then excluded, our system would be in the 71, 43% percentile for the

ROC AUC and the 35, 71% for the balanced accuracy.

It should be taken into consideration that in this thesis we selected the best model based on the

metrics described in appendix B, not on ROC AUC which was used by the other methods. Similarly,

the same reasoning applies when comparing the sensitivity, specificity and balanced accuracy these

systems achieved with ours, since these systems did not aim to get the best possible results on these

evaluation metrics.

6.2 Relevance of Dictionary Initialization and Datasets

This section discusses the influence of dictionary initialization and of the training set in the final results.
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6.2.1 Dictionary initialization

By inspection of the experimental results we realized that, not only the parameters (number of atoms,

clustering threshold, C and γ for the SVM) tuned in the cross-validation influenced the performance

on the test set, but the dictionary initialization as well. The dictionary initialization is handled by the

dictionary learning function from the spams package [54]. This toolbox randomly takes k feature vectors

from the training set to serve as the initial atoms. This introduces a variability in the estimated dictionaries

and influences the classification performance of the model.

We wanted to determine the degree of influence of the initialization process. Thus, we carried out

a simple experiment that consisted of selecting the best configurarion of parameters for the ISIC 2017

obtained through cross-validation and the model described in Section 5.2.4, learn a set of 100 dictio-

naries, and use them to train 100 classification systems. Then, the sensitivity, specificity, and balanced

accuracy were computed for each of them, on the test set. The results are presented in Figures 6.1, 6.2

and 6.3 respectively.

Figure 6.1: Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for the
ISIC dataset.

Through inspection of the figures it is clear that the dictionary initialization does introduce some

significant variability in the final results. This variability is more apparent in the sensitivity with values

in the range [45.29, 53.85], while the specificity is in the range [71.84, , 75.16], which translates into the

balanced accuracy being in the range [59.41, 63.57].
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Figure 6.2: Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for the
ISIC dataset.

Figure 6.3: Variation of sensitivity, specificity and balanced accuracy with dictionary initialization for the
ISIC dataset.
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6.2.2 ISIC and EDRA

We have treated the ISIC and EDRA datasets as two separate datasets and reported results for all of the

methods in both datasets. Here, and to ascertain the influence of the training data in the final result, the

EDRA dataset is merged with the training and validation images of the ISIC dataset. This augmented

set is then used to train the model described in section 5.2.4 and evaluated on the test set of the ISIC

dataset. The results are presented in table 6.2.

Table 6.2: Proposed system performance on ISIC test set when trained with a mergure of the EDRA
dataset and the ISIC training and validation sets.

Training Set SE (%) SP (%) BACC (%) ROC AUC

ISIC 56, 41 71, 43 63, 50 64, 48

Augmented set 58, 12 71, 22 64, 67 67, 41

The addition of the EDRA images to the training set resulted in an improvement of 1, 17% with re-

spect to the same system trained only with the ISIC training and validation sets. This improvement also

extended to the ROC AUC of the system, where it was more pronounced. Even though there was an im-

provement in the BACC, this value is still low, probably due to the EDRA images not being representative

of the ISIC test set. This just goes to show the difficulty of the ISIC test set.
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Chapter 7

Conclusion

This chapter discusses the achievements obtained in this thesis and proposes some future work that

build upon what was done so far.

7.1 Achievements

This thesis focused on the analysis of several methods and algorithms based on sparse representations.

In Chapter 3, an initial baseline system was proposed to tackle the problem of melanoma classifica-

tion. This system made use of handcrafted features such as color and gradient histograms represented

by sparse coding using over-complete dictionaries. The baseline system is topped by a late fusion of

support vector machines that performs the final classification.

In Chapter 4, the notion of discriminative dictionaries is introduced, as well as a couple of methods

that make use of them. Their integration is the baseline system is also discussed. The chapter ends by

introducing hierarchical clustering applied to the dictionary atoms with the objective of removing inter-

class common atoms.

Chapter 5 explores the use of deep learning for the problem of melanoma detection. Transfer learning

is made using a convolutional neural network pre-trained on the ImageNet dataset, namely the VGG19.

Features are extracted from this network and are applied in the baseline system as yet another source

of information for melanoma classification.

Two datasets were used, the ISIC and EDRA datasets. Promising results were achieved for both

datasets, with different systems. The System presented in section 5.2.4 achieved a BACC of 63, 50%

on the ISIC dataset and the system presented in Section 4.1 achieved a BACC of 76, 83% for the EDRA

dataset.

7.2 Future work

The final system obtained, even though it achieved promising results, is quite simple compared to some

state-of-the-art methods for image classification which mainly make use of convolutional neural net-
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works. It would be interesting to test this system on other public image datasets to see how it performs

in an area other than skin cancer detection. The application of hierarchical clustering to any dictionary

could also be further researched, since it quite increased the capability of the system in such a difficult

dataset as is the ISIC dataset. Its inclusion in more modern deep learning systems for feature pruning

could also be considered and studied.

With the increasing complexity of deep learning models, with neural networks that need to learn

millions of parameters, making its use not only of memory, but also time consuming, methods like sparse

representations and clustering, which cuts a lot of redundancies and therefore reduces memory and

boosts efficiency, seem to be a promising direction in the near future.
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Appendix A

Support Vector Machine

The Support Vector Machine (SVM) is a popular binary classifier and has been used in a wide range

of problems including the detection of skin cancer. In its simplest version, it separates the data using a

hyperplane decision boundary.

This appendix provides a brief explanation of SVMs and is based on [85],[86].

A.1 Linearly separable data

Let (xi, yi), i = 1, ..., N be a dataset where xi is an input vector of dimension d, i.e., xi ∈ Rd and

yi ∈ {−1, 1} is the binary label associated to data point xi.

The simplest case for the application of the SVM algorithm is a two-class problem, where the data

from two classes is linearly separable. This means that there is a hyperplane in input space Rd that

separates the data from the two classes, defined by

w · x + b = 0, (A.1)

where w is the normal vector to the hyperplane and b
||w|| is the perpendicular distance from the hyper-

plane to the origin. The linear separability property for a 2-dimensional problem can be viewed in figure

A.1, where the red class and the blue class are linearly separable.

Another important concept in support vector machines is the concept of margin. Referring to figure

A.1, d1 and d2 are the distances from H1 and H2 to the decision hyperplane, often referred to as margin

hyperplanes. These margin hyperplanes, parallel to the hyperplane, contain the data points that are the

closest to the decision hyperplane and these points are called the support vectors which must be found.

If the hyperplane is placed such that it is equidistant from H1 and H2, then d1 + d2 is the margin of the

classifier.

When the data points are linearly separable, as seen in figure A.1, there are an infinite number of

hyperplanes that can separate the given data. it can be argued that the best hyperplane is the one

with (maximum margin) [52]. The bigger the margin, the more reliable will be the classification, since

there will be a bigger leeway in where new samples from each class can be while still being correctly
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Figure A.1: Optimal hyperplane with linearly separable data in SVM algorithm

classified.

It can be proven that the margin m can be calculated by

m =
2

||w||
, (A.2)

where w is the vector orthogonal to the hyperplane [52]. Maximazing the margin then corresponds to

minimizing the magnitude of vector w.

Ensuring that the data is linearly separated by a hyperplane defined by A.1 is the same has finding

a w and b such that it is verified for each input xi

w · xi + b ≥ +1, for yi = +1

w · xi + b ≤ −1, for yi = −1

, (A.3)

which can be combined into

yi(w · xi + b) ≥ 1. (A.4)

Taking all this into account, the optimization problem to find the hyperplane (find w and b), such that

it separates the data points and does so with maximum margin boils down to

minimize
w,b

1
2 ||w||

2

subject to yi(w · xi + b) ≥ 1,

for i = 1, ..., N,

. (A.5)
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A.2 Non linearly separable data

Most classification problems are not linearly separated and cannot be solved with the technique de-

scribed so far.

To classify non-linearly separable data using an hyperplane some data points should be allowed to

be on the wrong side of the margin hyperplane. These points should be penalized in such a way that the

classifier would make as few errors as possible while separating the majority of the data as intended.

Since there are exceptions to A.4, this method is called soft margin. Slack variables ζi ≥ 0 are then

introduced and a non-zero value for ζi assigns a cost penalization to sample xi if the sample does not

comply by the margin constraint.

The new optimization problem is the formulated as

minimize
w,b,ζ≥0

1
2 ||w||

2 + C
∑
i ζi

subject to yi(w · xi + b) ≥ 1− ζi,

ζi ≥ 0

for i = 1, ..., N,

(A.6)

where C controls the penalties associated to data points on the wrong side of the margin hyperplanes.

A.3 Higher dimentions

Another way to deal with non linearly separable data is by mapping the input vectors xi to a higher

dimensional feature space S through a given transformation Φ(x), where Φ(x) is the feature mapping

that transforms the input from Rd to Rd′ , where d′ > d. A toy example is Φ(x) = (x1, x2, x
2
1 + x22), this

transformation mapped the input xi from R2 to R3.

The classification is then made by finding an hyperplane in the higher dimensional space S that

corresponds to a flexible surface in the original dimensional space. This corresponds to using the same

optimization problem for separable data but replacing its inner products between inputs < x, x′ > by the

Kernel function K(x,x′) = Φ(x) ·Φ(x′). A popular choice for the kernel is the radial basis function kernel

(rbf)

K(x,x′) = exp(−γ||x− x′||2). (A.7)

As stated, the radial basis function K(x,x′) defines a ”similarity” between the two training samples x

and x′ and is parametrized by the parameter γ that controls the width of the gaussian.
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Appendix B

Evaluation Metrics

The problem at hand is the classification of dermoscopic images, and even though there are several

different skin lesions, in this problem the focus is distinguishing between melanoma and non-melanoma

skin lesions. It is therefore a binary classification problem and in such cases, and in some medical tests,

two notions can be introduced: sensitivity and specificity.

Sensitivity (SE) measures true positives. Within the context of this problem, it shows the ratio be-

tween correctly classified melanoma skin lesions and the total number of melanoma skin lesions in the

dataset. In a similar way, specificity (SP) measures the true negatives. That is, the ration between cor-

rectly classified non-melanoma skin lesions and the total number of non-melanoma skin lesion samples

in the dataset that is being tested.

These two metrics describe how the system performs for each class, but it is also convenient to have

a single value that measures the quality of the system. One way to obtain such a score would be to

calculate the ratio between the number of samples correctly classified and the total number of samples.

This however does not work in the presence of unbalanced data or when different types of error have

different costs. For example, only 20% of the test dataset images correspond to melanoma skin lesions.

Therefore if the classifier always said that the image is a non-melanoma skin lesion, it would still classify

80% of the samples correctly and one would get the impression that the system is good when it is

definitely not the case.

The adopted measure is the average between sensitivity and specificity, which gives the average

performance of the system on both classes. This metric is called balanced accuracy (BACC).
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Appendix C

VGG 19

The convolutional neural network VGG19 was developed by Karen Simonyan and Andrew ZisserMAN

[1], and was part of the model that came first and second in the localization and classification task,

respectively, of the ImageNet 2104 challenge [87].

The VGG19 network is comprised of sixteen convolutional layers, arranged in 5 blocks and three fully

connected layers in the end (total of 19 layers, hence the name), as can be seen in figure C.1.

Figure C.1: VGG 19 architecture. Source [88]

C.1 Feature extraction

As explained, the VGG19 net is comprised of several blocks of convolutional layers, which will gradually

reduce the size of the feature maps extracted by the convolution process. These feature maps are

the deep features to be extracted, so what is left is to choose the layer to extract these features from
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and, depending on the layer, the features will have very different dimensions and levels of abstraction.

The first few layers will perform convolution on inputs closely related to the original image, therefore the

features will be very low-level, as they will be closely related to the structures in the image. However,

this also means that the feature maps are very large, a feature vector from the second layer for example

would have a size of 224 × 224 = 50176, which is very deterrent, given the memory limitations. The

further one goes into the network, more high-level the features become, shortening in size in the process,

allowing their use.

The features are then to be extracted from the fourth convolutional layer of the fifth block of layers.

At the output of this layer are 512 activation maps of size 14 × 14, where each activation map will be a

feature vector. This means that for every image, there are 512 feature vectors of size 14 × 14 = 196.

These features will replace the hand-crafted and the systems previously described will be trained and

tested with these features.

One final consideration that must be made is that the VGG19 net only accepts square images of size

224× 224, therefore all dermoscopic images had to be resized to fit this. Since the great majority of the

images are not square images, this means that their aspect ratio will be distorted, which may potentially

hinder the results.
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