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Resumo

A predição de eventos futuros foi sempre vista como uma ferramenta útil na resolução de problemas de

controlo. A posse de informação sobre os próximos estados do sistema a estudar fornece uma profunda

compreensão do seu funcionamento. Este relatório explora as consequências e as razões por trás da adição

de esparsidade na identificação dos modelos que regem o sistema e na predição dos seus resultados. Para

testar a validez desta solução, uma comparação entre o desempenho de métodos que ativamente procuram

respostas esparsas e outros que não o fazem é realizada. Com o propósito de tentar descrever o sistema

com um modelo oculto de Markov, um método alternativo de identificação é proposto.

A estimativa dos valores dos resultados é feita através de uma abordagem linear. Para generalizar a

predição de coordenadas de um alvo para grupos de alvos, um método que aplica a resolução da equação

de Fokker-Planck no movimento dos pontos adjacentes aos objetos a seguir é construído. A escolha da

representação baseada numa grelha de pontos provém de uma variedade de fatores, tais como a natureza

discreta dos dados usados e a redução da carga de trabalho devido à simplificação do espaço de estados.

Este trabalho serve de base para futuros desenvolvimentos de métodos de predição mais rápidos

e de confiança. Particularmente, este relatório elabora as vantagens e desvantagens da introdução de

esparsidade como uma parte crítica do preditor. O resultado final é uma solução adequada para predições

a curto prazo.

Palavras-chave: Controlo adapatativo, Esparsidade, Identificação de sistemas, Predição de

séries temporais.
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Abstract

The prediction of future events has always been regarded as a useful tool for solving control problems.

Possessing knowledge over the forthcoming state of the studied system provides a deeper understanding

of its behaviour. This report explores the addition of sparseness in the identification of the models

generating the output and subsequent effects on the forecasting of said outcome. A comparison between

sparsity aware and unaware methods is performed to test the validity of each solution. An alternative

system identification method is proposed after pondering on the assumption of a Hidden Markov Model

representing the system.

A linear approach is considered for the estimation of the output data values. In order to accommodate

the prediction of several target coordinates as a group, an application of the Fokker-Planck equation to

the motion of the objects is devised on a set of points surrounding the tracked objects. The choice of a

grid-based representation is backed up by various factors such as the discrete nature of the data values

in the preferred database and the reduction of the workload due to the simplification of state space.

This work provides a basis for the continued search of faster and reliable forecast methods. Partic-

ularly, the report elaborates on the advantages and disadvantages of introducing sparseness as a crucial

part of the predictor. The end result is an adequate solution for short-term predictions.

Keywords: Adaptive control, Sparsity, System identification, Time-series forecasting.
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Chapter 1

Introduction

The aim of this work is the development of an algorithm for recursive target tracking using adaptive

predictors with continuous estimation. The use of sparse techniques to improve the estimation of the

motion of said targets by using parsimonious motion models will also be explored. This work has a

close relation with real-life applications as it is inserted within the scope of project SPARSIS (https:

//www.it.pt/Projects/Index/4440).

The Sparse Modeling and Estimation of Motion Fields project, acronymed SPARSIS, is an FCT

(Fundação para a Ciência e a Tecnologia) funded project whose purpose is, as the name suggests, the

exploration of the usage of sparse techniques to improve the estimation of multiple motion fields as well as

space-varying matrices (stochastic matrix) describing the switching process associated to the movement

of a target. By the end of this dissertation, it is expected that at least one of the desired scientific

outcomes of this project has been achieved, these being: the obtention of reliable estimates for the

model parameters; to remove the overly smoothed character of the field estimates; the acceleration of the

estimation procedure towards real time applications and extension of these techniques to multi-camera

settings and the development of an adaptive algorithm for the online estimation of multiple motion fields

able to update in a recursive way the number of fields and the field estimates whenever new information

arrives.

1.1 Motivation and prior work

Nowadays, with the amount of sensors deployed all around the globe there is an excess of data available

and a shortage of means to analyze and process the information in it contained. Take, for example,

the area of video surveillance, where most of the data generated by the hundreds of cameras in public

places is left unprocessed, and only a small portion is observed by humans. Therefore, there is the need

for the implementation of a solution that estimates the normal behaviour and detects abnormal events,

preferably, in real-time. The use of motion fields in the description of such actions or trajectories is

considered, due to the usefulness that this method has proven to have in this subject. Furthermore, the

methods associated to time series forecasting, that are usually applied in a different framework will also
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be explored as a source of inspiration.

The ability to predict or estimate future values of a series is a feature highly sought by many, especially

those working in areas like business, management and other economic related fields. Understanding the

way a series varies and how it will behave in the long or short-term allows for a more accurate and less

risky planification of sales strategies, contingency plans and other applications [1, 2]. From the usage of

simpler methods such as the popular autoregressive integrated moving average model (ARIMA) or the

Kalman-filter based solutions, to non-linear models reliant on neural-networks and even combinations

of both linear and non-linear methods, there exists a notable number of approaches for very distinct

forecasting problems [3, 4]. Over the years, various approaches have been proposed for the forecasting of

data, be it either using just non-linear solutions [5, 6] or coupled with other linear methods [7].

The stochastic approach to the forecasting of time-series led to the formulation of autoregressive (AR)

and moving average (MA) models which generated a considerable body of literature in the area of time

series, dealing with parameter estimation, identification, model checking, and forecasting. Later, this

knowledge was integrated by Box and Jenkins in their publication Time Series Analysis: Forecasting

and Control [8]. The ARIMA models and their extensions were popularized due to the advent of the

computer [9] and are still largely used these days as a solution for linear forecasting problems..

On the other hand, the relatively recent nonlinear methods that employ neural networks and other

machine-learning methods are becoming more and more popular with the evolution of the computer

capabilities. These metods are particularly useful for nonlinear processes that have an unknown functional

relationship and, consequently, are difficult to fit.

Each of these methods possesses its advantages and disadvantages. As with many other situations,

there is no optimal solution for the time-series prediction problem. The best option is usually the one

that better performs according to the specific requirements of the issue at hand. Although management

and economic applications are the most obvious motivations for the usage of forecasting, they are by

far not the only attractive options, even more so because with the development of new technologies and

methods, new fields of study surge and this menu of options is bound to grow. The main motivation

behind this work is the application of this prediction in areas related to the motion of targets. More

specifically, in this report the creation process of an algorithm capable of estimating and predicting the

trajectories of singular and/or groups of targets is planned and described.

The field of motion estimation has been the subject of major attention, with various contributions

and new applications surging over the past few years [10]. Some of these applications include weather

phenomena tracking and prediction [11–13], the characterization of human movement using the dynamic

model of the movement as a feature for gesture recognition [14] and person re-identification [15], public

surveillance and anomaly detection [16, 17]. Motion processes associated with object trajectories are

prone to changes due to their dependence on the objects surrounding environment. Although most of

these changes originate from unpredictable or unknown sources, their influence in the variation of the

motions is a major factor to be considered when studying or working with systems that describe these

processes. In a dynamic system such as this one, the ability to adapt to the situation at hand is a key

component that affects the performance of predictors. There have been some approaches that sought to

2



estimate the different motion fields active in target trajectories, either by clustering various trajectories

according to certain patterns present in the data [18], taking into account the position of the targets,

resulting in a space-dependent motion model [19] or by modelling the observed trajectories using random

vector fields [20]. While these and other projects1 have dealt with the offline estimation of motion fields,

in this work an online algorithm that updates its results as new information becomes available is sought.

Lastly, in an attempt to enhance the estimation and identification of these motion models, sparsity is

pursued, as it is preferable to simplify the solution instead of over-fitting it to the problem at hand. There

is already a broad set of sparse algorithms to choose from, with many modifications of other estimation

algorithms being studied [21–23], though in this report only one sparsity-aware algorithm will be tested.

The choice was made after reviewing the results from [24].

1.2 Objectives

This report expands on time series forecasting directed mainly, but not only, towards the prediction of

one or more targets future positions based on previous information obtained from video image sequences.

More specifically, considering methods directly related to the usually called Box-Jenkins approach [8], an

algorithm is proposed and implemented. It is expected that this algorithm be capable of identifying and

selecting the appropriate models that make up the input data signals, estimate the parameters associated

to said models and with that provide a reasonably accurate estimate of a fair amount of future data

values. A crucial part of this algorithm takes its roots in the work done by Rui Brás on Adaptive Control

of Sparse Models [24], with the intent of applying the knowledge gained from that report in more realistic

scenarios. Granted that albeit an important aim of this report is the study of the impact of sparsity

aware models in the forecast of subsequent values of a desired series of data, the contribution of both

sparsity aware and unaware algorithms will be compared.

1.3 Report Outline

This report is composed of various chapters, starting with Chapter 1, that contains a brief introduction

of the work done, as well as the motivation and objectives behind it. In Chapter 2 an explanation of the

motion generation model is given and some examples are shown. Chapter 3 goes over the estimation of

signals and estimation algorithms used. The prediction of signals is reviewed in Chapter 4. Some results

are shown in Chapter 5 while conclusions are taken in Chapter 6.

1ARGUS project: https://www.it.pt/Projects/Index/1593
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Chapter 2

Problem definition and solution

architecture

This chapter delves deeper into the description of the issue tackled in this report, providing the reader

with a detailed analysis of the various components that compose the problem, and their subsequent

solutions. Due to the intricate nature of the subject, it is broken down into several simpler tasks that

will then be approached and studied individually. As solutions for those issues are devised and proposed,

an algorithm containing such methods is constructed. The layouts of both the problem and the solution

models are shown below.

2.1 Objective

The main goal of the work presented in this report is the development of an algorithm capable of forecast-

ing the values of a time dependent series of points in an interval of time instances that succeed the data

known at the present epoch. To pursue such an aim, it is essential to have an understanding of the origin

of the signal, be it either by knowing the underlying model that produces it or by employing a model

whose output closely approximates the desired one. Since the plant of the actual system is inaccessible, a

replacement is proposed to emulate the behavior of the model in the hopes that the forecasting of future

values of the time series obtained via this method resembles the actual thing.

It is assumed that the signal originates from white noise, presumably Gaussian, that then passes

through two blocks, each adding a different component to the outcome. The first block creates an output

that corresponds to the local deviation from the expected, more general motion that is generated by the

second block. The signal x, henceforth designated the motion of the target (time series), is the product of

including a stationary signal y, based on an AR/ARMA model in the creation of a non-stationary signal,

as depicted by the diagram presented in figure 2.1 below.

5



Figure 2.1: Block diagram of the motion generating system.

2.2 Motion Generation

The consecutive alterations in value of a sequence of points along a temporal axis produce an effect that,

for an outside viewer, can be perceived as movement. In an attempt to describe this process of changing

positions, the motion of an object is characterized based on the general evolution of these changes and

the more detailed adjustments present in the series.

2.2.1 Stationary signal

The first step in generating motions consists in obtaining a stationary signal y with an AR/ARMA model

y(k) =
C

A
e(k), (2.1)

where e(k) is the error at the instance of time k with

E[e2(k)] = σ2
e . (2.2)

This stationary signal, when receiving as input Gaussian white noise, results in a signal whose properties

such as mean and variance are constant, hence the name. It is assumed that the polynomials of both parts

of the fraction are monic and the system is causal and invertible, that is, the degree of the numerator is

equal to that of the denominator. Under these assumptions, the general case comes asA(z) = zn + a1z
n−1 + ...+ an,

C(z) = zn + c1z
n−1 + ...+ cn.

(2.3)

These expressions are, however, not useful in the context of prediction, and so, their reciprocal forms will

be used instead. By multiplying each of them by q−n one obtains the polynomialsA
∗(z) = 1 + a1z

−1 + ...+ anz
−n,

C∗(z) = 1 + c1z
−1 + ...+ cnz

−n,

(2.4)

that relate the present to the past instead of the future to the present. From (2.1) it is possible to

reach the expression of the next value of y by the multiplying both sides by A∗ and isolating the current
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instance of the output, as follows,

y(k)(1 + a1z
−1 + ...+ anz

−n) = e(k)(1 + c1z
−1 + ...+ cnz

−n) (2.5)

or

y(k) = −a1y(k − 1)− ...− any(k − n) + e(k) + c1e(k − 1) + ...+ cne(k − n) (2.6)

Similarly, the formula for the output value m-steps ahead can be derived. The result is

y(k+m) = −a1y(k+m−1)− ...−any(k+m−n)+e(k+m)+c1e(k+m−1)+ ...+cne(k+m−n). (2.7)

Further simplifications can be made by dropping the MA part of the model and assuming that only the

error at the latest instance of time is relevant. Since all the terms of C except the first become zero, (2.7)

cuts down to

y(k +m) = −a1y(k +m− 1)− ...− any(k +m− n) + e(k +m). (2.8)

2.2.2 Non-stationary signal

Every motion can be described by a series of points that vary with the progression of a certain variable,

usually time. This series can be represented by adding noise at each point of a predefined motion. The

latter can be generated with the help of a single block that takes one of two forms. The first yields either

straight lines or parts of parabolas and is called an integrator block. It simulates the behaviour of the

function

H(z−1) =
1

(1− z−1)N
, (2.9)

that represents an n-order integration of the input signal. The results of the second form vary in aspect,

since the changes in period and initial conditions define the shape of the output signal. A block of this

type is referred to as a periodic block and has the following expression

H(z−1) =
1

1− z−N
, (2.10)

where N is the period with which the movement repeats. The difference between an integrator block and

a periodic block for a given value of N can be seen by examining the poles they exhibit in the z-plane,

as shown in figure 2.2. While both these transfer functions have N zeros at the origin, the integration

function concentrates all of its poles on the point z = 1. On the other hand the poles of the periodic

function, whose positions are given by

z = e−j
2πk
n ,

k = 0, 1, ..., n− 1,
(2.11)

are equally spaced around the unitary circumference.
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(a) Poles and zeros of an integrator. (b) Poles and zeros of a periodic block.

Figure 2.2: Z-plane representation of the transfer functions of an 9-order integrator block (a) and of a periodic
block with period n = 9 (b).

To facilitate the distinction between these two blocks, forthwith an N-order integrator block will be

addressed to as HN
i , while a periodic block with the same order will come as HN

p .

Integrator block

The output of an integrator block depends on the degree of the denominator and on the initial conditions,

with the former defining the shape of the signal and the latter its position and growth. The equation for

the output of one of these blocks HN
i is

y(k)(h0 + h1 + ...+ hN ) = e(k),

hi = (−z)−ipi,
(2.12)

with pi being the ith entry of the row N of Pascal’s triangle. For null inputs (noiseless outputs) and order

1 or 2 the resulting signal takes the form of a straight line passing on each initial condition. The oldest

initial condition can be thought of as a starting point, since it refers to a constant term used to distinguish

between different lines with the same order. Take, for example, the case of an order 2 integrator with

initial conditions y(1) and y(2). The next term of the output of this system is given by

y(3) = 2y(2)− y(1),

or

y(3) = y(2) + δ(y),

with δ(y) the difference between the initial conditions values. Analogously, the second term can be derived

form the oldest initial condition by adding δ(y) to its value. Under these conditions the slope value can

be computed through
dy(t)

dt
= y(t)− y(t− 1), (2.13)

for H2
i .

The value for the slope of H1
i is 0 since it originates a constant output. With higher order integrators

(N > 3) the result is always the same, at least visually, as the only difference between two blocks with
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different integration order is the speed at which their value grows. To better illustrate this behavior some

signals were generated, using different orders for the same model. The signals can be seen in figures 2.3

and 2.4.

(a) 1st order integration (b) 2nd order integration (c) 5th order integration

Figure 2.3: Integration of a noiseless vector of zeros with initial conditions [1] (a), [1, 1] (b) and [1,1,1,1,1] (c).

The results shown above are based on the assumption that the input signal is zero, however if some

noise is added to the input (assumed Gaussian and white), the output will still be similar to its noiseless

counterpart, figure 2.4. It is noticeable that the jitter from the noise is attenuated with every integration,

becoming smooth after two integrations, with the quickly changing signal transforming into a slightly

curved line. Furthermore, when the the signal stabilizes around a given value the output is similar to the

noiseless input signal, as we can see in figure 2.4 (a) and (b) from the instant 1200 onwards.

(a) 1st order integration with noise (b) 2nd order integration with noise (c) 5th order integration with noise

Figure 2.4: Integration of normally distributed noise with µ = 0, σ2 = 0.05 and initial conditions [1] (a), [1, 1]
(b) and [1,1,1,1,1] (c).

Periodic block

On the other hand, HT
p generates a signal that repeats after some time T and whose output depends

on all the initial conditions until that point. This behaviour gives us a plethora of different signals that

can be generated by varying the periodicity and/or the values of the initial conditions, contrary to HN
i

which generates only two types of signals. While the change in initial conditions dictates the growth of

the output in an integrator block, in a periodic block such changes have a whole other level of impact

since they can alter the signal completely. In figure 2.5 one can see just how distinctly these blocks

react to the same modification in initial conditions. The only noticeable difference in the output of the

integration blocks is the value it reaches after 2000 periods of time, whereas with the same change in

initial conditions the periodic block produced two different signals.
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(a) Initial conditions [1 3 5 4 2] (b) Initial conditions [1 3 5 4 2]

(c) Initial conditions [1 4 2 3 5] (d) Initial conditions [1 4 2 3 5]

Figure 2.5: Output of an integrator block (left) and of a periodic block (right) with different initial conditions.

The periodicity of the signal is also a factor to be considered when working with this type of block.

Although most signals can, under certain conditions, be represented with multiple periods one has to

take into consideration the number of initial conditions needed to generate the same signal. The effect

of an incorrect change in period can be seen below in figure 2.6, where the period of the H block was cut

in half but the initial conditions remained unchanged, thus generating a completely different signal than

the previous output.

(a) Signal with period 500 (b) Signal with period 250

Figure 2.6: Output of a periodic H block with input x = cos (2π t
500

) and period T = 500 (a) and T = 250 (b)

Variable H

While some motions can be described by a single non-stationary model, the possibility of existing a

varying H block is high, especially when dealing with real case scenarios. Such an example is the path

of vehicles and pedestrians in a city, where the different roads and streets provide a set of choices for the

continuation of the motions. A common path with variable H is, for example, the path that a vehicle

creates when travelling through a roundabout, where the entry and exit motions can usually be generated
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by an integrator block Hn
i of order 2 or higher and the middle motion by an excerpt of a sinusoidal HT

p .

Since the motion is bi-dimensional, there is a need for two different motion vectors, although they are

both described in the same way as before. Figure 2.7 illustrates the motion in the plane and the vectors

varying with time.

(a) Motion of a vehicle in a round-
about.

(b) Motion of the vehicle along the
first coordinate.

(c) Motion of the vehicle along the
second coordinate.

Figure 2.7: Bi-dimensional motion (a) and its one-dimensional counterparts (b) and (c).

The prediction of the future motion is done through the use of an algorithm that takes as input the

motion of a target or a group of targets, x̃. The process of forecasting the coordinates starts with the

inversion of the effect of the H block on the motion signal, thus generating an estimate of y, followed by

the computation of the predicted values of the stationary signal m steps ahead by recreating the effect

of the AR model. In summary, the two main steps of the algorithm are expressed as

ȳ(t) =
1

H
x̃(t) (2.14)

and

y(t+m) =
1

A
ȳ(t). (2.15)

The structure of the prediction algorithm is shown below in figure 2.8. Note that x̃ is related to the

output of the motion generation model by

x̃(t) = x(t) + µ(t),

µ(t) ∼ N(0, σ2
µ),

(2.16)

since it is assumed that there is some error µ present on the gathered motion data, possibly with machine

and/or human origin (e.g. low image resolution, inaccurate point selection, etc.).

Figure 2.8: Block diagram of the prediction algorithm.
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Chapter 3

Signal model identification

Here the first phase of the prediction algorithm is explained. This section corresponds to the initial stage

of the Box-Jenkins approach, concerning the valid identification and selection of the models that make

up the system being studied.

3.1 Adaptation

The actual scheme of the system that provides the data available for the development and testing of

the algorithm is inaccessible. An alternative layout was proposed in the previous chapter to overcome

this lack of knowledge in the hopes that with it similar results to the true values of the series may be

achieved. Through a comprehensive inspection of the data, a configuration of parameters that result

in an acceptable substitute of the desired model can be obtained. Such an estimate can be computed

separately for each model, or in a loop until convergence is reached. No restrictions exist that prevent

the model from being time variant, meaning it is allowed to change one or all of its models at any given

instant. It is only assumed that these changes, if they occur, do so at a slower pace than the observation

rate. In other words, the system stays constant long enough to produce a considerable amount of points

that originate from the same model configuration. There is then the need for a section, in the algorithm

to be developed, that addresses the estimation of both stationary and non-stationary parts of the motion

model adaptively.

3.2 Non-stationary model

The motion model, to which the letter H is given for the purpose of identification, is responsible for the

overall shape of the signal. With this model, a signal that bears some sort of resemblance to an actual

trajectory is created, in the sense that it more or less appears to be similar to the path a target might

take. In general, most often than not, a sequence of points pertaining to the motion of a target in a given

interval contains more than one type of movement. This behavior can be simulated through the use of

various models with different initial conditions, although it demands the presence of an adaptive factor

in the model estimator. Furthermore, since the scope of this work includes real-time prediction as one
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of its aims, an online method is chosen over other batch options. To ensure the correct representation

of the model a performance evaluator conducts a test on a set of predefined models, running in parallel,

and then chooses the one that outperforms the others, according to a certain criteria.

Understanding the way the model works is of utmost importance when specifying the evaluation

criteria. An explanation of the theory behind the performance review is then necessary. Let x symbolize

the set of data available and xH the estimates obtained with a predefined motion model H. A qualitative

analysis of the forecast accuracy, to assess the suitability of different models, is performed through the

examination of the evolution of the prediction error, with the goal of minimizing the Euclidean distance

between the calculated values and the actual reference. A measure of the eligibility of a model is obtained

through the examination of a cost function that considers the sum of the squared errors

J(xH) =

t∑
i=1

(
x(i)− xH(i)

)2
, (3.1)

or

J(e) =

t∑
i=1

e2(i), (3.2)

more commonly known as the Least Squares method.

While this equation provides the best fit for the whole motion, given the set of observations, it does not

take into consideration the possible change in parameters that might have occurred during the gathering

of the data, which plays a major role in the determination of the most appropriate model at a certain

time. Instead, the system will give every error sample, regardless of how old it is, the same weight and

consequently try to fit a single motion model to what may be the work of several motion models. To

attenuate this effect and improve the performance evaluator, the error values will pass through a temporal

low-pass filter, as depicted in figure 3.1, so that the system weighs each value based on how far ago it

was obtained.

Consider a first order low-pass filter with transfer function

HLPF (z) =
1− α
z − α

, (3.3)

with impulse response

hLPF (n) = (1− α)αn−1u(n− 1), (3.4)

where u(n) denotes the step function. The set of squared errors of a model H, denoted e2(n), can be

described as a sum of dirac pulses with varying amplitude

e2(n) =

∞∑
k=0

e2(k)δ(n− k). (3.5)

The output of error filtering can then be computed as the convolution of the input with the impulse

response

y(n) = e2(n) ∗ hLPF (n), (3.6)

14



or

y(n) =

∞∑
k=0

e2(k)hLPF (n− k). (3.7)

Replacing (3.4) in the equation above one obtains an expression of the output for n > 0

y(n) = (1− α)

n−1∑
k=0

e2(k)αn−k−1, (3.8)

with y(n) the evaluation function for a predefined model H given n observations.

Figure 3.1: Model of the performance evaluator.

There is also the problem of the change in initial conditions in every iteration. Under this dynamical

environment, the errors of a one-step predictor may be too low for the correct distinction of the models

to occur. In order to counter this problem, a prolongation of the behaviour of each model is done and

the signal passing through the filter will be the sum of a set of errors instead of a single error sample.

Another approach to solve this problem could consist in having a set of models with static (or perhaps

with some sort of dependence between) initial conditions.

3.3 Stationary model

Typically, the trajectories found in the real world are imperfect and possess some perceivable amount of

noise, compared to the more elegant theoretical paths. According to the proposed diagram of the data

signal (figure 2.1), these discrepancies between the desired and the actual values are caused by an auto-

regressive model, possibly with a moving average. In many cases, the addition of an input to compensate

the effect of these inconsistencies results in a more correct guess of the output points. Adhering to that

line of thought, it follows that an estimation of the parameters of such a model is the next logical step

to take. This section provides a comparison between one of the most known algorithms for parameter

estimation, the Least Squares method, and a modified version of the sparsity aware LASSO algorithm.

Formally, the problem states that given a set of p observations Y = [ y(1) y(2) ... y(p) ]T and

the corresponding input data that originated it Φ = [ ϕ(1) ϕ(2) ... ϕ(p) ]T , the goal is to estimate

the vector of the parameters θ such that

Y = Φθ. (3.9)

The solution of the equation above for p = dim θ, if it exists, comes in closed form, and the proof for this
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statement is demonstrated quickly, with only two steps required

Φ′Y = Φ′Φθ, (3.10)

and

(Φ′Φ)−1Φ′Y = θ, (3.11)

with (·)′ and (·)−1 denoting the transpose and inverse transformations, respectively. As the observations

continue piling up, however, the solution may cease to be. The objective in that case is the obtainment

of a solution that minimizes the error

e = Y−Φθ. (3.12)

3.3.1 Recursive Least Squares

The first method described here takes a more straightforward approach to the problem at hand. The

Least Squares method attempts to find the values of θ that, for each set of data, result in an output that

is closest to the actual answer than any other option. This distance is measured in an Euclidean space.

In other words, the algorithm consists in finding the minimizer of the sum of the squared errors

θ̂ = argmin
θ

p∑
k=1

||y(k)− ϕ(k)T θ||2. (3.13)

This approach has, however, a few drawbacks, since it requires all the data to be known before the

estimation process. As time progresses, this procedure becomes impractical, due to both the computation

needed to execute it and the memory required to store the data. An online recursive method is then

sought to allow for a solution that achieves the same results while requiring a more reasonable amount

of resources to function. The observation sets can be rewritten as

Y(k) = [ Y(k − 1) y(k) ]T ,

Φ(k) = [ Φ(k − 1) ϕT (k) ]T ,
(3.14)

whereas (3.13) can be expressed as

θ̂(k) = Λ−1(k)

k∑
t=1

y(t)ϕ(t), (3.15)

with

Λ(k) =

k∑
t=1

ϕ(t)ϕT (t), (3.16)

the information matrix that verifies

Λ(k) = Λ(k − 1) + ϕ(k)ϕT (k). (3.17)
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Using (3.15),(3.16) and (3.17) it is possible to reach a recursive expression for the estimated parameters

θ̂(k) = θ̂(k − 1) + Λ−1(k)ϕ(k)
[
y(k)− ϕT (k)θ̂(k − 1)

]
. (3.18)

In order to avoid inverting a matrix every iteration, instead of the information matrix, the covariance

matrix is used

P (k) =
[
Λ(k − 1) + ϕ(k)ϕT (k)

]−1
, (3.19)

since its value at time k is, applying the Matrix Inversion Lemma, given by

P (k) = P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

1 + ϕT (k)P (k − 1)ϕ(k)
. (3.20)

Additionally, if a forgetting factor [25] is added to the cost function (3.13)

θ̂ = argmin
θ

p∑
k=1

βp−k
(
y(k)− ϕ(k)T θ

)2
, (3.21)

to enable an ever-lasting sensitivity to the change in parameters, then the equations for the RLS come

as

ε(k) = y(k)− ϕT (k)θ̂(k − 1),

θ̂(k) = θ̂(k − 1) +K(k)ε(k),

K(k) = P (k)ϕ(k),

P (k) = β−1
[
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

β + ϕT (k)P (k − 1)ϕ(k)

]
.

(3.22)

The acceptable range for the forgetting factor values is between 0 < β < 1, with bigger values providing

the system with good stability and low variation, but worse tracking abilities, while lower values increase

the tracking efficiency of the system and the variation of the system, which may result in a loss of

stability. An overall idea of the number of samples that affect the outcome can be obtained by looking

at the asymptotic memory N = 1
1−β .

Further enhancements can be made by implementing a dynamic forgetting factor, since a fixed one is

prone to estimator windup or covariance blow-up. This happens when the system input is not persistent

or when it decreases significantly in amplitude and is not able to excite the system anymore. Under these

circumstances, ϕ(k) holds no new information and P (k) = β−1P (k − 1), which causes the information

matrix to grow in size and provide unreliable and biased estimates. Another problem is the slow con-

vergence of the estimates after a long period of constant parameters. Consider the weighted sum of the

squares of the a posteriori errors

Σ(k) = β(k)Σ(k − 1) +
(
1 + ϕT (k)K(k)

)
ε2(k), (3.23)

with Σ(k) the information content of the algorithm at time k. According to [26], a well-known method
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for choosing the forgetting factor is by keeping the sum above constant Σ(k) = Σ(k−1) = ... = Σ0, where

Σ0 is set to be equal to the expected noise variance, assuming it is known, times a nominal asymptotic

memory length, Σ0 = σ2
eN0. From (3.23) and the asymptotic memory equation comes

N(k) =
Σ0

[1− ϕT (k)K(k)]ε2(k)
.

With this choice it is possible to define the method for choosing the forgetting factor as follows

β(k) = max

{
βmin, 1− [1− ϕT (k)K(k)]

ε2(k)∑
0

}
. (3.24)

3.3.2 RLS-Weigthed LASSO

Although the Least Squares method boasts some desirable qualities it is unable to provide a result with

a lower dimension than that of the expected solution to the problem, since it considers that all the given

variables affect the outcome of the known data equally. Consequently, every one of these variables is

assigned a value different than zero, with no regard to its own or the overall magnitude of the values. In

general, considering the wrong order when estimating model parameters can result in an overfit or underfit

of the data, that in turn can then render future outcome predictions useless, due to the inaccuracy of

the estimates. The LASSO method handles this problem by adding a new component to (3.13) with the

purpose of nullifying parameters considered irrelevant for the model, thus yielding sparse solutions when

the data calls for them. This method takes into consideration the `1 norm of the parameter vector θ as

an additional restriction to try to minimize the number of non-null entries, at the cost of becoming non-

differentiable and losing all the perks that come with the trait. The reformulated equation remains similar

to the RLS estimate, with the exception of the new term that accounts for the sparser considerations in

the solutions,

θ̂ = argmin
θ

∣∣∣∣Y−ΦT θ
∣∣∣∣2
2

+ λ
∣∣∣∣θ∣∣∣∣

1
. (3.25)

The change in estimate translates to a modification of the objective function, that now comes as

J(θ) =

p∑
k=1

βp−k
∣∣∣∣y(k)− ϕ(k)T θ

∣∣∣∣2
2

+ λ(k)
∣∣∣∣θ∣∣∣∣

1
. (3.26)

Regrettably, as with in the RLS, this computation becomes more complex as time progresses, increasing

both the memory requirements and computation time needed. Hence, like before, a version of (3.25) that

can be recursively updated is deduced. Rewriting the estimate equation

θ̂ = argmin
θ
a(n) + θTR(n)θ − 2θT r(n) + λ(n)||θ||1, (3.27)

where

a(k) =

k∑
i=1

βk−iy(i)T y(i),
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r(k) =

p∑
i=1

βk−iϕ(i)T y(i),

R(k) =

p∑
i=1

βk−iϕ(i)Tϕ(i),

does the trick.

Under these added constraints the estimate retains its convexity, making it possible to find the mini-

mum through linear programming techniques. This option is, by itself, a rather beneficial quality when

considering the computation relief between such methods and more complex ones.

To further stimulate the sparseness of the solution, a signal dependent penalty function [27] that

weighs each `1 norm term |θn| individually is applied. The weight of each term is computed through

wµ(k)(|θ|) =
(aµ(k)− |θ|)+
µ(k)(a− 1)

u(|θ| − µ(k)) + u(µ(k)− |θ|), (3.28)

where u(·) is the step function and (·)+ the non-negative part of the function in parentheses, also described

as

(x)+ =

x, x > 0

0, otherwise.
(3.29)

This function acts as a filter on each entry, fully penalizing (w = 1) those it deems unnecessary or

undesirable, characterized by their low magnitude, and not imposing any penalization term on higher

magnitude ones. Terms whose importance is neither high or low are penalized linearly according to

their modular value. This last category consists of any parameter bigger than µk and smaller than

aµk, therefore, as the position of this region greatly influences the appearance of the output, a wise

selection of both variables is necessary. It should be noted that (3.28) is updated using RLS estimates

that are computed alongside, hence the name of the method. The cost function for the, now complete,

RLS-Weighted LASSO (RW-LASSO) comes as

J(k)RW-LASSO =

k∑
i=1

βk−i||y(i)− ϕ(i)θ||22 + λ(k)

N∑
n=1

wµ(k)(|θ̂RLS
n (k)|)|θn|, (3.30)

that, although non-differentiable can be solved with the help of techniques such as sub-gradient based

iterative minimizers or proximal gradient methods. Seen as this work seeks to apply the knowledge gained

from [24] to the scope of this report, the latter method is considered, since it is shown that the first option

suffers from slow convergence and does not guarantee the convergence of the parameter estimates θ̂(k)

to their true value as k tends to infinity. Consequently, the main step of the algorithm built for solving

(3.27) consists in computing

Proxαi||·||1
(
θi − αi∇g(θi)

)
= Sn

(
θi − αi∇g(θi)

)
, (3.31)

where

[Sn(θ)]n = sign(θn)(|θn| − η)+
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with η = αiλ ,known as the Soft-Thresholding function, and αi = α
i or αi = α√

i
the step size (α > 0).

It is shown in [27] that with a penalty parameter
√
k < λ(k) < k, a threshold parameter µk = λ(k)

k

and the knowledge of all the past data, i.e. a forgetting factor of β = 1, the RW-LASSO method fulfills

the oracle properties which guarantee that the performance of the estimator matches that of the true

underlying model. Unfortunately, this fails when considering an estimator capable of handling model

transitions in time (β < 1). The trade-off between performance and adaptability is something that

should be meticulously studied to best fit in within the context of the problem.

A pseudocode representation of the algorithm described above is presented next.

Algorithm - RLS-Weighted LASSO

Inputs: β, ε, ϕ(k), y(k), a, α, imax

Initialization: r(0) = 0, R(0) = 0, λ(0), θ̂(0) = 0, P (0) = δI, δ = constant

1. for k = 1, 2, ... do

2. r(k + 1) = βr(k) + ϕT (i)y(i)

3. R(k + 1) = βR(k) + ϕT (i)ϕ(i)

4. ε(k) = y(k)− ϕT (k)θ̂(k − 1)

5. K(k) = P (k−1)ϕ(k)
β+ϕT (k)P (k−1)ϕ(k)

6. P (k) = β−1
[
P (k − 1)−K(k)ϕT (k)P (k − 1)

]
7. θ̂(k) = θ̂(k − 1) + P (k)ϕ(k)ε(k)

8. wµ(k)(|θ|) = (aµ(k)−|θ|)+
µ(k)(a−1) u

(
|θ| − µ(k)

)
+ u
(
µ(k)− |θ|

)
9. for i = 1, ..., imax do

10. Proxαi||·||1
(
θi − αi∇g(θi)

)
= Sη

(
θi − αi∇g(θi)

)
11. end for

12. end for

3.3.3 Variable calibration

The RW-LASSO is a rather flexible method when it comes to its output appearance, due to the amount

of adjustable variables that in turn influence the outcome of the estimator. Below, a study on the impact

of each parameter in the output of the system is described. To better modify these parameters, the study

will focus on understanding how the interactions between certain inputs affect the estimates instead of

considering every individual effect.

In total, there are five distinct variables that dictate the behaviour of the algorithm. From this set,

three groups can be formed, based on the way they alter the performance of the method. One consists

of variables that change the sparsity of the output, λ and a, another contains those that influence the

system response time, α and imax, and the last comprises the ones that deal with the adaptability of the

system to time varying models, in this case, the forgetting factor β.

To adjust how sparse the solution is, first the range of acceptable values for the estimates must be

specified. The input parameter vector will consist of 8 entries, of which a maximum of 4 are expected to
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be relevant at any given time, on account of the sparseness the estimator strives for. The AR model is also

assumed to be stable. These two conditions make it so that the range of interest for any parameter value

is somewhere around 1. The algorithm is built to limit automatically the magnitude of the estimates

so as to stabilize the model, but it still requires some additional information to distinguish between

desirable and undesirable variable values. A proper selection of a and λ ensures that the method works

toward finding an answer that meets the user’s desires or expectations. The penalization area of (3.28)

can be made wider or narrower with a steeper or more gradual slope at its end, by tweaking the input

values. The distinction is made by treating every entry below a predefined threshold (µk) as an error

and attributing them with the maximum weight of 1. The range of values in which there is uncertainty

about the origin of the estimate, i.e. whether it comes from a valid estimation or if it is more likely to

worsen the predictions made with the model, extends until a times the limit of the previous area. Figure

3.2 shows the evolution of the mean squared error on three models with different parameter magnitudes.

Brighter colors are used to express higher values of the error, while the darker blue hues represent the

more accurate combinations of the parameters. From the plots one can understand the collective effect

that the variables exert on the system. There is a trend in the behaviour of the estimator. With the

combined increase in both parameter values there is a decrease in error, followed by a subsequent increase.

This happens because the method transitions from overfitting the model to underfitting it, however, in

extreme cases, only one of these effects occurs. In figure 3.2 (a), the underfit of the model results in a

response with all the parameters set to zero, whereas the actual magnitude of the coefficients in 3.2 (c)

is big enough to reduce the effect of overfitting to an acceptable level.

(a) MSE on AR with
A = 1− 0.2z−1 + 0.1z−3.

(b) MSE on AR with
A = 1− 0.4z−2 + 0.5z−3.

(c) MSE on AR with
A = 1− 1.5z−1 + 0.7z−2.

Figure 3.2: Mean squared error evolution of the estimation of sparse AR models with different levels of magnitude.
The scale of the parameters from left to right is, in the context of this work, considered small, medium and big.

The best option lies somewhere between choosing a highly restrictive penalizing function for small

values with a thin uncertainty area and one with a subtler, earlier drop in penalization that allows.

Opting for a more balanced function that is somewhat restrictive with a narrower area of uncertainty,

the author set the parameters λ(k) such that µk was kept constant at 3.1 and a to 2.

Regarding the system response time, despite producing similar results, α and imax approach the

problem very differently. While they both attempt to maximize the extent of optimization possible at

any time instance, one does so by reducing the number of iterations necessary to reach a certain threshold,

whereas the other manages the limit of computation cycles the algorithm is allowed to perform.
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The step size regulates how much a point moves when optimizing a function. It does so by controlling

the effect that the point-wise gradient inflicts on the current parameter values, thus altering the maximum

quantity of optimization possible per iteration. The degree of variation in response time is proportional to

the magnitude of α. This means that with the same number of iterations, the distance the optimization

function travels increases with the step size, making it logical to consider choosing the biggest available

value for this variable. However, some values of α end up moving the estimate to a point with a higher

cost than the previous one. Even if the value for the step size is reduced every iteration, given a big

enough initial α and an insufficient amount of iterations, the gap in cost will never be closed. In such a

situation, the estimation ends up diverging.

On the other hand, because the estimate is optimized via a numerical method, there exists a maximum

feasible number of iterations which imposes a limit on how much the value can change with every cycle.

These limitations are hardware dependent so, to regulate the feasibility of the algorithm, the variable

imax is introduced. This parameter determines the number of iterations per cycle and raising its value

decreases the response time at the cost of additional computation time. It is similar to the use of brute

force in problem solving, since it is a simple, yet inefficient tactic that focuses solely on producing results.

Studying the interaction between these two behaviours should prove useful in finding a pair of values that

diminishes the system response in a fast, stable and affordable way.

Fixing the proximal gradient step size and sweeping through various values for the number of iterations

revealed the nature of the effect the change introduces to the system. As expected, the decrease in

stabilization time is somewhat inversely proportional to the iterations done per cycle. This decline is

not at all constant, becoming less steep for higher values of imax. Switching the fixed variables yields

a similar result, albeit a more drastic one. The contrast in the drop values presented in these graphics

(figure 3.3) meets the expectations, seeing that the efficiency of both solutions corresponds to the nature

of effect these have in the system behavior.

(a) System response time with varying number of
iterations and α = 0.01.

(b) System response time with varying step size
and imax = 10.

Figure 3.3: Effect of the variation of the number of iterations (left) and the step size (right) on the response time
of the system.

It cannot be forgotten that while the competence of these methods greatly differs, the importance of

each of the parameters does not, for each one positively influences the others performance. That being

said, the response times for the different tests performed are shown in table 3.1.
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Table 3.1: System response time, in epochs, with varying step sizes and number of maximum iterations.

Step size α

0.01 0.05 0.1 0.5 1 3 5 7 8.5 10 50 100

imax

10 1900+ 622 365 113 69 20 12 9 7 6 2* 1*

20 1900+ 538 312 98 54 16 10 7 6 5 1* 1*

50 1826 448 262 86 39 13 8 6 5 4 1* 1*

100 1438 407 232 76 33 12 7 5 4 4 1* 1*

200 1271 364 209 69 29 10 6 5 4 4 1* 1*

300 1209 344 195 64 27 10 6 5 4 3 1* 1*

400 1172 333 189 61 26 9 6 4 4 3 1* 1*

500 1152 324 185 56 25 9 6 4 4 3 1* 1*

1000 1091 304 173 52 23 8 5 4 3 3 1* 1*

2000 1037 287 163 46 21 8 5 4 3 3 1* 1*

5000 926 260 152 39 19 7 4 3 3 3 1* 1*

*Parameter estimation eventually diverged.

Lastly, the effect of the variation in the forgetting factor values is studied. Although this parameter

also affects the system response time, it concerns mainly the adaptability of the algorithm to time-

varying models. For this reason and for brevity too, the author thought it best to avoid grouping it

with the previous variables. Much like the in the Least Squares method, the RW-LASSO β controls the

susceptibility of the algorithm to changes in the system parameters. In fact, since they both work in the

same manner, the results conveyed here apply to either of the two algorithms.

The conducted tests aim at understanding the consequences of applying different β values with distinct

restrictions on the outcome of the estimation methods. More specifically, a comparison between the use

of fixed and variable forgetting factors is done. First, a value close to, but strictly smaller than, 1 was

chosen to allow the estimator to react to changes in parameters while maintaining an accurate estimate

with a small misadjustment (figure 3.4). This resulted in a more stable prediction at the cost of a slower

reaction time.

Figure 3.4: RLS estimation with β = 0.999.

Then, two different values for the lower bound of the forgetting factor were defined, namely βmin = 0.99
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and βmin = 0.995, to study the effects of distinct intervals of possible values in the system response.

(a) RLS estimation with β ∈ [0.99, 1[. (b) RLS estimation with β ∈ [0.995, 1[.

Figure 3.5: RLS estimation with a variable forgetting factor.

The results showed that a stricter limit provides a more stable estimation with lower misadjustment

while a more relaxed limit offers better tracking capabilities, as was expected. To further illustrate this

trade-off, some tests were conducted with various values for the lower limit of the forgetting factor value,

and the results obtained were graphed for a clearer interpretation. In total, 50 values for βmin, ranging

from 0.95 to 0.999, were tested, and for each of those values 100 tests were performed, so as to attenuate

the effects of the noise in any conclusions taken. Figure 3.6 depicts the growth of both the response

time (3.6-a) and the misadjustment (3.6-b) of the system as a function of βmin. For the latter, the mean

squared error deviation of the estimates was computed as a way to quantify their variation around the

actual values of θ.

(a) System response time. (b) System variance.

Figure 3.6: RLS estimator characteristics as a function of the minimum forgetting factor allowed βmin.

As concluded before, a higher value for the lower limit of the forgetting factor leads to a slower

convergence of the estimates, with the number of samples needed for the stabilization of these estimates

increasing exponentially as the limit grows. On the other hand, the system tends to become more stable

the closer the limit is to 1. The decrease in variation is, however, not as drastic as the increase in response

time. While the results were expected, i.e., bigger variations mean less iterations needed to converge as

it is similar to bigger steps being taken at each iteration, this experiment was useful since it established

a relation between the growth of both characteristics.
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3.4 Markov Model

When working on problems with multiple approach options, there are some questions that must be asked.

These questions revolve around the quality of the solution and serve as a guide to the attainment of an

acceptably effective and efficient method whose results are in conformity to the needs and wants of the

user. After understanding the details of a problem and reaching a consensus on how to tackle it, one

should always ponder if that is indeed the best way to solve it, while considering other alternatives that

could also work given the features of the phenomena being studied. In that regard, this author provides

the reader with another perspective on the time-series forecasting issue, in hopes that it contributes to

the discovery of a better solution or to an improvement of the current one. In particular, the most basic

form of a Markov process, denominated a Markov chain, is considered.

A system is described as being a Markov chain if it can be modelled as a sequence of states whose

possible outcomes, i.e. future states, at any specific instant in time, are determined solely by the state

in which the system is at that time. Moreover, it is treated as a Hidden Markov Model (HMM) when

part of the state is inaccessible. This seems to be the case of this problem, since from the observations

available the amount of information is not enough to fully understand the reasons behind the system’s

behaviour.

For such an environment, a nonlinear filtering supervisor [28], closely resembling the Baum algorithm

is chosen. This method uses Bayes law and some standard nonlinear filtering techniques to recursively

propagate in time the probabilities of the states in two steps. The first operation models the state values

based on the known interactions between the state space in two consecutive time instances, while the

second one reshapes the estimates by filtering them after a new observation is made.

3.4.1 Prediction step

Let S be the full set of possible states, with Si, i = 1, 2, ..., n one of the n distinct options available. From

the definition of the Markov chain, the probability of jumping from the current state i to another state j

is determined by the transition coefficient connecting the pair, tij . A matrix that describes the relation

between all of the pairs of states is named a transition matrix and shall henceforth be given the letter

T for future reference. Every row of T must sum to 1, since it is a matrix describing the probability of

every possible event within a system. Analogously, the likelihood of being in state i at a certain time

instance k, denoted as Pi(k|k − 1), is computed from the weighted sum of the prior probability of all

previous states,

Pi(k|k − 1) =

n∑
j=1

tjiPj(k − 1). (3.32)

The expression above relates the entire state space at time k to a particular state residing in the following

time instance. A generalization of (3.32) that depicts the variation of the whole state space throughout

time is achieved simply by stacking every distinct outcome in a vector. With P (k) the set of probabilities
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of all states at time k, the predicted values for each of the states in the next instance of time are given by

P (k|k − 1) = T ′P (k − 1), (3.33)

with

P (k|k − 1) = [P1(k|k − 1) P2(k|k − 1) · · · Pn(k|k − 1)]′.

This operation, referred to as the prediction step, is used to infer outcomes based solely on the expectation

of the prior knowledge evolution.

Taking the result of (3.33) and admitting it as the future prior enables the continuous use of the

expression and doing so will result in the convergence of P . This "last" state is denominated the stationary

probability vector π and is invariant to the application of the prediction step since, by definition, the

outcome of the equation for a converged state is itself the converged state. In other words,

π = T ′π. (3.34)

Consider, for example, a situation where there are three possible states, whose transition matrix is

given by

T =


0.9 0.07 0.03

0.15 0.8 0.05

0.01 0 0.99

 , (3.35)

and with every state being equiprobable in the beginning, P0 =
[
1
3

1
3

1
3

]′. Each of the states possesses

a common characteristic, the preference for the continuity of the state over the transition to another.

One of them takes it further by completely eliminating the possibility of changing to the second state.

This trait creates smoother transitions opposed to the inclination towards inter-state transitioning, that

results in an oscillatory response. This effect can be perceived in the figure below.

Figure 3.7: Evolution of the predicted state through time.
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3.4.2 Filtering step

Whenever a new observation becomes available, a correction of the probabilities of the state space is

necessary to ensure the plausibility of the predictions. This adjustment is the result of passing the

guess on the state likelihood through a filter that takes as input the last observation obtained and the

estimates of each state as to the value of this variable. These estimates are made using the known input

configurations x(k) that lead to the observation value and the model parameters of each distinct state θi,

ŷi(k) = θ′ix(k). (3.36)

From there, the probability of an observation y given a certain state Si is computed based on the disparity

between both values

P (y(k)|Si) = exp
(
−
(
y(k)− θ′ix(k)

)2
2σ2

)
, (3.37)

where exp(·) is the natural exponential function. This function guarantees that some desirable conditions

are met, such as the unit value for completely accurate predictions and an adjustable interval, based on the

noise variance, for accurate guesses in which its value is still close to 1. It also boasts the differentiability

trait, much appreciated in various situations.

Furthermore, if the assumption of variable independence is made, (3.37) can be generalized as the

product of the partial probabilities of each of the variables,

P (y(k)|Si) =

N∏
j=1

exp
(
−
(
yj(k)− θ′ixj(k)

)2
2σ2

j

)
. (3.38)

Finally, by pairing both the prediction and filtering steps, a measurement for the likelihood of any

state at the current epoch is obtained as

Pi(k) = CP (y(k)|Si)Pi(k|k − 1), (3.39)

with C a normalizing constant so that the sum over all possible state probabilities equals 1.

3.4.3 Applications

After analyzing the theory behind an HMM based predictor, a comparison between this and the other

possible methods is necessary. A deliberation on the potential uses of the nonlinear filtering supervisor

follows.

Since this method assumes a Markov chain as the underlying model, it is unwise to use it alone to

predict the outcome of the whole model, due to the sheer amount of available states. The same can

be said for the prediction of the stationary model of the system, for the same exact reason. Regarding

the non-stationary section, a forecasting of the future states of the H model might surely be a powerful

addition to the motion predictor.

A major drawback of this solution is the need for the transition matrix to properly work. This demands
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some prior knowledge that may not be available, which greatly hinders the usage of the supervisor in

question for reliable estimations. However, circling back to the idea of aiding in the guess of posterior

non-stationary model parameters, if one were to obtain the values of the transition matrix via recursive

computation or previous data then this additional information could provide a faster switching in models

for situations where the targets motion changes models.

As the author sees it, this transition aid could be directly applied in the continuous forecasting of the

positions, by studying the variations in state of a vast amount of targets. Another possible application

is the supplying of initial conditions in areas of high instability.
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Chapter 4

Signal prediction

In this chapter the forecast of the system output is explored. This stage succeeds the model identification

phase and makes use of the estimated parameters in the prediction of the targets positions. Here, both

the prediction of a single target as well as groups of targets are analyzed.

4.1 Individual target forecasting

The behaviour of the time-series considered in this report comes from a relatively straightforward process,

as is shown in the presumed underlying model that produces the data signals studied (figure 2.1). To

predict the continuation of the series one needs to recursively apply the models with the estimated

parameters and the necessary inputs. The non-stationary model receives two inputs: the past values

of the series and the current deviation from the expected, and so does the stationary part: the set of

past deviations and the current error value. Here are described three distinct inputs with very disparate

acquisition levels. The error signal is assumed to be white, yet forecasting it is impossible. On the

other hand, the target position values are easily obtained by extracting the desired information from the

available motion data. In the middle lies the auto regressive time-series related to the disparity between

the expected and the real outcome. Since this series relies on unknown or estimated inputs, its predictions

have a lower accuracy than that of the general motion of the targets. Moreover, the estimates it depends

on are assumed to have been computed with the correct H model, however, this is not the case when the

motion of the targets changes due to the switching of these models. Nevertheless, the addition of such

a signal might produce a more accurate forecasting of the time-series, and so, such an inclusion will be

considered.

4.1.1 Linear prediction

While the continuation of the motion signal x is achieved through recursively updating the inputs and

applying the same model to them, for the future values of y a different technique is considered. This

method produces an estimate and its correspondent expected error value based on the long division

of the AR polynomials and the error variance. Formally described as linear prediction, this approach
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determines the expression of the output signal that minimizes the deviation of the prediction error in

stationary regime, given the Ok observations made until the instant k (with more rigour, Ok is the σ-

algebra induced by the observations up to k). In other words, the goal is the discovery of an expression

for the estimates such that, under the defined conditions, the difference between them and the actual

variable values is minimum

E
[
(y(k +m|k)− ŷ(k +m|k))2|Ok

]
, (4.1)

where the expression for the output m steps ahead can be derived from (2.1) and (2.4)

y(k +m) =
C∗(z−1)

A∗(z−1)
e(k +m). (4.2)

Executing the long division of the polynomial fraction an equivalent expression for the model is obtained.

Dividing the numerator C∗ by the denominator A∗ results in

C∗(z−1)

A∗(z−1)
= F ∗m(z−1) + z−m

G∗m(z−1)

A∗(z−1)
, (4.3)

with F
∗
m(z−1) = 1 + f1z

−1 + ...+ fm−1z
−m+1,

G∗m(z−1)
A∗(z−1) = fm + fm+1z

−1 + ...,

(4.4)

allowing for a separation of the terms that affect the output in two. The first term deals with the noise

samples occurring in future epochs k+1 to k+m, while the second term manages all of the samples until

the current time instance k. Taking (4.1) as the cost function and splitting it using (4.3), one attains an

expression consisting of two independent terms, namely the past and present error values and the future

ones,

J(k) = E

[(G∗m(z−1)

A∗(z−1)
e(k)− ŷ(k +m|k) + F ∗m(z−1)e(k +m)

)2
|Ok
]
. (4.5)

Denoting F ∗m(z−1)e(k +m) by εm(k) and separating (4.5) a new expression is obtained

J(k) = E

[(G∗m(z−1)

A∗(z−1)
e(k)− ŷ(k +m|k)

)2
|Ok
]

+ E
[
ε2m(k)|Ok

]
, (4.6)

that reduces to

J(k) =
(G∗m(z−1)

A∗(z−1)
e(k)− ŷ(k +m|k)

)2
+ E

[
ε2m(k)

]
(4.7)

when taking into account that the future values of e do not depend on the observations made until the

present time and all the past values of the other variables are known. The first term of (4.7) is minimum

when it is null and the second term does not depend on the output signal, and so, the optimal predictor

is then given by

ŷ(k +m|k) =
G∗m(z−1)

A∗(z−1)
e(k). (4.8)
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From (2.1), an expression for the error is deduced by isolating the e(k) term, assuming it is possible to

invert the polynomial fraction. With this reformulation, the equation above is rewritten as

ŷ(k +m|k) =
G∗m(z−1)

C∗(z−1)
y(k). (4.9)

Moreover, by assuming that the stationary signal is created using an AR model, (4.9) is simplified to

ŷ(k +m|k) = G∗m(z−1)y(k). (4.10)

The second term of the cost function represents a measurement of the forecasting error variance. This

value grows with the number of predicted steps since it is computed using the F ∗m polynomial, whose

number of terms is the same as m. Due to the properties of the noise (independent values and null mean),

the crossed terms of ε2m become zero and the expected value of a prediction m epochs ahead is reduced

to

E
[
ε2m(k)

]
= (1 + f21 + f22 + ...+ f2m−1)σ2

e . (4.11)

Although this variance is the result of an ever growing sum, the increase in value is expected to reduce

significantly as the prediction steps grow. This is due to the assumed stability of the AR model.

Consider, for instance, an AR model of order 2 with a Hurwitz polynomial, that is, containing all

of its poles inside the unit circle and therefore, being stable, with coefficients 1, -1.5 and 0.7. The last

80 observations are known and so is the variance of the input (σ2
e = 0.01). Any predictions made will

not take into consideration any future values of the noise samples and the system will stabilize, behaving

similarly to the impulse response of the model. On the other hand, the margin of error will grow as m

increases. The behaviour of the predictor is illustrated in figure 4.1-(a), where the predicted values for the

samples 81 to 120 are plotted along with the actual values of the output, in blue and yellow, respectively.

A margin of error is used to plot the expected maximum prediction error at a given time, in red, and

a comparison between it and the actual values of the error is shown in figure 4.1-(b). This margin was

computed using (4.11), and although the number of correctly bounded errors varies with different AR

models, it seems like a valid way of evaluating the confidence in our prediction.

(a) Output prediction. (b) Prediction error.

Figure 4.1: (a) Comparison between predicted (blue) and real (yellow) output values. (b) Plotting of the prediction
error (black).
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Even though the expected error growth seems to stagnate after about 10 instances of time, it only

takes half that amount to increase above 90% of the convergence value, around ten times the input

variance. With this fact in mind, it can be concluded that only predictions of one or two steps ahead are

interesting, since they have error values small enough to be reliable.

4.2 Group prediction

More often than not, the image sets from which the target data is extracted comprise of various distinct

time-series. From this extensive collection of data, a few targets may be grouped in smaller clusters

consisting of targets with similar paths. This new scenario provides an acceptable environment for the

testing of some interesting approaches, as one strives for a generalization of the prediction algorithm,

able to handle such situations. For that reason, let us now consider the case where there exist multiple

points of interest and study the methods used to predict their motion over time.

Whereas previously a single point was chosen to represent the target’s position at a certain instance of

time, this might not be the most useful way to do it when dealing with groups. Given that no restrictions

are made as to the physical relation between targets in the same group, it may be unwise to describe them

using only the coordinates of their centre of mass. Instead, a representation of the group using a random

variable is considered. This variable possesses a probability that is dependent on the location of every

target, exhibiting a bigger value when in close proximity of an element’s coordinates and lower value on

other points. The prediction now is a stochastic process that works by propagating said random variable

X through time, first by applying the motion model and then adding some error to better represent the

uncertainty of the estimates.

The propagated term can be computed from the previous time instance value of the random variable

as such,

X(k + 1) = t
(
X(k)

)
+ E(k), (4.12)

where t(·) represents the effect of motion model on the targets and E(k) is an error term. Since the

transformation of a random variable can be considered a new variable itself, an equivalent representation

of (4.12) is

X(k + 1) = Y (k) + E(k). (4.13)

4.2.1 Target probability representation

In an ideal scenario, the position of every target would be known without any uncertainty, and thus, the

p.d.f of a group with n elements would be given by a sequence of dirac delta functions, scaled as to not

exceed the limit value of one when computing the cumulative density function, located at the coordinates

of each target,

f(x) =
1

n

n∑
i=1

δ(x− xi). (4.14)

However, in practice, due to uncertainties inherent to these positions and their extraction, a different

function must be considered if an accurate representation of the group density is to be had. The author
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chose to use a sum of normally distributed curves with mean xi and variance σ2
e , since it seemed like an

intuitive way to show the expected target coordinates as well as possessed an elegant level of simplicity.

It should be noted that the parameter σe is problem dependent and acceptable values for it must be

found.

This sum, known as mixture distribution, results in a non-negative function that integrates to 1, and

can be expressed as

f(x) =

n∑
i=1

wipi(x), (4.15)

where wi denotes the weight associated to the i-th density.

Since there is no difference in the importance of a target, the weights all have the same value and the

p.d.f. of the targets at the epoch k turns into

fX(x, k) =
1

n

n∑
i=1

p(xi). (4.16)

Other possible functions include an uniform density distribution over an interval that encompasses all

of the targets or the convolution of the original function described in (4.14) with a function representing

the uncertainty error of each target.

A few examples of possible group densities are shown in the figure below.

(a) Normal mixture distribution. (b) Triangular mixture distribution. (c) Uniform density distribution.

Figure 4.2: Possible group density functions according to the normal (a), triangular (b) and uniform (c) distribu-
tions.

In general, the equation of the p.d.f. ofX is not available. Instead, a discretized version of the function

is used. This discretization contains the value of the function in every point of a grid of equispaced points

in an area of interest and is assumed to be irrelevant outside of this area. This assumption exists solely

for the purpose of reducing the computational burden of the algorithm, although the region of interest

may be expanded if necessary.

4.2.2 Time propagation

The forecasting of the target group density is done through a process that produces a result equivalent

to that of the underlying system model (figure 2.1). This procedure can be split in two main operations,

a random variable transformation and a random variable sum. These two phases correspond to the

application of the motion model and the addition of the prediction uncertainty, respectively.

First, to simulate the continuation of the target motions, a transformation is applied on the input
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density X to create a new variable Y . This transformation is assumed to be reversible and differentiable.

Furthermore, since both the X and Y are random variables, each of them has a cumulative distribution

function (c.d.f.) and density, respectively FX(x), fX(x) and FY (y), fY (y). These c.d.f. are related to

one another by

FY (y) = P (Y ≤ y) = P (t(X) ≤ y) = P (X ≤ t−1(y)) = FX(t−1(y)). (4.17)

Moreover, the density of the transformed random variable Y can be computed with the density of X.

From the definition of c.d.f.comes that

FY (y) =

∫ y

−∞
fY (u)du, (4.18)

and consequently

fY (y) =
d

dy
FY (y). (4.19)

Applying (4.17) on (4.19) and differentiating with respect to y, the equation for the density takes the

form

fY (y) = fX(t−1(y))

∣∣∣∣∣ ddy t−1(y)

∣∣∣∣∣. (4.20)

Although elegant on paper, this process is not as straightforward as it seems. This is due to the fact that

only knowing the discrete version of the function requires the computation of (4.20) to be done numerically,

as opposed to the direct analytic solution one obtains with the original function. Furthermore, the non-

malleable grid makes it so that a transformed point that belonged to the grid on a past epoch is very

unlikely to land on one of the grid points in the future epochs. As an example one iteration of the

transformation t(X) = 1.25X is shown in the graphic below, where the points belonging to the grid are

marked with a black circle.

Figure 4.3: One iteration of the transformation t(X) = 1.25X.

The one-dimensional grid, with unitary spacing, remains the same as the signal is transformed. Con-

sequently, only the value of the density of Y at y = 5 is known since it originated from the coordinate

x = 4. For all the other points in the image, their reverse transformation (red circles) falls between known

grid points. To obtain the values of the density in these situations, an interpolated function is used in

place of the original one.
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As for the second operation, the p.d.f. of a random variable X that is the result of the sum of two

independent random variables Y and E, is given by the convolution between the p.d.f. of the latter ones

fX(x) =

∫ ∞
−∞

fY (e)fE(x− e)de =

∫ ∞
−∞

fY (x− y)fE(y)dy, (4.21)

or, analogously for discrete random variables, the distribution function is

P (X = x) =

∞∑
n=−∞

P (Y = n)P (E = x− n). (4.22)

The time propagation of the density through the repeated execution of (4.20) and (4.22) is the appli-

cation of the Fokker-Planck equation to the motion of targets. Whereas the original equation describes

the time evolution of a particle velocity p.d.f when under the influence of drag forces and random forces,

this adaptation uses the shift and diffusion terms in an attempt to predict the future coordinates of a

group of objects. This shift results in an extension or compression of the distribution, resultant of a

translation of the entire space by a factor relative to the original position value. The diffusion term is

simulated through the convolution between this shifted distribution and an error density. Altogether,

these two operations mold the signal according to the expected behavior of the model. A single iteration

of this method is portrayed in figure 4.4.

Figure 4.4: One-dimensional group density propagation process. The original signal (blue) is transformed (orange)
and then some uncertainty is added (yellow).

This approach proved inefficient when tested with the actual motion models for two reasons. First,

due to the occasional multiple initial conditions the resulting transformation presents itself bearing more

targets than there are. This effect arises in situations where the targets move according to a model that

requires more than one variable transformation. Consequently, the convolution between these shifted

density functions creates areas correspondent to the motion of an imaginary target whose positions are

a mixture of data from different sources.

In the graphic below, an example of this behaviour is shown. Applying a motion model that provides

a linear movement on the consecutive densities of two targets creates two additional nodes based on the

combination of the target positions.
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Figure 4.5: Erroneous shifting of the desired variables. In this picture are portrayed the correct translations in
black dashed lines and the incorrect translations in red dashed lines.

These undesirable areas can be avoided by splitting the density map into several sections containing

each a single area of interest. These areas can hold one or more targets depending on their proximity

and associated uncertainty.

The second reason for the inefficiency of this method is the exponential diffusion of the densities.

During the shifting phase of the process, there is a change in the width of the function, derived from the

magnitude of the motion model coefficients. Since the models considered in this report always possess

parameters with magnitude of at least one unit, a stretching of the areas of interest is bound to happen

even without the addition of supplementary uncertainty. This effect is worse for the integral version

of the H model, with the nodes expanding rapidly independently of the accuracy of the data. This

tremendously limits the number of reliable predictions the algorithm can produce.

Note that both of these problems emerge during the first operation of the method. To counter these

effects and improve the competence of predictor, the motion of the targets will be done separately for

each target and will take as input a single point for every area of interest. The motion model will remain

the same throughout the prediction step.

4.3 Data interpolation

Here, a study is conducted on few of the many existing interpolation methods. A brief description

of each method is done before evaluating their performance. This evaluation will be done separately

for one-dimensional interpolation and two-dimensional interpolation. The estimated points will have a

forced minimum value of zero since the goal function is a density function. Also, the piece-wise constant

interpolation method, also known as the nearest-neighbor interpolant, that attributes the data value of

the nearest known point to the estimate, does not provide a smooth transition between two consecutive

points and therefore will not be considered.
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4.3.1 One-dimensional interpolation

This section deals with lower dimensional interpolation methods, for when a point in the coordinate

system is given by
(
x, f(x)

)
.

Linear interpolation

Perhaps the simplest form of interpolation, second only to the piece-wise constant interpolation, this

method takes two known points, with coordinates
(
a, f(a)

)
and

(
b, f(b)

)
, and returns a value for the

desired input x according to the equation of the straight line that intersects both these points,

f(x) = f(a) + (x− a)
f(b)− f(a)

b− a
.

While this method boasts an elevated relief in computation resources, it delivers an overall non-smooth

and rough representation of the distribution function. This representation is especially rough around

areas with a higher curvature, such as the extremes of a function.

Figure 4.6: Linear interpolation of a normal distribution.

Cubic spline interpolation

Originally used to designate any elastic ruler that was bent to pass through a number of predefined

points
(
xi, f(xi)

)
, also referred to as knots, a spline interpolant refers to a special type of function that

is defined piece-wise by polynomials. This technique was employed in the creation of technical drawings

for shipbuilding and construction by hand. From the n knots that make up the restrictions of the curve,

it is possible to determine a series of polynomials that fit the data in a smooth manner. To do this, the

equation of the function at each of the n − 1 intervals is computed so that not only the function, but

also its first and second derivatives are continuous all throughout the range of input values x. These

constraints are only met if at every non-extreme knot xi both surrounding interpolated functions gi−1(x)

and gi(xi) are such that g
′

i−1(xi) = g
′

i(xi)

g
′′

i−1(xi) = g
′′

i (xi).

(4.23)

The classical approach is to use cubic splines, made of third degree polynomials, since any polynomial of

degree 3 or higher satisfies these conditions.
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At each interval it is known that 

gi(xi) = f(xi)

gi(xi+1) = f(xi+1)

g
′

i(xi) = ki

g
′

i(xi+1) = ki+1,

(4.24)

where ki stands for the curvature of the function at the point xi, that by definition is given by

k =
f
′′
(x)(

1 + f ′2(x)
) 3

2

. (4.25)

A more compact way to describe the function at each part is through the equation

gi(x) =
(
1− ti(x)

)
f(xi) + ti(x)f(xi+1) + ti(x)

(
1− ti(x)

)(
ai
(
1− ti(x)

)
+ biti(x)

)
, (4.26)

with

ti(x) =
x− xi

xi+1 − xi
, (4.27)

ai = ki(xi+1 − xi)−
(
f(xi+1)− f(xi)

)
(4.28)

and

bi = −ki+1(xi+1 − xi) +
(
f(xi+1)− f(xi)

)
. (4.29)

From (4.26) it is possible to obtain the equations for the first and second derivatives of the interpolant

g
′

i(x) =
f(xi+1)− f(xi)

xi+1 − xi
+
(
1− 2ti(x)

)ai(1− ti(x)
)

+ biti(x)

xi+1 − xi
+ ti(x)

(
ti(x)

) bi − ai
xi+1 − xi

(4.30)

and

g
′′

i (x) = 2
bi − 2ai + (ai − bi)3ti(x)

(xi+1 − xi)2
. (4.31)

Furthermore, if the function is to have a continuous second derivative then, according to (4.28),(4.29)

and (4.31), the equality

ki−1
xi − xi−1

+

(
1

xi − xi−1
+

1

xi+1 − xi

)
2ki +

ki+1

xi+1 − xi
= 3

(
f(xi)−

(xi − xi−1)2
+
f(xi+1)− f(xi)

(xi+1 − xi)2

)
(4.32)

must be assured.

As it stands, (4.32) gives us n−2 equations that define the curvature at each of the middle knots. The

two remaining equations dictate the behaviour of the function at the end points, such as the "Natural

splines" equations 
2

x2−x1
k1 + 1

x2−x1
k2 = 3 f(x2)−f(x1)

(x2−x1)2

1
xn−xn−1

kn−1 + 2
xn−xn−1

kn = 3 f(xn)−f(xn−1)
(xn−xn−1)2

,

(4.33)
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that specify that the second derivative be zero in both extremities. Other end conditions include the

"Clamped spline", that forces the slope at the ends to be the desired value, or the "Not-a-knot spline"

where the third derivative of the interpolant is continuous at the x2 and xn−1 points.

With this method, the resulting interpolation function incurs a smaller error and is smoother than

linear interpolation. However, due to the global nature of the basis functions that make the spline

function, the problem becomes ill-conditioned, i.e. a small change in input can lead to some big change

in output, especially on the edges of the function. This effect is referred to as the Runge’s phenomenon

and, fortunately, can be completely mitigated by using splines of compact support that force the function

to become zero outside some interval or other similar strategies.

Figure 4.7: Spline interpolation of a normal distribution.

Monotone cubic Hermite interpolation

This interpolant results from modifying the cubic Hermite interpolation method, ensuring the mono-

tonicity of the interpolation function. As with the previous approach, it uses a piece-wise third-degree

polynomial spline to estimate the desired function. The difference is that the polynomial is specified

in Hermite form, i.e., by its values and first derivatives at the end points of the corresponding domain

interval. The interpolant exhibits an especially close approximation on functions whose value remains

mostly constant, albeit being almost as rough as the linear interpolant around the extremes of the original

function.

Figure 4.8: Monotone cubic Hermite interpolation of a normal distribution.

Lagrangian Interpolation

Another polynomial based interpolation function is the Lagrange interpolant. In this approach, given a set

of points
(
xj , f(xj)

)
with no two equal xj the lowest degree polynomial function that fits the data points

is obtained. This method produces an interpolation error proportional to the distance between the data
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points to the power of n, with n the number of data points used to compute the polynomial. However,

it is not wise to choose this solution when dealing with functions comprised of a large amount of points,

since it becomes computationally more expensive to find the interpolation much faster than the other

options. To reduce the error as much as possible while still maintaining a relatively low computation time,

a Lagrangian piece-wise interpolant is sought. This modified version computes the interpolated function

with a moving set of data points smaller than the original set. For relatively low degree polynomials,

this method produces an error with acceptable magnitude while maintaining an adequate computation

time. Its main disadvantage is that, similarly to the spline interpolant, this function also suffers from

Runge’s phenomenon. If left untouched, this interpolation possesses the closest approximation, out of all

the considered methods, in the middle points and the farthest in the end points. This effect is mitigated

with the usage of lower order Lagrangian interpolants near the extremes of the data points.

Figure 4.9: Moving Lagrangian interpolation with order 9 of a normal distribution.

Results

From the four methods studied, two classes are defined. Both the linear and monotone cubic interpolants

outperform the other two in specific situations. These excel whenever the original function is mostly flat,

as happens with the uniformly distributed density. For more general curves, however, the Spline and the

Lagrangian interpolants are preferable. Since the chosen density takes the form of a mixture of Gaussian

curves, it is only fitting that the latter class is favoured over the former.

Figure 4.10: Interpolation mean squared error with varying methods.

From the bar graph above one can perceive the disparity in performance between the studied methods

that confirms the previous hypothesis. There is a considerable gap in the error measurements separating

both classes. Furthermore, even within the second group there is a substantial difference between the
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best and worst interpolants. The obvious choice for the interpolating function in one dimension is then

the Lagrangian interpolator.

4.3.2 Two-dimensional interpolation

Here some interpolation methods for functions containing two input dimensions are described. For sim-

plicity, every time a single interpolated space is shown a generic representation of said space, the unit

square, is used.

Bilinear interpolation

This first method is an extension of the linear interpolation for functions spanning two axis. Like the

rest of the presented methods, it works by executing the necessary interpolations first on one direction

and then again on the remaining one. It should be noted that even though the interpolant performs two

linear steps, hence the name, the interpolation as a whole is quadratic.

This process is the simplest one yielding a continuous function in the interpolated space. It requires

just the values of the function at the corners of the desired space. For any point (x, y) inside the

interpolated area, given by its limiting intervals [x0, x1] and [y0, y1], its attributed value is computed

through the linear interpolation of its limits over the first axis,f(x, y0) = x1−x
x1−x0

f(x0, y0) + x−x0

x1−x0
f(x1, y0)

f(x, y1) = x1−x
x1−x0

f(x0, y1) + x−x0

x1−x0
f(x1, y1)

,

followed by the linear interpolation between these newfound points over the second axis

f(x, y) =
y1 − y
y1 − y0

f(x, y1) +
y − y0
y1 − y0

f(x, y1).

This process is illustrated in the figure below, with the original known points in red, the partial

interpolated points in blue and the end result in green.

Figure 4.11: Bilinear interpolation of a single point.

There are a few alternative ways to describe this problem. One can define the desired point in terms
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of its coordinates

f(x, y) ≈ a0 + a1x+ a2y + a3xy,

with the a coefficients the solution for the linear system
1 x0 y0 x0y0

1 x0 y1 x0y1

1 x1 y0 x1y0

1 x1 y1 x1y1




a0

a1

a2

a3

 =


f(x0, y0)

f(x0, y1)

f(x1, y0)

f(x1, y1)

 .

One can also write it based on the function limits

f(x, y) ≈ b00f(x0, y0) + b01f(x0, y1) + b10f(x1, y0) + b11f(x1, y1),

where the b coefficients are found by solving


b00

b01

b10

b11

 =




1 x0 y0 x0y0

1 x0 y1 x0y1

1 x1 y0 x1y0

1 x1 y1 x1y1



−1

T 
1

x

y

xy

 .

Additionally, if the area is represented using the unit square, the interpolation function simplifies to

f(x, y) ≈ f(0, 0)(1− x)(1− y) + f(1, 0)x(1− y) + f(0, 1)(1− x)y + f(1, 1)xy,

or, equivalently,

f(x, y) ≈
[
1− x x

]f(0, 0) f(0, 1)

f(1, 0) f(1, 1)

1− y

y

 .

Bicubic interpolation

Like the previous method, this one is an extension of an interpolation process to the dimension above,

the cubic interpolant. Just as its lower dimension counterpart, this procedure results in a surface with

a smoother transition in and around the known data points, compared to the linear and piece-wise

constant interpolation methods. Consequently, if said trait is of significant importance, it is preferable

to use this method over the bilinear or nearest-neighbor options. The reason this solution bears a more

fluid behaviour stems from the fact that it takes sixteen points when interpolating, opposed to the four

necessary points used in the simpler interpolants. These additional twelve points serve to compute the

partial and cross derivatives of the four corners surrounding the interpolated area. The partial derivatives,

fx and fy, are obtained by measuring the slopes at each of the points over the respective axis, i.e. by

using finite differences with the neighboring points. The cross derivative fxy is the result of performing

a partial derivative on the solution of the other one.
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Using these sixteen values, one can determine the essential weights attributed in the interpolation of

any given point (x, y). The equation that computes the function value is

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj . (4.34)

Likewise, the expressions for the derivatives are

fx(x, y) =

3∑
i=1

3∑
j=0

aijix
i−1yj , (4.35)

fy(x, y) =

3∑
i=0

3∑
j=1

aijx
ijyj−1, (4.36)

and

fxy(x, y) =

3∑
i=1

3∑
j=1

aijix
i−1jyj−1. (4.37)

Together, these four equations provide the necessary information for the computation of each of the

weight values. A concise form for the solution of this system is obtained, in matrix form, through
a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 =


1 0 0 0

0 0 1 0

−3 3 −2 −1

2 −2 1 1




f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)

f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)

fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)

fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)




1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1

 .

Once the weights are determined, any point inside that area can be interpolated using

f(x, y) =
[
1 x x2 x3

]

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33




1

y

y2

y3

 .

Lanczos interpolation

This last interpolation method, also named Lanczos filtering or Lanczos resampling after its inventor

Cornelius Lanczos, uses a sinc based kernel (Lanczos kernel) to smoothly interpolate the value of a digital

signal between its samples. This reconstrucion kernel L(·) is the normalized sinc function, windowed by

the central lobe of a horizontally stretched sinc function

L(x) =

sinc(x)sinc(xa ) for− a < x < a

0, otherwise.
(4.38)

The size of the kernel is determined by a, which is a positive integer typically taking the value 2 or 3.

Restricting the parameter to positive integers yields an interpolated signal with the guarantee of being
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continuous and having a continuous derivative.

Once the kernel is defined, one can obtain the equation for the one-dimensional interpolant

f(x) =

bxc+a∑
i=bxc−a+1

f(xi)L(x− i), (4.39)

with b·c the floor function that rounds the input to the nearest integer with a lower value than its own.

As the value of a grows, so does the area of influence of each lobe. This area is the interval where the

filter is active. For a determined parameter value, the range of a single filter is given by 2a− 1 with the

center at xi. Having a bigger region of impact creates a smoother output at the cost of producing an

oscillating behaviour. Furthermore, these oscillations can generate estimates with a negative value, so

special care must be taken to ensure no unacceptable interpolations appear in the final product.

(a) Lanczos interpolant with a = 1. (b) Lanczos interpolant with a = 2. (c) Lanczos interpolant with a = 3.

Figure 4.12: Depiction of the interpolated function (blue) from the original points (black dots) with different sized
nodes (red).

The generalization of (4.39) to a higher dimension consists in summing over all the possible combina-

tions of the filter. Specifically, the equation for the interpolation function in two dimensions is

f(x, y) =

bxc+a∑
i=bxc−a+1

byc+a∑
j=byc−a+1

f(xi, yj)L(x− i, y − j). (4.40)

Fortunately, the multivariate Lanczos filter’s kernel is separable, i.e. it can be written as the product of

its parts. As a consequence, the bidimensional interpolant simplifies to a series of sums

f(x, y) =

bxc+a∑
i=bxc−a+1

L(x− i)

( byc+a∑
j=byc−a+1

f(xi, yj)L(y − j)

)
. (4.41)

Results

The performance of these three functions was tested in regards to three distinct aspects: computation

time, mass error and mean squared error. This information will allow for the choice of the most convenient

method. The goal is the attainment of an interpolating process that provides an adequate approximation

within an acceptable time interval, and whose output density is not far from the input. Below, a series

of bar charts depict the results of the conducted study. From left to right the interpolation methods are:

Bilinear, Bicubic and Lanczos with the parameter a set to 1, 2, 3 and 4, respectively. Though the bilinear
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and bicubic solutions outperformed the Lanczos interpolant in mass conservation, the latter surpassed

them both in computation speed and greatly in the mean squared error.

(a) Computation time of one inter-
polation iteration.

(b) Absolute difference in mass error
in natural logarithm base.

(c) Mean squared error in natural
logarithm base.

Figure 4.13: Bar charts of the different studied aspects of the interpolants.

Whereas the nature of the Lanczos filter makes it more prone to higher errors of the outcome mass, it

provides a faster more accurate estimate of the whole function. The thinnest filter’s response is too rough

to justify its usage, however, wider filters proved capable of handling the problem with an acceptable

performance. While it obtained better results than its counterparts with lower parameter values, the

oscillations produced by the broadest Lanczos filter tested (a = 4) in undesirable areas, namely areas

with low density magnitude, were both higher in amplitude and numbers. This effect is aggravated in

ampler filters. The author considered the Lanczos interpolant with a = 3 to be the best choice out of all

the options.
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Chapter 5

Results

This chapter is dedicated to the review and explanation of the results of important tests, conducted in

an attempt to understand and evaluate the performance of the constructed algorithm.

5.1 Non-stationary signal estimation

The solution suggested in the second section of Chapter 3 was tested in a noiseless case scenario. The

chosen trajectory was the one shown in figure 2.7. The set of H models used in the estimation consisted

of three different models in total, namely a second and third order integrators, H2
i and H3

i respectively,

and a periodic model with the period of the cosine used in the generation of the movement related to the

roundabout itself, H50
p .

The estimated trajectory was similar to the actual one, with the only perceivable difference being in

the transition from the circular to the linear motions, as depicted in figure 5.2.

(a) Estimated motion of a
vehicle in a roundabout.

(b) Estimated motion along the
first coordinate.

(c) Estimated motion along the
second coordinate.

Figure 5.1: Bi-dimensional estimate (a) and its one-dimensional counterparts (b) and (c) in a noiseless environ-
ment.

When some noise was added, however, the estimator did not behave so well. While it maintained

the oscillatory behaviour observed in the previous results, the algorithm chose the periodic model to

represent certain parts of the circular motion which, due to the initial conditions present, resulted in a

poor representation of the motion in those points.
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(a) Estimated motion of a
vehicle in a roundabout.

(b) Estimated motion along the
first coordinate.

(c) Estimated motion along the
second coordinate.

Figure 5.2: Estimate of a bi-dimensional motion (orange) in the presence of noise and original motion (blue).

A few solutions have been thought of to solve the problem at hand, such as the introduction of models

with static initial conditions, or the filtering of the signal prior to the estimation of the motions so as

to smoothen it and attenuate the effect of the noise on the initial conditions. Further work is in order

before advancing to tests using real data.

5.2 Stationary signal estimation

The performance of both the RLS and the RW-LASSO algorithms were tested in situations where the

parameters were static and variable. In the first situation, the AR model was given by

C

A
=

1

1− 1.5z−1 + 0.7z−2
, (5.1)

with the parameters to be estimated being θ = [1.5 0.7]T . Supplying the algorithms with the correct

order of the polynomial results in a good estimation of the parameters in both cases, with the RLS having

a slower convergence and a bigger variation than the RW-LASSO, as can be seen in the figure 5.3 below.

The RLS method has a fixed forgetting factor in the following cases, unless otherwise stated.

(a) RWL estimation. (b) RW-LASSO estimation.

Figure 5.3: Estimation of parameters given the correct order of the polynomial.
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Similar results were obtained when the input order was increased. The polynomial in this case was of

order 4, two orders above the actual polynomials order. In figure 5.4 the main difference between these

two methods can be perceived: their responses sparsity. While the LASSO correctly nullifies the extra

parameters added, the RLS constantly varies their values around zero, never actually giving them a null

value.

(a) RWL estimation. (b) RW-LASSO estimation.

Figure 5.4: Estimation of parameters given a value superior to the actual order of the polynomial.

5.3 Target motion data

Once built and fine-tuned, the prediction algorithm was tested with real time-series taken from the

Stanford Aerial Pedestrian Dataset [29]. This Dataset comprises various videos of different classes of

targets, such as pedestrians, bikers, skateboarders, cars, buses, and golf carts in a variety of scenes

located somewhere on the Stanford University campus. The Dataset is public and accessible at https:

//cs.stanford.edu/~anenberg/uav_data/. Along with the correspondent video showcasing the distinct

target trajectories, an annotation file containing all the relevant information is available for every scenario.

Inside this file are as many lines as there are observations of targets, each associated to the identification

of an object in a specific frame. The structure of an annotation consists of the coordinate limits of the

bounding box surrounding the object, namely the top-left and bottom-right points, the frame at which it

was detected, a series of flags describing some features of the data, specifically if the current observation

was outside of the field of view, occluded or automatically interpolated, and finally, the label of the target.

The footage is obtained from a 4K camera attached to a quadcopter platform hovering directly above the

scene, so there is no need to perform an homography on the data.

Although the files contain a multitude of acceptable time-series, not all of them are adequate for

motion prediction. Due to the automatic nature of the object classification, there exist some incomplete

sequences of observations and even cases of different trajectories being fused "end-to-start", resulting in

drastic changes in coordinates that can deteriorate the performance of any study conducted on said data.

It is only reasonable that a certain amount of data is compromised since, given the scale of the dataset,

classifying all of the objects by hand would be, at the very least, considerably impractical. To reduce

the number of plausible choices, a validation step is executed, filtering out every undesirable curve. The
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author thought it best to specify as acceptable criteria that each of the valid paths started and ended

near the edges of the map and passed through a region around the center. This successfully eliminates

any trajectory that inexplicably appears or ends in the middle of the map, and other undesired ones.

Another adverse aspect of the dataset is the error that arises from the extraction of the data in a finite

state space. The fact that the target is portrayed in the pixels of an image deteriorates the accuracy of

the observation due to the quantization effect. Since the silhouette of an object in a frame affects the

overall shape of its associated bounding box, this discretization produces rougher transitions between

consecutive points by rounding the corners to integer form. The object is described using the center of

the rectangle encompassing it, allowing the coordinates to take values ending in ".5", resultant of being

between two consecutive pixels. Even though this decision effectively doubles the available state space,

which was already reasonably big to start with, at a resolution of 1400 by 1904, the time-series are still

too rough to work with. A low-pass filter, similar to the one described in (3.3), is applied on the data to

smooth it out. As a consequence of using such a filter, a delay on the positions of the target is observed.

To avoid extending the delay too much and hoping to simulate as accurately as possible a real-time

scenario, the order of the filter was kept to two.

5.4 Single target forecasting

Despite calibrating beforehand, the chosen parameters resulted in estimates too sparse to influence the

outcome of the system. In most cases, the AR models would only be active for less than ten percent

of the whole path, usually peaking near the beginning and suddenly collapsing to a null estimate. This

resulted in a predictor that relied almost always solely on the general motion of the target (H model).

To counter this effect, the lower limit of the penalization function was lowered from 3.1 to allow smaller

values of the coefficients to be considered. Three tests were conducted to ascertain the best value for the

model estimation in this dataset time-series. The distinction between the performance of the methods

with different coefficients is obtained through the comparison of their mean squared errors. The values

used in these tests serve more as a guideline to the study of the effect of the parameters than a specific

selection to obtain the best possible forecast. It is beneficial to select a value that provides adequate

predictions for a larger number of targets over one that favours a specific type of paths.

Figure 5.5 shows the results of the variation of µk on the chosen path predictions and the respective

paths that generated those results. On the left a series of bars are displayed in groups. Each group

corresponds to the mean squared error of the predictions at a determined number of epochs ahead. For

each prediction step, the comparison between the various models with different AR estimation parameter

λ and the simplified system using only the motion model is displayed in the bars with varying colors. On

the right are depicted the respective trajectories that originated the graph bar on the same line.
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(a) First target forecasting MSE. (b) Path travelled by the first target.

(c) Second target forecasting MSE. (d) Path travelled by the second target.

(e) Third target forecasting MSE. (f) Path travelled by the third target.

Figure 5.5: Mean squared error evolution of the first eight prediction steps.

The addition of the RW-LASSO algorithm in the forecasting process provides a positive impact on

most cases up to predictions six epochs ahead. From there on, only a few configurations improve the

MSE of the predictor. The decrease in magnitude of µ generally yields a more accurate guess, regardless

of the number of forecast steps. However, the estimates produced with values below 0.15 tend to have

little sparsity more often than not. Because of this fact, λ was adjusted so that µk = 0.15.

Further tests were conducted with the modified parameter value to understand more extensively the

impact of the stationary model estimator on the system. The chosen path (figure 5.6) was similar to the

one travelled by the third target from the previous case study, both in the start and end coordinates, as

well as in the overall shape of the trajectory.
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Figure 5.6: Path traveled by the fourth studied target.

The effect of the auto-regressive signal is however, not as positive as it was for the last test case, with

the mean squared error of the predictions with the incorporation of the stationary signal input surpassing

that of the estimates using solely the motion model from 6 forecasting steps forward.

Figure 5.7 (b) shows a more detailed perspective of the difference between these two predictions. Each

of the colored signals represents the evolution of a particular forecast epoch MSE difference obtained by

subtracting the predicted coordinates with the AR model aid to the more general predictions obtained

with just the H block. While the behaviour of the errors is similar for every projection level, the amount

of variation they display is much more accentuated in farther estimates.

(a) Total MSE sum. (b) MSE evolution in time.

Figure 5.7: Performance test on the impact of the AR estimator usage.

A close inspection of the correspondent AR parameter evolution, shown below, reveals that these

abrupt changes in values result from an incorrectly estimated model. Usually, an overfit of the stationary

model deteriorates the prediction more than an underfit. Note that the images illustrating the evolution

of the AR coefficients all follow the same color pattern as the one displayed in 5.7 (b), with higher numbers

referring to y values farther in the past.
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(a) Coefficients pertaining to the xx axis. (b) Coefficients pertaining to the yy axis.

Figure 5.8: AR model estimated parameters.

Even with the reduction in the magnitude of λ, the coefficients that generate the stationary signals are

all zero during a considerable part of the trajectory. In figure 5.8 (a) a somewhat extreme case is depicted,

with the parameters possessing null value for more than half the study time, apart from the occasional

sudden peaks. These peaks arise whenever the estimator encounters a possible sparse representation that

cannot sustain itself for very long, resulting in an abrupt change in value from zero to non-zero and then,

almost instantly, back to zero again. Albeit somewhat inconvenient, this option is not as harmful as the

overfitting of the model that would come as a consequence of further lowering the limit of the penalization

function.

As informative as these graphics are, it is not as intuitive as examining the behaviour of the predictor

in real time. Additional insight can be gained by inspecting the impact of the AR model addition to

the signal with more context. For that purpose, a few snapshots of the execution of the algorithm

are presented and analyzed. In the figures below, the actual positions of the target are depicted in

black, for present and past observations, and blue, for future ones. The initial conditions that generate

the prediction are coloured red with a green edge and linked with a black line. The predicted points

are shown in magenta and red, pertaining to the predictions with and without the stationary input,

respectively.

First, a scenario in which the addition of the stationary signal input improves the outcome of the

predictor is considered. Here, the slight deviation from the truth obtained with just the motion model

prediction is corrected, increasing the accuracy of the first six estimates to almost pinpoint precision and

reducing the error of the last two forecast points to magnitudes comparable to that of the fourth and

fifth guesses attained with the more general system.

In the second scenario, the algorithm predicts a continuous curve to the right, while the actual path

transitions from a curve to a straight line after a few steps. The addition of the y signal reinforces this

belief in the continuation of the curve. In fact, not only does this change result in a tighter curve, it

also influences the speed at which the target moves, producing estimates that diverge from the actual

trajectory much more than the previous, more general ones.
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(a) Forecasting without the addition of any
stationary input.

(b) Forecasting with the aid of the auto-regressive
signal input.

Figure 5.9: Improvement of the predictions using the AR models estimated with the RW-LASSO algorithm.

(a) Forecasting without the addition of any
stationary input.

(b) Forecasting with the aid of the auto-regressive
signal input.

Figure 5.10: Deterioration of the predictions using the AR models estimated with the RW-LASSO algorithm.

In both situations, the active motion model is the third order integrator. This model is highly

susceptible to changes in the initial conditions and tends to drift towards one side. As such, it is more

likely to produce errors with a bigger magnitude than its lower order counterpart.

Further tests were conducted on targets with distinct path shapes and the results were somewhat

consistent. While the results of introducing an auto-regressive input in the motion model differ with the

chosen trajectories, the effect of the nature of the AR model is constant. Although the sparsity of the

estimates plays an important role in the accuracy of the forecasts, it was perceived that higher order AR

models tend to generate bigger errors than those containing just the first few coefficients active.

5.4.1 Group forecasting

The generalization of the predictor used above was tested in scenarios with multiple targets whose paths

possess a similar outline. A noticeable difference between both the singular and multiple prediction cases

54



is the increase in computation time when considering more than one target. This gap is due to the

expansion in the grid encompassing the targets. This grid needs to be dense enough to describe the

targets position with adequate accuracy, however, if the distance between the objects is too big compared

to the variance of their related uncertainty, some spots inside this area of interest are bound to have

negligible values. In an attempt to reduce the toll imposed by this process, a separation of the region of

interest into smaller areas focused on individual targets is considered.

A trio of cyclists was chosen as the targets for the first case study. These time-series displayed a

concurrent behaviour, both temporal and spatially, indicating a high probability of belonging to the

same group. Figure 5.11 illustrates the paths of the different objects, cropped to the same sample length.

From the image it is possible to see some overlaps in coordinates, consistent with the expected behaviour

of a set of cyclists travelling the same trajectory. This situation is favorable for testing the performance

of the generalized algorithm, since it is assumed that a single motion model is sufficient for an adequate

prediction of every target.

Figure 5.11: Paths travelled by a group of targets. Each distinctly coloured line represents an individual target
trajectory.

The results of the test are positive and in accordance to what was previously observed in the single

target experiments. The overall performance of the system with the interaction between the stationary

and non-stationary models surpasses that of the system with just the motion model, for forecasts up

to six epochs ahead. The difference in error is bigger for the time-series from which the motion model

compared to the other two, as was anticipated, yet the disparity is not substantial.

The results depicted in figure 5.12 demonstrate that it is possible to simplify the generalization of the

predictor for more complex situations by describing the general aspect of the paths with a single common

model and obtain beneficial outcomes. It must not be forgotten that the conditions under which this

conclusion holds are somewhat restrictive, nevertheless, it encourages the usage of the simplified version

of the system.

Regarding the detailed analysis of the MSE evolution, the reactions of the predictor to the addition

of the stationary signal are in conformity with the former studies. Once again, the system appears to

react more positively to sparser, lower order AR models opposed to the more abundant or higher order

estimates. The graphics illustrating this behaviour are presented in appendix A.
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(a) MSE of the first target. (b) MSE of the second target. (c) MSE of the third target.

Figure 5.12: Mean squared error of various targets using a single motion model, taken from the target represented
in the leftmost image.

In another scenario, the gap between the effect of the auto-regressive signal on the predictions in

different targets is significantly wider. Both cases exhibit a satisfactory response to the simplification of

the motion model, however, the addition of the AR model results in very dissimilar outcomes. Figure

5.17 shows the differing outcome errors. Examining the auto-regressive coefficient evolution leads to the

conclusion that the consequences of incorrectly estimating the parameter values are disastrous. Much

like before, an overfit of the signal causes the MSE to more than double in value for the higher order

forecasts.

(a) MSE of the first target. (b) MSE of the second target.

Figure 5.13: Mean squared error difference resultant of the incorrect estimation of the AR model.

In fact, on all of the conducted tests the dominant origin of large errors was this overfitting effect.

Whenever this misestimation occurs during a period where the third order integrator motion model is

active, the predictions seem to diverge from the truth disproportionately. Below, two snapshots of the

forecast coordinates of three series in a group are depicted. These images follow the same color scheme

of figures 5.9 and 5.10, with the addition of the uncertainty areas illustrating the regions with 99%

probability of containing the actual observations. These zones are circular, centered in the correspondent

forecast points and their borders are represented with a shade of blue that is brighter for in predictions

farther in the future. The growth of these spaces is big compared to the distance travelled at each epoch,

so it is common for the observations to fall within these areas. Yet, the excessive deviation induced by

the stationary input is great enough to distort the predictions to a state where these uncertainty regions

are not reliable.
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Figure 5.14: Group prediction without any stationary input.

Figure 5.15: Group prediction with an incorrectly estimated stationary input.

A big part of the accuracy of the predictor appears to derive from the correct choice of the motion

model. On the other hand, the employment of the AR model provides modest improvements, but carries

with it the risk of notably worsening the forecasts if its coefficient values are severely misestimated. In
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an effort to consolidate this hypothesis, a set of trajectories that did not belong to the same group was

chosen for further testing the generalized version of the algorithm. This set (figure 5.16) consists of two

targets that start in similar places and travel along the same direction for a while, splitting up in the end.

Analyzing solely the first half of the paths, it is understandable that these targets might be considered

as part of the same group.

Figure 5.16: Paths travelled by two targets whose similarities could mistakenly classify them as belonging to the
same group.

As was expected, forecasting the second target using the motion model extracted from the first one

deteriorated the results of the algorithm. The general estimates suffered with the simplification derived

from the assumption that these two targets belonged to the same class. Whereas the stationary signal

input mostly lowered the accuracy of the predictor for the correctly modeled target, it improved a good

part of the forecasts of the incorrectly modeled one. However, because of this simplification, the base

prediction MSE of the second target was comparable to the worsened predictions of the first.

(a) MSE of the first target. (b) MSE of the second target.

Figure 5.17: Mean squared error difference resultant of the incorrect application of the motion model on the
second target.

A possible solution for this problem might be the adaptive classification of groups based on the

similarities of the different series. To ensure the plausibility of the clustering, an evaluation of the groups

in terms of the distance between targets and possibly even their past motion should be conducted from

time to time.

58



Chapter 6

Conclusions

This report sought to study the effects of pursuing a relatively high degree of sparseness in certain key

components of an online time-series prediction algorithm. The separation of the signal motion in two

parts, one more general and the other pertaining to more detailed aspects of the trajectories, proved

useful in the forecasting of the desired data.

The generalized description of the motions provided a moderately accurate representation of the actual

future values of the input. The choice of lower order integrators for the representation of the underlying

models played an important part in the performance of the predictor, with the third order one occasionally

generating rougher estimates due to the accentuated curves the model naturally produces. In addition

to this, the adoption of a single motion model for a group of targets proved adequate for series that

exhibited similar behaviours. Nonetheless, the clustering of objects in groups is still a relevant concern,

since the trajectories may be alike during a specific interval of time but different on the whole. This

temporary closeness between the paths can lead to incorrect classifications as a result of not having the

entire data sets beforehand. The fact that the algorithm is built to be executed in real-time demands

that the pairing of different targets be checked often to ensure the validity of the groups and undone if

said pairing is deemed incorrect.

The influence of the stationary signal on the forecast motion was demonstrated to be considerable.

Due to the accuracy of the already existent predictions, the negative impacts of the addition of the

correction component, i.e. the AR model, are more perceptible than the positive ones. This is notable

whenever an overfit of the model occurs, especially when paired with a third order integrator model,

since this combination usually distorts the estimates to an absurd degree. These results confirmed again

the superiority of the RW-LASSO method over the RLS, for situations such as the ones described in

this report. The system demonstrated a better response to sparser, lower order estimates for the auto-

regressive model opposed to more complex or higher order ones.

All in all, the designed predictor showed a reliable short term forecast of both singular and multiple

target time-series. Medium to long term forecasting was proven to be somewhat untrustworthy, given

a multitude of factors such as the unpredictability of the motion models, the uncontrolled growth of

the guess uncertainty, among others. The computational load of the algorithm was not found to be a
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prominent burden for real-time applications, although large sets of data with multiple targets are yet to

be studied.

This report serves as incentive to further research into the applications of sparseness in forecasting

and control problems. The results of the work here described confirmed that there are advantages in

exploring sparse approaches when devising solutions to these kinds of questions.

Future improvements may focus on the fine-tuning of the RW-LASSO parameters adaptively, instead

of pre-processing large amounts of data to adjust these coefficients. This regulation is crucial to the

pursuit of an acceptable outcome and, in addition to this, is problem dependent and observed to be even

target dependent. Because of this last aspect, the parameters had to be occasionally readjusted to match

the requirements of the input data, as the magnitude of the noise appeared to change with the outline of

the trajectory.

Other enhancements stem from the addition of data regarding the environment in which the targets are

situated, to help predict possible motion transitions due to target-target and target-object interactions.

Additionally, any decrease in computation time and effort is a compelling objective to strive for and

should also be considered as an interesting change to the algorithm.
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Appendix A

Supplementary results on the first

group case study

Here, a detailed view of the mean squared error evolution related to the targets of the group depicted in

figure 5.11 is provided.

(a) AR model coefficients pertaining to the xx axis. (b) AR model coefficients pertaining to the yy axis.

(c) MSE evolution in time.

Figure A.1: Mean squared error evolution of the first target of 5.11 (blue).

A.1



(a) AR model coefficients pertaining to the xx axis. (b) AR model coefficients pertaining to the yy axis.

(c) MSE evolution in time.

Figure A.2: Mean squared error evolution of the second target of 5.11 (orange).

(a) AR model coefficients pertaining to the xx axis. (b) AR model coefficients pertaining to the yy axis.

(c) MSE evolution in time.

Figure A.3: Mean squared error evolution of the third target of 5.11 (yellow).
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