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This report describes a strategy to identify and group together motion pat-
terns associated with different classes of agents e.g., bikers, pedestrians, cars in
far-field surveillance scenarios.

1 Hierarchical Switched Motion Model

Let us assume that the various agents in a scene (e.g., skaters, pedestrians)
exhibit a finite number of motion patterns, which are specific of their class c ∈
{1, ..., C}. Each agent will be associated with a trajectory x = (x1, x2, ..., xL),
where L is the length of the trajectory and xt ∈ [0, 1]2 is the position at time
instant t. The motion patterns that characterize the trajectories may be sum-
marized into a set of Kc motion fields, where T ck : [0, 1]2 → R2 is the k − th
motion field belonging to class c. Thus, we generate the position xctt as follows

xt = xt−1 + T ctkt (xt−1) + wkt , (1)

where T ctkt is the active motion field, conditioned on class ct, and wkt ∼ N(0,Σckt(xt−1))
is the class-specific space-varying white noise perturbation, associated with the
uncertainty of the position.

Only one motion field may be active at each time instant. However, we
assume that it is possible to switch between motion fields of the same class at
specific positions. Additionally, we postulate that is also possible for an agent
to change classes, although with a lower probability, at certain positions of the
space (e.g., a car parks, a driver comes out and starts walking, becoming a
pedestrian). These transitions are modeled as a hierarchical hidden Markov
model (HHMM), as explained in the following section.

2 Hierarchical Motion Model

HHMM have been introduced by Fine et al. [1] as an extension of the standard
HMM to problems that exhibit a hierarchical structure. The main idea of this
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Figure 1: Graphical representation of the proposed switched model.

model is that the hidden states are organized in hierarchical levels, such that
the hidden states at the uppers levels, called “internal” states, are responsible
for activating states at the lower levels. Each internal state is only able to
activate some of the states of the level below it, and these lower states are not
shared. The process of activation is carried out until a state at the lowest level
is reached. This level, usually called “production”, is responsible for generating
the observations, similarly to a traditional HMM [2].

Our model can be defined as a two-level HHMM (see Fig.1), where the
upper level models the class and the lower level the active motion field. A
binary variable ft is used to identify the end of the production level; this allows
the model to decide whether to stay in the production level (ft = 0), or to
leave the production level and return to the control to the upper level (ft = 1).
This makes it possible for the model to generate the next position by either: i)
maintaining the same class; or ii) changing class.

Based on the aforementioned formulation, we define the following probabil-
ities for our motion model [3]:

p(kt = j|kt−1 = l, ft−1, ct = u, xt−1) =

{
B̃u

lj(xt−1), if ft−1 = 0

πu
j (xt−1), if ft−1 = 1

, (2)

where B̃ulj(x) is the element (l, j) of the stochastic matrix Bu(x) associated
with class u, and πuj (x) is the initial distribution of motion field j, given the
class u. Both variables are evaluated at position x. Similarly to the traditional
HMM, Bu(x) comprises the probabilities of transition between states l and j.
Additionally, this matrix comprises the ending probabilities, i.e., the probability
of transition to ft = 1, which we will loosely refer to end

p(ft = 1|kt = j, ct = u, xt−1) = Bu
jend(xt−1). (3)

Thus, we also consider Bulj = (1− bulend(xt−1))B̃ulj(xt−1) as a rescaled version of

B̃ulj(xt−1). At the upper level, the transition between classes is also governed
by a stochastic matrix A(x) evaluated at position x, such that

p(ct = u|ct−1 = v, ft−1, xt−1) =

{
δ(v, u), if f = 0

Avu(xt−1), if f = 1
. (4)

Here δ(v, u) is the Kronecker delta and Avu(x) is the (v, u) element of A(x)
Based on this formulation, the joint probability p(x, k, f, c) of a trajectory x
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associated with a sequence of motion fields k, classes c, and binary variables f ,
is defined a follows:

p(x, k, f, c) = p(x1, k1, f1, c1)
L∏

t=2

p(xt, kt, ft, ct|xt−1, kt−1, ft−1, ct−1)

= p(x1, k1, f1, c1)
L∏

t=2

p(xt|xt−1, kt, ct)p(ct|xt−1, ct−1, ft−1)

.p(kt|xt−1, ct, ft−1, kt−1)p(ft|kt, ct, xt−1). (5)

p(x, k, f, c) = p(x1, k1, f1, c1)

L∏
t=2

p(xt, kt, ft, ct|xt−1, kt−1, ft−1, ct−1)

= p(x1, k1, f1, c1)

L∏
t=2

p(xt|xt−1, kt, ct)p(ct|xt−1, ct−1, ft−1)

.p(kt|xt−1, ct, ft−1, kt−1)p(ft|kt, ct, xt−1), (6)

where p(xt|xt−1, kt, ct) is a multivariate Gaussian centered in xt−1+T ctkt (xt−1)
and covariance Σckt(xt−1).

2.1 Model Estimation

All of the model parameters θ = (T ,B,A,Π,Σ) are defined using a regular
grid of

√
n ×
√
n nodes, where T is a dictionary of motion fields, B and A

are dictionaries of fields and classes transition matrices, Π is the dictionary
of motion fields probabilities, and Σ is a dictionary of covariance matrices.
The parameters are estimated at the grid nodes and computed elsewhere using
bilinear interpolation [4]

T ck (x) =

n∑
i=1

T c,ik φi(x)

Bc(x) =

n∑
i=1

Bc,iφi(x)

Σc
k(x) =

n∑
i=1

Σc,i
k φ

i(x)

A(x) =

n∑
i=1

Aiφi(x)

πc(x) =

n∑
i=1

πc,iφi(x), (7)

where index i identifies the parameters associated with node gi for the c− th
class. The scalar φi(x) is the interpolation coefficient of the i− th node.

The model parameters may be estimated using a set of S observed trajecto-
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ries X =
{
x(1), ..., x(S)

}
, with variable lengths:

θ̂ = arg max
θ

[log p(X|θ) + log p(θ)] . (8)

Since there are several hidden variables in the model (the sequences k(s), c(s),
and f (s)), we will resort to the Expectation-Maximization (EM) algorithm to
alleviate the computation of the likelihood function.

U(θ, θ′) = E {log p(X ,K|θ)|X , θ′}+ log p(θ)

= U1(θ, θ′) + U2(θ, θ′) + U3(θ, θ′) + U4(θ, θ′) + U5(θ, θ′), (9)
where

U1(θ, θ′) =

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

∑
f

γ
(s)
ckf (t) log det

(
Σk(x

(s)
t−1

)
,

U2(θ, θ′) =

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

∑
f

γ
(s)
ckf (t)‖v(s)t − T ck (x

(s)
t−1)‖2

Σk(x
(s)
t−1)

,

U3(θ, θ′) = 2

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

ξ
(s)
ck1(t) log bckend(x

(s)
t−1)

+ ξ
(s)
ck0(t) log(1− bckend(x

(s)
t−1)),

U4(θ, θ′) = 2

S∑
s=1

Ls∑
t=2

C∑
c=1

[
Kc∑
k=1

η
(s)
ck (t) log πck(x

(s)
t−1)

]

+

[
Kc∑
p,q

w(s)
cpq(t) log B̃cpq(x

(s)
t−1)

]
,

U5(θ, θ′) = 2

S∑
s=1

Ls∑
t=2

C∑
j,c

χ
(s)
jc (t) logAjc(x

(s)
t−1), (10)

where, v
(s)
t = x

(s)
t − x

(s)
t−1, γ

(s)
ujf (t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t−1|x(s), θ′) is the

smooth state probability, ξ
(s)
ujf (t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t |x(s), θ′) gives us

the ending and non-ending probabilities, η
(s)
uj (t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t−1 =

1|x(s), θ′) is the probability of a vertical transition from the class level to the

motion model one, w
(s)
uij(t) = p(k

(s)
t−1 = i, k

(s)
t = j, c

(s)
t = u, f

(s)
t−1 = 0|x(s), θ′)

is the probability of an horizontal transition at the motion model level, and

χ
(s)
vu (t) = p(c

(s)
t−1 = v, c

(s)
t = u, f

(s)
t−1 = 1|x(s), θ′) is the probability of an horizon-

tal transition at the class level. All of these values are computed in the E-step,
using the generalized Baum-Welch algorithm [1].
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2.2 E-step

In the E-step we will resort to the generalized Baum-Welch algorithm [1], to
compute the sufficient statistics. The first step consists of estimating the forward
and backward variables:

• Forward Variables:

α
(s)
t (u, j, ft−1) , p(cst = u, k

(s)
t = j, f

(s)
t−1|x

(s)
2:t )

∝ p(x(s)t |k
(s)
t = j, c

(s)
t = u, x

(s)
t−1)

C∑
v

Kv∑
l

h(v, l)
∑

g∈{0,1}

αt−1(v, l, g)

(11)

where h(v, l) is the following auxiliary function

h(v, l) =

=

{
bvlj(x

(s)
t−1) if f

(s)
t−1 = 0

bvlend(x
(s)
t−1)avu(x

(s)
t−1)πuj (x

(s)
t−1) if f

(s)
t−1 = 1

. (12)

The variable αs2 is initialized as follows

α
(s)
2 (u, j, ft−1) =

{
0 if f

(s)
t−1 = 0

πuj (x
(s)
t−1) if f

(s)
t−1 = 1

. (13)

• Backward Variables:

βst (u, j, ft−1) , p(x
(s)

t+1:L(s) |c
(s)
t = u, k

(s)
t = j, f

(s)
t−1)

=

C∑
v

Kv∑
l

p(x
(s)
t+1|c

(s)
t+1 = v, k

(s)
t+1 = l, x

(s)
t )
[
δ(u, v)bvjl(x

(s)
t )βt+1(v, l, 0)

+ bujend(x
(s)
t )auv(x

(s)
t )πvl (x

(s)
t )β

(s)
t+1(v, l, 1)

]
. (14)

These variables are initialized as

βsLs(u, j, ft−1) = 1. (15)

The second step is the calculation of the sufficient statistics, which amounts
to computing the following probabilities at each time step, given the whole
sequence.

• Smooth state probability:

γ
(s)
t (u, j, ft−1) = p(c

(s)
t = u, k

(s)
t = j, f

(s)
t−1|x

(s)

2:L(s))

∝ α(s)
t (u, j, ft−1)β

(s)
t (u, j, ft−1) (16)

5



• Horizontal transition probability at the ”production”/motion fields level:

w
(s)
ulj(t) = p(k

(s)
t−1 = l, k

(s)
t = j, c

(s)
t = u, f

(s)
t−1 = 0|x(s))

∝
C∑
v

δ(u, v)
∑

g∈{0,1}

α
(s)
t−1(v, l, g)bvlj(x

(s)
t−1)

× p(x(s)t |c
(s)
t = v, k

(s)
t = j, x

(s)
t−1)β

(s)
t (v, j, 0) (17)

• Not-end and End Transition probabilities:

ξ
(s)
uj0(t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t = 0|x(s))

∝
C∑
v

δ(u, v)

Kv∑
l

∑
g∈{0,1}

α
(s)
t (v, j, g)bvjl(x

(s)
t )

× p(x(s)t+1|c
(s)
t+1 = v, k

(s)
t+1 = l, x

(s)
t )β

(s)
t+1(v, l, 0) (18)

ξ
(s)
uj1(t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t = 1|x(s))

∝
C∑
v

Kv∑
l

∑
g∈{0,1}

α
(s)
t (v, j, g)bvjend(x

(s)
t )auv(x

(s)
t )

× p(x(s)t+1|c
(s)
t+1 = v, k

(s)
t+1 = l, x

(s)
t )β

(s)
t+1(v, l, 1) (19)

• Vertical transition probabilities:

η
(s)
uj (t) = p(k

(s)
t = j, c

(s)
t = u, f

(s)
t−1 = 1|x(s))

∝ α(s)
t (u, j, 1)β

(s)
t (u, j, 1) (20)

• Horizontal transition probability at the ”internal”/class level:

χ(s)
vu (t) = p(c

(s)
t−1 = v, c

(s)
t = u, f

(s)
t−1 = 1|x(s))

∝
Kv∑
l

Ku∑
j

∑
g∈{0,1}

αt−1x
(s)(l, v, g)bvlend(x

(s)
t−2)avu(x

(s)
t−1)

× πuj (x
(s)
t−1)p(x

(s)
t |c

(s)
t = u, k

(s)
t = j, x

(s)
t−1)β

(s)
t+1(u, j, 1) (21)

2.3 M-step

The M-step consists of optimizing (9) w.r.t to θ, which is accomplished by taking
the derivatives.

• Motion Fields:
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∂U

∂T ζκ
=
∂U2

∂T ζκ
+

log p(θ)

∂T ζκ
= 0, (22)

where we define log p(θ) = α‖∆T ζκ ‖22 +β‖T ζκ ‖pp to ensure both smoothness
and sparsity of the fields.

The aforementioned may be expressed as a convex optimization problem,
such that

min
Tκ
‖Wκvec(V − T ζκ Φ)‖22 + α‖∆T ζκ ‖F + β‖T ζκ ‖pp , (23)

where V ∈ R2×L (L =
∑
s Ls − S) comprises the agents’ velocities (v =

xt− xt−1) off all trajectories, Φ ∈ Rn×L is the matrix of the interpolation
coefficients for all the trajectories, and Wκ is a block diagonal matrix of
the form

Wk =



√
γ
(1)
k (2)Σk

− 1
2 . . . 0 . . . 0 . . . 0

... . . .
... . . .

... . . .
...

0 . . .

√
γ
(1)
k (L1)Σk

− 1
2 . . . 0 . . . 0

... . . .
... . . .

... . . .
...

0 . . . 0 . . .

√
γ
(S)
k (2)Σk

− 1
2 . . . 0

... . . .
... . . .

... . . .
...

0 . . . 0 . . . 0 . . .

√
γ
(S)
k (LS)Σk

− 1
2 . . .


,

where γ
(s)
κt =

∑
c

∑
f γ

(s)
t (c, k, f).

The objective function to be minimized is a sum of norms. Therefore, it
is convex and can be solved using a software package for convex problems,
such as CVX [?].

• Noise covariance matrices:

∂U

∂Σλ,ζ
κ

=
∂U1

∂Σλ,ζ
κ

+
∂U2

∂Σλ,ζ
κ

= 0, (24)

The derivatives ∂U

∂Σλ,ζ
κ

are equal to

∂

∂Σλ,ζ
κ

E[log p(X ,K|θ)|X , θ̂] =

S∑
s=1

Ls∑
t=1

γsκ(t)φλ(x
(s)
t−1)[

(
N∑
n=1

Σn,ζ
κ φn(x

(s)
t−1)

)−1
−

−

( N∑
n=1

Σn,ζ
κ φn(x

(s)
t−1)

)−1
G

(s)
t

(
N∑
n=1

Σn,ζ
κ φn(x

(s)
t−1)

)−1T

,

(25)

where
G

(s)
t = (v

(s)
t − TκΦ(x

(s)
t−1))(v

(s)
t − TκΦ(x

(s)
t−1))T . (26)

7



Setting ∂U(θ,θ̂)
∂Σγ

α
= 0 does not have an explicit solution. Thus, we resort

to the gradient descent method followed by a projection on the set of
semidefinite positive matrices.

• Class transition matrices:

∂U

∂Aλζρ
=

∂U5

∂Aλζρ
= 0, (27)

The derivatives are computed as follows

∂U5

∂Aλζρ
=

∂

∂Aλζρ

S∑
s=1

Ls∑
t=2

C∑
u,v

χ(s)
uv (t) log

n∑
i=1

Aiuvφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

∂

∂Aλζρ

C∑
u,v

χ(s)
uv (t) log

n∑
i=1

Aiuvφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

χ
(s)
ζρ (t)

∂

∂Aλζρ
log

n∑
i=1

Aiζρφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

χ
(s)
ζρ (t)φλ(x

(s)
t−1)∑n

i=1A
i
ζρφ

i(x
(s)
t−1)

(28)

Setting ∂U5

∂Aλζρ
= 0 does not have an explicit solution. Thus, we resort to

the gradient descent method followed by a projection on the simplex.

• Class-specific fields transition matrices:

∂U4

∂B̃λζκρ
=

∂

B̃λζκρ

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
p,q

w(s)
cpq(t) log

n∑
i=1

B̃icpqφ
i(x

(s)
t−1)

=
S∑
s=1

Ls∑
t=2

∂

B̃λζκρ

C∑
c=1

Kc∑
p,q

w(s)
cpq(t) log

n∑
i=1

B̃icpqφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

w
(s)
ζκρ(t)

∂

B̃λζκρ
log

n∑
i=1

B̃icpqφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

w
(s)
ζκρ(t)φ

λ(x
(s)
t−1)∑n

i=1 B̃
iλ
κρφ

i(x
(s)
t−1)

(29)

Setting ∂U4

∂B̃λζκρ
= 0 does not have an explicit solution. Thus, we resort to

the gradient descent method followed by a projection on the simplex.
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• Class-specific fields’ probabilities (vertical transitions):

∂U4

∂πλζκ
=

∂

∂πλζκ

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k

η
(s)
ck (t) log

n∑
i=1

πick φ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

∂

∂πλζκ

C∑
c=1

Kc∑
k

η
(s)
ck (t) log

n∑
i=1

πick φ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

η
(s)
ζκ (t)

∂

∂πλζκ
log

n∑
i=1

πick φ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

η
(s)
ζκ (t)φλ(x

(s)
t−1)∑n

i=1 π
λζ
κ φi(x

(s)
t−1)

(30)

Setting ∂U4

∂πλζκ
= 0 does not have an explicit solution. Thus, we resort to

the gradient descent method followed by a projection on the simplex.

• Class-specific ending and not ending probabilities:

We will start by defining

Buj\end = 1−Bujend . (31)

Thus, U3(θ, θ′) becomes

U3(θ, θ′) = 2

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

ξ
(s)
ck1(t) logBckend(x

(s)
t−1)

+ ξ
(s)
ck0(t) logBck\end(x

(s)
t−1), (32)

Now, it is possible to compute the derivatives

∂U3

∂Bλζκend
=

∂

∂Bλζκend

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

ξ
(s)
ck1(t) log

n∑
i=1

Bickendφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

∂

∂Bλζκend

C∑
c=1

Kc∑
k=1

ξ
(s)
ck1(t) log

n∑
i=1

Bickendφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

ξ
(s)
ζκ1(t)

∂

∂Bλζκend
log

n∑
i=1

Bickendφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

ξ
(s)
ζκ1(t)φλ(xt−1)(s)∑n
i=1B

iζ
κendφ

i(x
(s)
t−1)

(33)
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∂U3

∂Bλζκ\end
=

∂

∂Bλζκ\end

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

ξ
(s)
ck0(t) log

n∑
i=1

Bick\endφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

∂

∂Bλζκ\end

C∑
c=1

Kc∑
k=1

ξ
(s)
ck0(t) log

n∑
i=1

Bick\endφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

ξ
(s)
ζκ1(t)

∂

∂Bλζκ\end
log

n∑
i=1

Bick\endφ
i(x

(s)
t−1)

=

S∑
s=1

Ls∑
t=2

ξ
(s)
ζκ1(t)φλ(xt−1)(s)∑n
i=1B

iζ
κ\endφ

i(x
(s)
t−1)

(34)

Similarly to the previous parameters, Bκend and Bκ\end are also estimated
using the gradient descent method, followed by a projection on the sim-
plex.
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