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Abstract—Dermoscopy image analysis (DIA) is a growing field,
with works being published every week. This makes it difficult
not only to keep track of all the contributions, but also for new
researchers to identify relevant information and new directions
to be explored. Several surveys have been written in the past
decade, but these tend to cover all of the steps of a CAD system,
which can be overwhelming. Moreover, in these works, each of
the steps is briefly discussed due to lack of space. Among the
different blocks of the CAD system, the most relevant is the one
devoted to feature extraction. This is also the block where existing
works exhibit the most variability. Therefore, we believe that it is
important to review the state-of-the-art on this matter. This work
thoroughly explores the several types of features that have been
used in DIA. A discussion on their relevance and limitations, as
well as suggestions for future research are provided.

Index Terms—Dermoscopy, skin cancer, melanoma, CAD sys-
tems, feature extraction.

I. INTRODUCTION

The World Health Organization estimates that skin cancer
accounts for one third of all the diagnosed cancers world-
wide1. Over 5 million non-melanoma and more than 87,000
melanoma cases are diagnosed every year in the US [154],
while the UK and the Australian societies report nearly 13,000
melanoma diagnoses each [143]. Moreover, the incidence rates
of skin cancer have been increasing for the past decades, as can
be seen in countries such as UK, where the rate of melanoma
has increased 119% since the 1990’s, or USA (from 27,600
cases in 1990 to 91,270 in 2018) [177], [176]. The explanation
of this trend lies not only in the reduction of the ozone layer,
which has diminished the protection against the UV radiation,
but also on the abusive exposure to the sun or the solarium
and the use of tanning.

The medical community has invested a lot of time and
money in prevention campaigns, raising the awareness of the
population. However, changing irresponsible behavior may not
guarantee safety, as the probability of getting skin cancer
also depends on the number of sunburns that people got
throughout their life. Therefore, it is also important to invest
in the development of technologies that can be used for early
diagnosis of skin cancer.

Among the different non-invasive techniques that are used
by dermatologists [65], the two most popular ones allow the
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acquisition of color images of the skin lesions. The images
can either be macroscopic or dermoscopic depending on the
acquisition setup. Macroscopic (clinical) images are acquired
using standard cameras or mobile phones, while dermoscopy
ones are obtained using specific magnification devices and
an oil/gel interface (immersion contact dermoscopy) or using
cross-polarizing light filters (non-contact dermoscopy) [65].
This paper focuses on dermoscopy images not only because
these images allow the visualization of additional color and
pattern properties of the skin lesions, which increases diagnos-
tic accuracy, but also because dermoscopy is extensively used
worldwide [10], [141], [102]. Nonetheless, it is important to
stress that some of the techniques discussed in this paper can
also be applied to macroscopic images.

One model for the diagnosis of dermoscopy images is a
hierarchical process, where a distinction is made first between
melanocytic and non-melanocytic lesions and then between
malignant and benign [10]. This diagnosis is based on scoring
rules that have been proposed to reduce the subjectivity of
analysis. Despite their differences, all of the medical scoring
approaches share a common denominator: they rely on a set
of dermoscopic criteria. Some of the methods focus on the
identification of all the possible criteria and their density
inside the lesion (pattern analysis [148]), while others aim
at recognizing only criteria that are associated with melanoma
(e.g., 7-point checklist [9] and the Menzies method [131]).
A third group of methods combines the identification of
dermoscopic criteria with a broader analysis of the lesion,
taking into account the degree of asymmetry, border sharpness,
lesion architecture, and color distribution (ABCD [186] and
CASH [76] rules). Among the aforementioned methods, only
pattern analysis is suitable for both melanocytic and non-
melanocytic lesions. Additional information based on clinical
covariates, such as the age, gender, and familial history of the
patients, is also taken into account [191].

Two of the major limitations of dermoscopy are its sub-
jectivity and requirement of extensive training. A great effort
has been made by the research community in the development
of computer-aided diagnosis (CAD) tools that can be used by
dermatologists to overcome the aforementioned issues [100],
[145], [147]. These systems follow a pipeline: i) image pre-
processing, ii) lesion segmentation, iii) feature extraction, iv)
feature selection (optional), and v) classification.

i) Image pre-processing is a required step to deal with
images that do not have sufficient quality to be analyzed.
This lack of quality can be due to the presence of artifacts
(e.g., hair) that can negatively influence the performance of
the subsequent steps. Another important issue is color normal-
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ization. Dermoscopy images may be acquired using different
devices and illumination conditions, rendering unreliable color
information [15]. Therefore, it may be important to include a
color correction step in the pre-processing phase.

ii) Lesion segmentation is a challenging task that has been
thoroughly investigated in the literature. The great variety of
lesion shapes, sizes, and colors as well as different skin types
and textures make it difficult to develop a robust segmentation
algorithm. An accurate segmentation is believed to be neces-
sary to achieve a proper extraction of features and consequent
lesion characterization. To prevent potential misclassification
due to inaccurate segmentation, several CAD systems include
semi-automatic segmentation.

iii) Feature extraction is a crucial step to obtain a discrim-
inative representation of the skin lesions. Finding appropriate
features is a difficult process and a lot of research has been
performed in this field, making it possible to identify a large
spectrum of features that characterize skin lesions. These
features can be divided into four classes: i) hand-crafted
features, which are the most popular ones and comprise global
image descriptors of shape, symmetry, color, and texture;
ii) dictionary-based features, where methods such as bag-of-
features or sparse coding are used to obtain local descriptions
of the skin lesions; iii) deep learning features that use con-
volutional neural networks to automatically learn good image
representations; and iv) clinically inspired features that aim at
attributing a medical meaning to the features used by the CAD
system.

iv) Feature selection is used to reduce the dimensionality of
the feature space in some of the CAD systems by eliminating
irrelevant, redundant, or noisy features.

v) Lesion classification is the final step of the CAD sys-
tem. Here, a classification algorithm is trained to predict a
diagnosis. Most of the CAD systems focus on the distinction
between melanoma and benign or atypical nevi, due to high
degree of malignancy associated with the former type of
cancer. Nonetheless, it is also possible to find CAD systems
that aim at distinguishing between melanocytic and non-
melanocytic lesions as well as identifying more than one
type of skin cancer. Several classifiers have been used for
the diagnosis task: instance-based, decision trees, Bayesian
classifiers, artificial neural networks (ANNs), support vector
machines (SVMs), and ensemble methods.

The number of works describing different methods to per-
form one or more of the aforementioned steps is large. Thus,
it is important to summarize them in surveys that guide new
researchers in the field [100], [36], [136], [145], [147]. To
the best of our knowledge, only one of these surveys focus
solely on one of the blocks of the CAD system [36], while the
remaining try to extensively cover all of the blocks. This can be
overwhelming when one is trying to find better approaches to
this problem. This issue has motivated us to write an overview
focused on only one of the blocks of the CAD system: feature
extraction. The choice of this block is not coincidental, since
finding appropriate descriptors is of major importance both in
segmentation and diagnosis. Moreover, feature extraction is by
far the most variable step across related works.

The remainder of this paper is organized as follows. Sec-

tion II provides a summary of pre-processing methods that
can be used to improve the feature extraction process. The
four feature extraction methodologies (hand-crafted, dictionary
based, deep learning, and clinically inspired) are respectively
described in Sections III through VI. Section VII discusses
these methodologies and gives suggestions for future direc-
tions. Finally, Section VIII concludes the paper.

II. PRE-PROCESSING

The goal of the pre-processing step is to improve the quality
of dermoscopy images, ensuring a better performance in the
lesion segmentation and feature extraction blocks. A summary
of pre-processing methods can be found in [36]. These can be
divided into two different groups: i) image enhancement and
ii) artifact removal.

A. Image enhancement

This group comprises the following operations: color nor-
malization/calibration, contrast enhancement, and color space
transformation. Dermoscopy images can be acquired using
different types of digital cameras and illumination conditions.
This introduces significant variability in the color properties
of the images, making unreliable the use color information to
diagnose the lesions. To deal with this issue, it is possible to
perform a color normalization step that will greatly improve
the contribution of color information, as was experimentally
demonstrated in [14]. Color normalization techniques can be
hardware or software-based [36]. The former require knowl-
edge about specific properties of the acquisition device (e.g.,
camera offset, color gain, and aperture), in order to estimate a
transformation matrix that can be used to convert the images
to a device independent color space [72], [67], [192], [151].
Sometimes it is not possible to access the aforementioned
information, which limits the application of hardware-based
methods. On the other hand, software-based methods do not
require prior knowledge of the acquisition setup, and use
image properties to perform the normalization [31], [78], [14],
[112].

Contrast enhancement is a popular technique to improve
the performance of lesion segmentation methods, since their
primary goal is to increase the contrast between the border of
the lesion and the surrounding skin [169], [4]. As we will see
in the following sections, an accurate segmentation may be im-
portant for the extraction of informative features, even though
the relationship between the accuracies of segmentation and
feature extraction has not been established conclusively yet,
see, for example, [63], [70].

The default color space of dermoscopy images is RGB (red-
green-blue). However, there are several drawbacks associated
with this color space, including: i) it is not perceptually
uniform; ii) it is not device independent; iii) there is a
high correlation between the channels. This has motivated
the use of alternative color spaces, such as CIE L*a*b*,
CIE L*u*v, HSV, and opponent, to extract relevant color
information [147]. Recently Madooei and Drew [115] pro-
posed the use of a bioinspired color space that models the
skin coloration and allows the separation of the melanin and
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hemoglobin components. Their color space is called MHG,
which stands for melanin, hemoglobin, and geometric mean
(intensity information). The experimental results showed that
the proposed color space outperformed the RGB, HSV, and
L*a*b* color spaces in the lesion diagnosis task. In addition
to the multichannel processing, it is also common to convert
the RGB dermoscopy image to a single-channel to either
perform lesion segmentation or to extract texture features
[36]. The following methods can be used: i) a predefined or
adaptive luminance transformation; ii) performing Karhunen-
Loéve transformation and then retaining the channel with the
highest variance; iii) the selection of the blue channel or the
one with the highest entropy.

B. Artifact removal
The artifacts usually found in dermoscopy images can be

of two different types: i) acquisition artifacts (air bubbles,
reflections, ruler and ink markings, and black frames); and
ii) cutaneous artifacts (skin lines, blood vessels, and hairs)
[36]. These artifacts not only hamper the lesion segmentation
process, which in turn leads to misleading shape and symmetry
features (see Section III), but also add color and texture
information that can be misconstrued to the lesion features.

The simplest strategy to deal with these artifacts is to apply
a smoothing operator (e.g., median or mean filter) to the
dermoscopy image [59]. Such approaches work fairly well
for some artifacts (skin lines, blood vessels, and thin hairs).
However, smoothing should be exercised with care, since the
use of large filter masks may result in the blurring of the image
and consequent loss of texture properties and border definition.
Artifact-specific algorithms have been proposed to deal with
bubbles, reflections, black frames, and hairs. Hair removal is
by far the most popular topic of research (e.g., [59], [104],
[2], [21]), and these algorithms comprise two main steps:
hair identification and repair. The latter is usually performed
using an inpainting algorithm to replace the space occupied by
the hair with proper intensity or color values. Although hair
removal has been shown to be very useful, it is necessary to
pay special attention to the output of the algorithms, as they
might introduce some blurring or texture deformation in areas
covered with a lot of hairs. Moreover, the algorithms may treat
dark and linear dermoscopic structures (e.g., pigment network)
as hairs, and remove them.

III. HAND-CRAFTED FEATURES

Hand-crafted features are extracted from the images to
characterize desired properties. The selection of the most
appropriate type of features and descriptors is problem specific
and is usually based on the knowledge of the practitioners.
Alternatively, one can use learned features, which are automat-
ically derived from the datasets and do not require any prior
knowledge of the problem. In the remainder of this section,
we will address the different types of hand-crafted features
used in DIA, while the learned features will be presented in
Sections IV and V.

As stated above, the extraction of relevant hand-crafted
features requires a certain level of knowledge about the clas-
sification problem. In the case of DIA, this knowledge comes

from the methodologies designed by dermatologists. Among
the different medical procedures, the one that has inspired the
development of the early CAD systems and that still remains
popular is the ABCD rule of dermoscopy. According to this
method, skin lesions can be characterized based on four prop-
erties: asymmetry, border irregularity, color distribution, and
number of dermoscopic structures. Therefore, CAD systems
try to characterize this information using appropriate features,
as we will see later. Most of these features are also suitable to
reproduce the CASH rule, as exemplified in [1]. Although the
ABCD method was proposed for melanocytic lesions, some
of the highlighted color and texture features have also been
used in the development of CAD systems that diagnose non-
melanocytic lesions (e.g., [175]).

A. Asymmetry Features

The ABCD rule of dermoscopy gives the highest weight
to the asymmetry criterion, making it a relevant cue for
melanoma diagnosis. Experts consider that the asymmetry of
a lesion should be evaluated with respect to its shape and
especially colors and patterns. To achieve this goal, they start
by identifying the major and minor axes of the lesion and
then visually compare the opposite halves. It is possible for
the lesion to be: i) fully symmetric (0 points); ii) asymmetric
on one axis (1 point); or iii) asymmetric on two axes (2 points).
The automatic assessment of asymmetry has been extensively
addressed in the literature. For the sake of simplicity we will
divide our analysis into shape and color/structures symmetry.

1) Shape symmetry: is computed with regard to the seg-
mentation binary mask. Some works characterize the overall
shape of the lesion, taking into account the assumption that
benign lesions usually have small dimensions and are approx-
imately circular. Thus, simple metrics that characterize these
properties (area, perimeter, compactness index, rectangularity,
bulkiness, major and minor axis length, convex hull, com-
parison with a circle, and eccentricity) have been used (e.g.,
[41], [142], [34], [81], [156], [133], [87]). Other strategies
include: Hu’s moment invariants, wavelet invariant moments,
Žunić compactness, symmetry maps, symmetry distance, and
adaptive fuzzy symmetry distance [142], [156].

An alternative to the aforementioned methods is to mimic
the clinical analysis and automatically find the two symmetry
axes of the lesion [137]. Various strategies have been used to
determine the axes, namely Fourier transform [44], longest and
shortest diameter [137], principal component analysis [183],
and symmetry maps [142]. After finding the two axes, the
mirror-image of one of the halves is overlapped with its
correspondent and the area of intersection between the two
overlapping folds is computed. Finally, an asymmetry index
calculated as twice the ratio between the areas of intersection
and the lesion. This approach is then repeated for the second
axis.

Recently, Satheesha et al. [167] proposed a methodology to
extract depth information from dermoscopy images, in order
to obtain a 3-D reconstruction of the lesion. The authors then
used several moment invariants to characterize the 3-D shape,
obtaining promising classification results.
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Although shape features have been shown to provide dis-
criminative information for melanoma diagnosis [167], [156],
such features can only be computed when the lesion is
contained within the image [34].

2) Color and structures symmetry: can be evaluated using
an approach similar to the one described above, i.e., symmetry
with respect to the two axes [137]. Various strategies have
been used to evaluate the color and pattern symmetry. The
simplest one consists of comparing the color components
or intensity values of symmetric pixels [203], [137]. More
complex methods require the positioning of a regular grid on
top of the lesion. This grid is oriented along one of the axes
and allows the extraction of symmetric lesion blocks. The idea
is to compare the color and texture features of the blocks
(e.g., by computing the Euclidean or Kullback-Leibler distance
between the feature vectors of the symmetric blocks), in order
to obtain a statistical-based characterization (e.g., maximum
distance, minimum distance, and standard deviation) of their
symmetry. Simple color and texture descriptors have been used
to characterize the blocks, such as the mean color vector in
the L*a*b* or HSV color spaces [171], [156].

Other works propose the use of fractal dimension [122]
or radial analysis [43] to assess the pigment distribution
on the surface of the lesion and its irregularity. Liu et al.
[108] proposed a methodology to divide the image into the
melanin and hemoglobin color components, followed by the
analysis of asymmetry based on the distribubtion of these two
components.

Similarly to shape, color and structures symmetry can only
be assessed when the lesion is fully contained in the image.

B. Border Features

The clinical evaluation of the border is a semiquantitative
process in which the dermatologist is asked to determine the
sharpness of the transition between the skin and the contour
of the lesion. To perform this analysis, the physician starts
by dividing the lesion into 8 slices and for each of them
determines if there is an abrupt or indistinct (blurred) cut-off
of the peripheral pigment pattern. If the transition is abrupt,
the slice is scored 1, otherwise it is scored 0. It is assumed that
melanomas exhibit a higher border score than benign nevi, but
this is also the ABCD criterion with the lowest weight (only
0.1) [10].

Automatic methods have tried to reproduce the clinical
analysis using two distinct approaches. The first one consists
of assessing the degree of sharpness, inverse of blurriness,
of the border. Similarly to the clinical analysis, the goal is to
compare the color of the border against that of the surrounding
skin [57]. Some systems resort to the computation of the
gradient along the border points [79], using the luminance
or the blue channel. Then, they divide the lesion into octancts
and for each compute the mean and standard deviation values
of the gradient. The Day [49] method uses the luminance
image to examine the transition of intensity between the
border and the skin. First, the lesion is divided into 8 slices,
followed by the identification of five equally spaced points
along the contour of each slice. For each of these points

an intensity profile is extracted, using a length of 30 pixels
inside and outside the border, i.e., 60 values are identified
for each point. Finally, the least-squares method is applied to
find the slope of each intensity profile, which is then used
to quantify the blurriness of the border. A simple method
was proposed by Manousaki [122], where they computed the
standard deviation of the border using the luminance channel,
and used that information to estimate a coefficient of variation.
Korjakowska [82] proposed a methodology based on distance
between border points and a bounding box containing the
lesion segmentation, from which it is possible to compute the
number of irregularities.

The second approach to evaluate the border of the lesion
consists of assessing its degree of irregularity. Some works
propose the compactness index (thinness ratio) C = 4Aπ

P 2 ,
where A and P are respectively the lesion’s area and perimeter,
as an indicator of irregularity. However, C seems to be more
appropriate to describe the shape symmetry of the lesion, for
several reasons: i) lesions with different boundaries may have
similar compactness indexes; ii) the index is too sensitive
to segmentation noise; and iii) it does not describe well the
overall shape of the border. More elaborate methods include
the use of the fractal dimension [1], [98], wavelet transform
[42], [62], Anova-based analysis [203], [137], and Fourier
descriptors [156].

It is generally believed that border features may only be
extracted from lesions that are: i) fully contained in the
images; and ii) correctly segmented. However, recently Xie et
al. [194] proposed a methodology to extract border features
from incomplete lesions, showing that incomplete feature
information can still improve the performance of the CAD
system. One of the described features uses the convex hull
to identify border concavities. Statistical measures are then
computed for each of the concavities: mean and standard
deviation or the diameter, span, and average thickness. The
other proposed feature requires the identification of inner and
outer borders and the estimation of the distance between the
two.

C. Color Features

Color has been extensively studied in DIA [117] and there
are several works solely devoted to finding discriminative color
features (e.g., [182], [37]). The goal of these works is to
characterize the color distribution inside the lesion, in order
to mimic the color quantization performed by dermatalogists.
Several approaches have been proposed, ranging from simple
statistical measures to more complex color quantization based
methods.

Popular statistical measures are the average, standard devia-
tion, variance, skewness, maximum, minimum, and entropy, 1-
or 3-D color histograms, and the autocorrelogram [122], [34],
[23], [163]. All of these descriptors are computed over at least
one of the color spaces presented in Section II. Besides the
use of multiple color spaces, it is also common to divide the
lesion into inner and border parts and compute separate color
descriptors for each of them [203]. Whenever this information
is available, it is possible to add features that express the
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difference between the regions, e.g., the ratio of the statistical
measures from the border and inner regions [34], [30].

Quantization methods reduce the number of colors in the
image to a small predefined value. The idea is to group pixels
with similar color properties into regions, which can then be
used to characterize the lesions. Several techniques have been
used to group the pixels, namely k-means [35], [37], Gaussian
mixture model (GMM) [137], and multi-thresholding [103].
Lee et al. [103] proposed a dark-middle-bright (DMB) color
system. All of these techniques are unsupervised and thus
do not try to establish an association between the identified
regions and the six colors considered in the ABCD rule.

A strategy used in many of the works is the estimation
of a relative color image, from which the aforementioned
features can be extracted [182], [34]. This image is obtained
by subtracting the average color of the surrounding skin from
the lesion color. The goal of this step is to handle, among
other things, different skin colors and pigmentations as well
as the Tyndall effect [5].

D. Visual Texture Features

The D in the ABCD rule stands for the identification of
five dermoscopic structures. Each of these structures exhibits
a specific visual pattern (e.g., pigment network is a network
like structure with dark lines over a lighter background, and
dots/globules are round or oval structures of dark coloration
and variable size). This has motivated the use of various
descriptors that characterize the texture of a lesion, i.e., the
existence of repeated visual patterns.

The gray-level co-occurrence matrix (GCLM) has been
extensively used to characterize the texture of the lesions
(e.g., [34], [81], [168], [83]). This matrix is computed over
the grayscale image and allows the estimation of the joint
probability of two pixels that are separated by a fixed distance.
Many statistical measures, such as variance, correlation, ho-
mogeneity, contrast, and entropy can be estimated using this
descriptor. Several of these descriptors may also be computed
directly from the gray scale image. Higher order statistics can
be computed using the gray level run-length matrix (GLRLM)
[83]. The gradient information (amplitude and orientation
histograms and the histogram of oriented gradient) was also
used to characterize the texture of the lesions [23], [152], as
well as variants of local binary patterns (LBP) that compare
the intensities of neighbor pixels inside a cell [137], [5].
Other texture descriptors that have been used include the
wavelet and Fourier transforms [5], [163], fractal dimension
[62], multidimensional receptive fields histograms, Markov
random fields [164], and Gabor filters [152]. Similarly to color
features, texture ones can also be computed separately for the
inner and border parts of the lesion (e.g., [30], [23]).

IV. DICTIONARY-BASED FEATURES

The various descriptors presented in Section III allow a
global characterization of the lesion. Such methodology is
appropriate to represent some of the criteria of the ABCD rule
(e.g., the border or the overall color distribution). However,
the D criterion, which stands for dermoscopic structures,

corresponds to localized color and/or texture patterns. By
using a global description of the lesion, one might miss these
relevant cues. This has motivated several authors to pursue a
different direction, and use local features to characterize the
color and texture of the lesions [23], [152], [45], [153], [200],
[19], [6].

The basic idea of local features is that an image (skin lesion)
can be represented as a collection of elements (atoms) of a
dictionary of visual words. This dictionary is usually learned in
an unsupervised manner, as we will discuss later. The simplest
and most popular method for local feature extraction is called
bag-of-features (BoF), which is inspired by the traditional bag-
of-words for text analysis [179]. Assuming that a dictionary
D of K atoms is known, a dermoscopy image is processed as
follows: i) divide the image into M patches and characterize
each of them using a feature vector xm ∈ Rp; ii) match the
features to the closest dictionary atom, typically using the
Euclidean distance; and iii) count the number of times each
atom was selected and store this information in a histogram
of occurrences, which is then used as a lesion descriptor.

In most cases, D is unknown and must be estimated using a
training set of N feature vectors {x1, ..., xN} ∈ Rp, extracted
from the patches of several images. This task is accomplished
using a clustering algorithm, such as k-means [33]. Variations
to the BoF model can also be found in the literature, such
as the work of Fornaciali et al. [60] that combines the
BossaNova algorithm with a spatial circular pooling to replace
the traditional vector quantization of BoF.

The assumption that each patch corresponds to a single
atom of D may be too restrictive. Therefore, some groups
have explored the sparse coding (SC) formulation [121]. As in
BoF, patches are extracted from the images and characterized
using various features. However, SC assumes that each of
these vectors is approximated by a combination of a small
number of atoms, instead of being associated with a single
one. This increases the complexity of the problem, requiring
alternative methods to: i) find the small set of atoms that
best represents a patch; ii) estimate D; and iii) represent the
images [121]. Points i) and iii) have been addressed similarly
in most of the dermoscopy works, while some variability has
been observed in the estimation of D. Most of the works use
either the K-SVD [153] or ODL algorithms [45], [19], which
learn a single dictionary to represent all types of skin lesions.
However, Yao et al. [197] suggest that this representation is not
discriminative enough to distinguish melanomas from benign
lesions, since both share a number of common patterns. To
tackle this issue, they investigated the learning of class-specific
dictionaries (that contain only discriminative information) as
well as a common dictionary (to aggregate the shared patterns),
as described in [99].

Recently, Yu et al. [201] explored the use of the Fisher
vectors [166], which have been shown to outperform BoF in
classification tasks. The first difference between this strategy
and the previous ones is the use of GMM to estimate a prob-
abilistic dictionary to represent the data. Each image is then
characterized by a Fisher vector, which contains information
about the deviation of the image patches with respect to the
parameters of the estimated GMM [166].



2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2845939, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Patch extraction and representation have also been thor-
oughly investigated in dermoscopy works. The simplest strat-
egy is to divide the lesion into squares using a regular grid,
this is called dense sampling. Alternatively, one can inspect the
lesion for the presence of salient points that are associated with
specific color and texture patterns, and extract square patches
centered on them (sparse sampling). Some popular keypoint
detectors include the difference of Gaussians and Harris-
Laplace [22]. Each of the extracted patches will comprise a set
of neighbor pixels, forming a so-called superpixel. In addition
to the methods described above, there is extensive literature on
the extraction of superpixels, in particular in grouping together
pixels that share color and/or texture properties. To the best
of our knowledge such approaches has never been applied to
dictionary-based features.

Multiple descriptors have been used to represent the patches,
ranging from raw color and intensity pixel values [45] to
many of the color and texture descriptors discussed in Section
III (e.g., color and gradient histograms, Gabor filters, and
LBP [23], [24], [152], [6]). Specialized local descriptors such
as SIFT, color-SIFT, and GHIST have also been applied to
dermoscopy [152], [5]. More recently, deep learning features
have been tested as well [157], [201].

V. DEEP LEARNING FEATURES

Since Krizhevsky et al. [101] won the 2012 ImageNet
challenge, it is undeniable that deep learning, and convolu-
tional neural networks (CNN) in particular, have become the
technique of choice in many computer vision problems [69].
The community of medical imaging has also embraced this
technique, with an ever increasing number of applications
that use this methodology to either diagnose or segment
organs and structures in medical images [107]. To the best
of our knowledge, the first work to apply deep learning to
dermoscopy images was published by Codella et al. [45]
in 2015, and since then several authors have explored deep
learning to learn suitable image representations and achieve
(near) human expert diagnosis performance (e.g., [58]). An
indication of the popularity of deep learning in the dermoscopy
field is the 2017 ISIC challenge [46], where 22 out of 23 works
used at least one type of CNN architecture.

The basis of deep learning methods is an ANN. This kind
of learning algorithm is composed of units (called neurons),
each with a specific activation function f and parameters
θ = {w, b}, where w is a set of weights and b is a set of biases.
The activation function consists of a linear combination of the
neuron’s input x with the parameters, followed by the appli-
cation of an element-wise nonlinearity η: f = η(wTx+ b) .

A common choice for η is the rectified linear unit (ReLu)
function that sets the negative values to zero. Deep learning
methods comprise several layers of these transformations. Dur-
ing the training phase, it is necessary to determine the set of
model parameters. The most popular strategy is the stochastic
gradient descent using mini-batches of the data, in which the
goal is to minimize a specific loss function (e.g., cross-entropy
loss for classification problems and reconstruction loss for
unsupervised methods).

There are two types of deep learning methods: unsupervised
(e.g., stacked auto-encoders and deep belief networks) and
supervised (e.g., CNNs and recurrent NNs). Almost all of the
works in dermoscopy use CNNs to diagnose skin lesions. Such
methods exhibit a particular architecture, where it is possible
to observe three main layers (convolutional, pooling, and fully
connected), organized in a hierarchical framework. In the
convolutional layers, the image as well as intermediate feature
maps are convolved with kernels of various dimensions. This
is followed by the application of a nonlinearity, usually ReLu.
Each of these layers produces increasingly abstract feature
maps. A pooling layer appears after a convolutional layer,
and the idea is to reduce the dimensions of the feature maps
and network parameters. Average and max pooling strategies
are the most popular. Fully connected layers appear at the
end of the network, after the last pooling layer, and perform
like a traditional ANN. The goal of these layers is to convert
the 2D feature maps into a 1D vector that can be used for
classification. The output of the final layer is usually fed to a
softmax function to obtain a distribution over classes, which
can be used for classification [69]. Alternatively, one can use
the outputs of the fully connected layers as inputs for more
sophisticated classification methods, such as SVM [45]. Some
architectures also include a batch normalization layer before
applying the nonlinearities (e.g., [187]), which regularizes the
model and speeds up its training.

CNNs are trained end-to-end in a supervised fashion (where
the only ground truth is the diagnosis), usually using stochastic
gradient. Since ANNs are prone to overfitting, it is common
to include a dropout layer during the training phase, in which
some of the activations or neurons are randomly omitted at
each epoch [181]. The training process requires a large amount
of data, which unfortunately is not available in dermoscopy.
To deal with this issue, several authors have adopted a
transfer learning strategy. This method consists of using one
or more of the available pre-trained CNN architectures to
extract features, and retrain only the fully connected layers
to diagnose dermoscopy images (e.g., [45], [128], [150], [89],
[64]. Similarly to other research fields, the most popular pre-
trained architectures are those that were the winners or runner-
ups of the ImageNet challenges (AlexNet [101], VGG [178],
GoogLeNet - Inception [187], and ResNet [75]). AlexNet
[101] won the challenge in 2012, setting the tone for the
following years. It consists of five convolutional and three fully
connected layers. GoogLeNet (twenty one convolutional and
one fully connected layers) [187] and VGG (thirteen/fifteen
convolutional and three fully connected layers) [178] ranked
respectively the first and second in the 2014 challenge, both
demonstrating the possibility of training deeper networks to
achieve better results. Inception layers that consist of applying
multiple kernels with various dimensions at the same time,
were also introduced [187]. The winner of the 2015 challenge,
ResNet [75], proposed the use of residual layers to train
even deeper networks, setting the record of more than 100
layers. ResNet is currently the state-of-the-art network in many
applications.

Pre-trained networks can also be fine-tuned, meaning that
the known CNN parameters are used as an initialization for a
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TABLE I
CNN ARCHITECTURES USED IN DERMOSCOPY CAD SYSTEMS

CNN Architecture From Scratch Transfer Learning Transfer Learning + Fine Tuning
AlexNet [101] [27]a [150]b[89]a[120]ac[201]a [180]ac[74]ac

VGG [178] [110]a [110]a[120]ac [129]a[110]a[64]ac[74]ac[85]a

GoogleLeNet - Inception [187] [140] [38][140][190]ab [58][134]a[52][140][196]a[74]ac[180]ac[130]a

CaffeCNN [86] - [45] [46]c [202]a

ResNet [75] - [46]c [64]ac[200]a[61]b[124][130]a[55]a[29][74]ac

a Geometry-based data augmentation. b Color-based data augmentation. c Ensemble of network architectures.

new model. This model is trained using a labeled dermoscopy
dataset (e.g., [58], [130], [110], [61]). Most of the works
include a data augmentation step when using fine-tuning to:
i) increase the amount of data; ii) deal with class imbalance;
and iii) prevent overfitting. Some methods apply geometric
transformations to the original images (rotation, scaling, flip-
ping, shift, and cropping) [64], [110], while others have created
artificial examples through color transformations [150], [61].
Vasconcelos et. al. [190] combine geometric and color aug-
mentation strategies, while Yoshida et al. [198] compare the
performance of various geometric transformations. However,
at this point at this point, the most suitable strategy to deal
with dermoscopy images remains unclear. Data augmentation
also allows the training of a CNN architecture from scratch,
as explored in [128], [110]. However, results were worse than
that of transfer learning. Some authors obtained improved
results by combining more than one CNN architecture (e.g.,
[64], [120]). Table I summarizes the works that use each
type of CNN architecture, as well as their training and data
augmentation strategies.

Recently, other deep learning architectures have been used
to extract features from dermoscopy images, namely auto-
encoders [26] and fully-convolutional neural networks (FCN)
[109]. The former is a type of unsupervised deep learning
method that has been used to extract meaningful features
from dermoscopy images [95] and in combination with the
BoF model [157]. Both works have shown improvements over
more traditional CNN frameworks. FCNs allow a pixel-based
analysis of the skin lesions, as has been explored in [105].
U-net [155] is an FCN architecture that has been used in
dermoscopy mostly to segment skin lesions, but Codella et al.
[47] have also used this architecture to provide information
about the shape of the lesion.

VI. CLINICALLY INSPIRED FEATURES

In Sections III-V we presented a chronological survey of the
different types of low-level features that have been used in der-
moscopy. These features led to promising experimental results,
some of which were stated to be on par with the performance
of dermatologists (e.g., [58]). However, the development of
CAD systems based on a combination of the aforementioned
features has always been met with caution by the medical
community [56]. Hand-crafted features have been criticized
for their lack of medical meaning, even if they are inspired by
the ABCD rule, as it is not easy to translate descriptors such as
color histograms or Gabor filters into dermoscopic criteria that
can be understood by the physicians. Dictionary based features
try to mimic the localized search and analysis of dermoscopic

criteria, but they lead to abstract descriptors. As the works
start to converge towards deep learning features, the original
concept of using representations that somehow characterize
medical properties is becoming less relevant. Moreover, it is
not easy to interpret the outputs of the different layers of a
CNN.

The aforementioned feature-related problems, as well as the
desire of the dermatologists to work with CAD systems that
can serve as decision support and learning tools [56], fostered
an alternative trend in DIA: the development of clinically
inspired CAD systems. The core of these systems is the design
of strategies to detect dermoscopic criteria, followed by the use
of those criteria to diagnose skin lesions. This is believed to
mimic the analysis performed by an expert and at the same
time provides them with grounds to understand the diagnosis.
The number of works related to this topic has been slowly
increasing over the past decade [100], [145], [147] (in the
2017 ISIC challenge [46] only three submissions attempted to
detect a subset of dermoscopic criteria).

There are two classes of dermoscopic criteria that have been
addressed in the literature: i) global patterns and ii) localized
dermoscopic structures and colors. The works that cover each
of these categories can be seen in Table II.

Two strategies have been used to detect global patterns. One
of them consists of extracting several of the hand-crafted fea-
tures described in Section III for the entire lesion, followed by
the application of a classification method to identify the pattern
[80], [3], [195]. The color features include quantization and
relative color methods [80], [3], as well as color statistics [80],
all computed in several color spaces. GLCM [80], steerable
pyramids transform [3], and gradient features [195] have been
used as texture descriptors, while shape and border have been
respectively characterized using simple shape descriptors and
the blurriness metric proposed in [79]. Alternative methods
have been developed to work with small lesion patches. First,
each patch is characterized by a feature vector, such as Laws’
masks [160], GLCM [188], Markov random fields [172],
[165], or CNN [51]. Then, the vectors can be used either
directly in a multiclass classification strategy [188], [51], or
grouped to create templates that represent each of the patterns
[160], [172], [165].

According to Table II, the majority of the clinically inspired
methods attempt to detect localized dermoscopic criteria. A
popular topic of research is the detection of colors, namely
the six colors identified by the ABCD rule [170], [149],
[171], [123], [106], [20], [158], [17], [16]. The traditional
starting point of these methods is the construction of a palette
that contains a representative number of examples of each
of the colors. This palette is built by asking one or more
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TABLE II
WORKS ON THE DETECTION OF CLINICALLY INSPIRED FEATURES. SYSTEMS IDENTIFIED WITH AN ”a” USE THE DETECTED CRITERIA TO DIAGNOSE SKIN

CANCER.

Dermoscopic Criteria Works
Global patterns [188], [172], [127], [160], [51], [195],[80]a [77]a[1]a[165]a

Colors [149], [171], [123], [173], [158], [88],[170]a[77]a[132]a[106]a[20]a[17]a[16]a

Blue-whitish veil [53], [116], [118],[32]a[54]a[16]a

Regression structures [50], [53], [185],[54]a[48]a[16]a

Hypopigmentation [50],[48]a

Blotches [139], [149], [184], [114]
Pigment network [59], [8], [66], [162], [161], [193], [21], [11], [113], [73], [25], [90], [13],[28]a[54]a[7]a[105]a[16]a[146]

Dots/globules [59], [50], [199], [189], [84][119]a[16]a

Streaks [135], [159], [90],[54]a[105]a

Vascular structures [28]a[54]a[39]a[94]a[96]a

Negative network [90][105]a

Non-melanocytic criteria [92]a[174]a[40]a[71]a[93]a[90][105]a

dermatologists to segment small color patches from different
dermoscopy images. Each of the patches is then characterized
by a small feature vector, such as the mean and standard
deviation values of one or more colors channels - the RGB
[170], HSV [20], and L*a*b* [158] spaces have been used
in different works. Some methods use the aforementioned
patches to label pixels or regions in test images, according
to the closest patch (e.g., [158]). Other works perform an
intermediate clustering operation, using k-means [170] or
GMMs [20], to group patches of the same color into a smaller
set of centroids. These centroids are then used to label pixels
or patches of new images. Similar patch-based methodologies
have been proposed to detect color structures, namely blue-
whitish veil [32], [53], [54], [116], regression areas [53], [54],
[48], [185], and regions of hypopigmentation [48], [12], [91].
Other investigated types of abnormal pigmentation are dark
blotches [139], [149], [184], [114] and blue or gray areas
[173], [106]. Various methodologies have been proposed to
detect them, ranging from a simple thresholding algorithm
applied to absolute and relative color features [184], [173],
to fuzzy clustering [114].

The most thoroughly analyzed dermoscopic structure is the
pigment network, as can be seen in Table II. Due to the
particular geometry of pigment network (dark connected lines
over a lighter background), several works applied filtering
techniques to either highlight and extract the lines or the holes,
followed by a classification strategy to decide if the network is
present or not (e.g., [161], [21], [11], [73]), and, in some cases,
identify atypical networks (e.g., [28], [162], [146]). Strategies
that use manual segmentations of pigment network regions
to extract features and train a classifier have emerged, namely
using FCN [90], [105] and fuzzy clustering [13]. Streaks, dots,
and globules also exhibit specific shapes and colorations. Thus,
their detection has also been accomplished using filtering
methods [199], [84], [135], [159] and, more recently, FCN
[105], [90]. The detection of vascular structures has been
attempted using color [28], texture [54], a combination of both
types of features [94], and more recently auto-encoders [96].

The ISIC challenge [46] led to the proposal of the first
methodologies to detect negative network and milia-like cysts
[90], [105], both based on FCN. The latter criterion is associ-
ated with non-melanocytic lesions. A few works attempted to
detect other criteria associated with either basal cell carcinoma

(dirt trail [40], specific coloration [71], and ulcers [92]), or
squamous cell carcinoma (scale crust [174]).

The major limitation of clinically inspired features is that
most of the methods rely on the existence of manual seg-
mentations of the criteria. These segmentations are used to
train and validate methods. However, it is very hard to obtain
them, since dermatologists find manual segmentation time
consuming. The absence of segmentations makes it impossible
to apply the algorithms. Recently, various research groups tried
to deal with this problem, by developing methodologies that
are based on the use of weakly annotated data, where the
training data comprises the entire images and a set of text
labels [118], [17], [16], [111].

VII. DISCUSSION AND FUTURE DIRECTIONS

We have described four classes of features that have been
used in DIA. This is an ever growing field, and a quick search
of the literature will provide the reader with a multitude of
CAD systems, each using a combination of descriptors belong-
ing to one or more of the described classes. The experimental
results are usually very promising. However, they should be
approached with caution, mainly because the performance
of a CAD system is strongly dependent on the dataset. To
exemplify this issue we have selected three non-commercial
and publicly available datasets (PH2 [125], [126], ISBI 2016
[70], and ISBI 2017 [46]), with varying degrees of difficulty.
For each dataset we have then selected a set recent works that
use them (see Table III). In particular, for ISBI 2017 we have
selected the three top and bottom ranked submissions of the
associated challenge [46]. PH2 is the smallest set, comprising
only 200 images. ISBI 2016 and 2017 are larger and are
divided into training, validation, and test sets. Additionally,
ISBI 2017 contains lesions of three classes (melanoma, nevi,
and seborrheic keratosis), while the other two datasets only
contain melanoma and nevi. These levels of difficulty clearly
influence the results: the scores for PH2 are significantly higher
(the exception is [194], which combines this dataset with some
images from [10]).

Table III also shows two trends: i) there is a convergence
towards the use of deep learning features; and ii) several of
the works rely on the softmax, SVM, and random forests
classifiers. Deep learning achieved impressive results in many
medical problems [107], particularly in dermoscopy [58].
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TABLE III
MELANOMA DIAGNOSIS SCORES USING THREE PUBLICLY-AVAILABLE DATASETS.

Dataset (Lesions/Melanomas) Ref. Features Classifier SE SP Pre ACC AUC

PH2 [125] (200/40)

[18] Hand-crafted (C,D) + Dictionary (BoF) Random Forests 98.0% 90.0% - - -
[153]a Dictionary (SC) Random Forests 100% 93.0% - - -

[156]a,c Hand-crafted (A) kNN 96% 83.0% - - -
[167] Hand-crafted (B,C,D) SVM 96% 97.0% - - -

[6] Dictionary (BoF) kNN 99.4% 98.2% - - -
[194]b Hand-crafted (B,C,D) Softmax 83.3% 95.0% - - -
[16] Clinically inspired Random Forests + SVM 100% 88.2% - - -

ISBI 2016 [70] [200]a Deep Learning (ResNet) Softmax+SVM 54.7% 93.1% 62.4% 85.5% 78.3%
[47] Hand-crafted (C,T) + Dictionary (SC) + Deep Learning SVM 69.3% 83.6% 64.9% 80.7% 83.8%

[129]a Deep Learning (VGG) Softmax 47.6% 88.1% 54.9% 79.2% 80.7%
Train. Set (900/273) [144]c,d Hand-crafted (A,B,C,D) OPF 91.8% 96.7% - - -

[190]a Deep Learning (GoogleLeNet) Committees 74.6% 84.5% 66.9% 82.5% -
Test Set (379/75) [201]b Deep Learning (AlexNet) + Dictionary (FV) SVM - - 53.5% 83.1% 79.6%

ISBI 2017 [46]
[124]a,b Deep Learning (ResNet)+Metadata Softmax 73.5% 85.1% 71.0% 82.8% 86.8%

[55]a Clinically Inspired + Deep Learning + Metadata Softmax 10.3% 99.8% 65.4% 82.3% 85.6%
[29]a,b Deep Learning (ResNet) + Metada Softmax 42.7% 96.3% 69.4% 85.8% 87.0%

Train. Set (2000/374) [202]a Deep Learning (CaffeCNN) Softmax 0% 100% 59.8% 80.5% 50.0%
Val. Set (150/30) [134] Deep Learning (GoogleLeNet) Softmax 41.9% 82.8% 45.2% 74.8% 62.3%

Test. Set (600/117) [68] Deep Learning (VGG) + Hand-crafted (C,T) Softmax + Random Forests 6.8% 88.2% 18.7% 72.3% 47.5%
a Data augmentation. b Additional training images. c Exclusion of some images.d Combines training and test sets.

From the results of ISIC 2017, it is possible to postulate that
deep learning features seem to be the best for the melanoma
problem [46]. However, such claim may only hold in some
scenarios, since the best and worse results were both achieved
using these features. This makes it critical to understand the
real strengths and limitations of deep learning in the context
of dermoscopy. A comparison between deep learning and the
other three classes of features is also needed. Based on Table
III and on our literature survey, we have identified a set of
open questions:

i) Given the same conditions (amount of training data
and classifier) which is the best class of features? The
comparison between at least two classes of features has been
explored. However, some of the results are contradictory, e.g.,
in [152] it was concluded that BoF performed worse than
global hand-crafted features, while in [18] the opposite was
reported. In this case, both works used random forests, but
used different training and test datasets. A comparison of hand-
crafted, SC, and deep learning features was conducted in [45],
using the same classifier and dataset. Dictionary-based features
performed poorly compared to the others. This may be due
to the strategy used to built the dictionaries (raw patches),
since [197], [19] experimentally demonstrated that the selected
descriptors have a great influence on the performance of SC.
Similar observations were made for hand-crafted features,
where it was shown that selecting different descriptors to
characterize the same type of feature can lead to completely
different classification scores. Although we focused on the
feature extraction block in this survey, we are fully aware
of the importance of the classifier in the diagnosis, as was
recently shown in [138], using just two classifiers.

ii) How can we establish synergies between the different
classes of features? Some works have already explored
this issue at the classification level and reported increased
performance (e.g., [77], [203], [18], [45], [46], [111], [55]),
which suggests that all classes convey relevant information.
Moreover, feature can be combined at other levels, as will be
discussed next.

iii) What are the most robust classes of features? The
goal of the CAD systems is to help the dermatologists in their

practice. This means that these systems may be required to
analyze images that were acquired in significantly different
conditions than those of the images they were trained with.
Thus, identifying if these four classes of features are equally
robust or if they are strongly dependent on the training set is
critical and is still unexplored in the literature.

iv) Are all of the features equally suitable to deal with
any type of skin lesion (melanocytic and non-melanocytic)?
Melanoma is the less common type of skin cancer, but it is
undeniably the most aggressive [10]. This and the number
of scoring rules specifically designed to diagnose melanomas,
fostered the development of CAD systems solely devoted to
distinguishing melanomas from nevi. Non-melanocytic lesions
have been disregarded, but the more recent datasets (e.g.,
ISBI 2017), include lesions of this type. This makes one
wonder if all of the four classes of features are equally
discriminative in this multi-class scenario. A clear example are
the clinically inspired ones, since both melanocytic and non-
melanocytic lesions are associated with different dermoscopic
structures. Another example are the hand-crafted border fea-
tures. Melanomas are assumed to have irregular borders, when
compared with nevi, but there are non-melanocytic lesions
whose borders are even more irregular, such as the solar
lentigos [97].

In addition to the aforementioned issues, which we believe
are the most relevant, the following feature-specific points
require proper study:

i) Hand-crafted features: Asymmetry, border, color, and
texture descriptors tend to be grouped together into a single
feature vector that is used for classification purposes. Such
an approach is called early fusion, and has been shown to
lead to poorer performance than training a classifier for each
descriptor and then performing a score fusion (late fusion)
[18].

ii) Dictionary-based features: have become the least ex-
plored class of features. Nonetheless, we believe that their
value is yet to be determined. Recent works demonstrated
the good performance of these features (either alone [6] or
combined with deep learning [157], [200]). There are some
aspects that should be properly studied: i) learning class-
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specific dictionaries (as was briefly explored in [197]), a
suitable approach to deal with imbalanced data, such as
dermoscopy data; ii) learning discriminative dictionaries and
the parameters of a classifier simultaneously [121], this is
similar to a deep learning framework where the system learns
discriminative local information for a type of lesion and
the best classifier to diagnose it simultaneously; and iii)
patch/superpixel extraction. Regarding the latter, all of the
works have either used a regular grid or keypoint detectors
to divide the lesion into small parts, which may not guarantee
that all of the pixels in the extracted region share the same
properties. More elaborate methods that enforce color/texture
similarities between the pixels should be investigated, since
this will allow the sampling of the lesion into regions that
may have some medical relevance, without requiring expert
annotation.

iii) Deep learning features: The most popular architectures
have all been applied to dermoscopy images, but with a bias
towards ResNet [75] and GoogLeNet [187] (see Table III and
[46].) Although this could hint at a better performance of
these architectures against others, the truth is that it is still
not clear which is the best one among all of them. Another
interesting issue is the importance of training data. From
Table III, one observes that a difference between the top and
bottom ranked submissions of the 2017 challenges is the use
of additional training data, both from data augmentation and
external sources It is well known that a proper training of
a CNN requires large amount of data, but the questions in
our field should be: i) How much data is enough to train
the network?; ii) Should we use all of the augmentation
strategies or some of them are more appropriate than others
(e.g., geometric vs. color manipulations); and iii) Is all of
the data equally relevant or are we augmenting (repeating)
examples that are not informative? This last question is valid
for any type of feature-classifier configuration. Moreover, the
full potential of deep learning has not been explored yet, such
as using it to improve the detection of clinically inspired
features or to characterize the patches/superpixels used to
compute dictionary-based features.

iv) Clinically inspired features: have been addressed in
several works. However, few of these works attempted to
use these features to diagnose skin lesions. This leads to
the following question: are these features useful enough to
be included in a CAD system? Some works experimentally
demonstrated that clinically inspired features are discrimina-
tive (e.g., [149], [32], [54], [94], [16], [111], [146]), and in [16]
it was shown that clinically inspired features not only achieved
similar performance to that of hand-crafted and dictionary-
based ones, but also that those results were verified on various
datasets. Thus, we advocate the need to include a lesion-
diagnosis based evaluation in works that detect clinically
inspired features, since this will provide the readers with
critical information. Moreover it is important to augment the
number of detected criteria, since there is a set of them that
is clearly associated with malignancy [97]. However, most of
the works focus on a single criteria, and not many efforts have
been made to integrate several detectors into a CAD system
(e.g., [54], [48], [16], [111], [105]). There are also criteria that

have not been addressed, while other criteria were studied in
multiple works, as can be seen in Table II. Other relevant
criteria considered by experts are clinical covariates, such as
the age, gender, and familial history of the patients [191].
Such information has been scarcely used in CAD systems,
but the ISBI 2017 dataset contained this information for some
of the images [46]. The results in Table III suggest that this
information could have also played a role in the performance
of the best systems, but further research is needed to clarify
this.

VIII. CONCLUSIONS

This paper presented a thorough review of the four classes
of features used in DIA: i) hand-crafted; ii) dictionary-based;
iii) deep learning; and iv) clinically inspired. We briefly
explained relevant pre-processing techniques, reviewed all of
the features, and provided a comprehensive explanation of
their use and importance in dermoscopy. Finally, we presented
a critical discussion of the various features and provided
guidelines for future research.

We believe that feature extraction is one of the most impor-
tant parts of DIA, and that there is still room for improvements
and relevant contributions. We hope that this work will be a
valuable guide for researchers to make advances in the field.
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[165] A. Sáez, C. Serrano, and B. Acha, “Model-based classification methods
of global patterns in dermoscopic images,” IEEE Transactions on
Medical Imaging, vol. 33, pp. 1137–1147, 2014.

[166] J. Sánchez, F. Perronnin, T. Mensink, and et al., “Image classification
with the fisher vector: Theory and practice,” International journal of
computer vision, vol. 105, pp. 222–245, 2013.

[167] T. Y. Satheesha, D. Satyanarayana, M. N. G. Prasad, and et al.,
“Melanoma is skin deep: A 3d reconstruction technique for com-
puterized dermoscopic skin lesion classification,” IEEE Journal of
Translational Engineering in Health and Medicine, vol. 5, pp. 1–17,
2017.

[168] G. Schaefer, B. Krawczyk, M. E. Celebi, and et al., “An ensemble
classification approach for melanoma diagnosis,” Memetic Computing,
vol. 6, pp. 233–240, 2014.

[169] G. Schaefer, M. I. Rajab, M. E. Celebi, and et al., “Colour and contrast
enhancement for improved skin lesion segmentation,” Computerized
Medical Imaging and Graphics, vol. 35, pp. 99–104, 2011.

[170] S. Seidenari, G. Pellacani, and C. Grana, “Computer description of
colours in dermoscopic melanocytic lesion images reproducing clinical
assessment,” British Journal of Dermatology, vol. 149, pp. 523–529,
2003.

[171] ——, “Colors in atypical nevi: a computer description reproducing
clinical assessment,” Skin Research and Technology, vol. 11, pp. 36–
41, 2005.

[172] C. Serrano and B. Acha, “Pattern analysis of dermoscopic images based
on markov random fields,” Pattern Recognition, vol. 42, pp. 1052–1057,
2009.

[173] G. Sforza, G. Castellano, S. A. Arika, and et al., “Using adaptive thresh-
olding and skewness correction to detect gray areas in melanoma in
situ images,” IEEE Transactions on Instrumentation and Measurement,
vol. 61, pp. 1839–1847, 2012.

[174] N. M. Shakya, R. W. LeAnder, K. A. Hinton, and et al., “Discrimination
of squamous cell carcinoma in situ from seborrheic keratosis by color
analysis techniques requires information from scale, scale-crust and
surrounding areas in dermoscopy images,” Computers in biology and
medicine, vol. 42, pp. 1165–1169, 2012.

[175] K. Shimizu, H. Iyatomi, M. E. Celebi, and et al., “Four-class clas-
sification of skin lesions with task decomposition strategy,” IEEE
Transactions on Biomedical Engineering, vol. 62, pp. 274–283, 2015.

[176] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2018,” CA:
a cancer journal for clinicians, vol. 68, pp. 7–30, 2018.

[177] E. Silverberg, C. C. Boring, and T. S. Squires, “Cancer statistics, 1990,”
CA: a cancer journal for clinicians, vol. 40, pp. 9–26, 1990.

[178] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[179] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in IEEE ICCV 2003, 2003, p. 1470.

[180] R. T. Sousa and L. V. de Moraes, “Araguaia medical vision lab
at isic 2017 skin lesion classification challenge,” arXiv preprint
arXiv:1703.00856, 2017.

[181] N. Srivastava, G. E. Hinton, A. Krizhevsky, and et al., “Dropout: a
simple way to prevent neural networks from overfitting.” Journal of
machine learning research, vol. 15, pp. 1929–1958, 2014.

[182] R. J. Stanley, W. V. Stoecker, and R. H. Moss, “A relative color
approach to color discrimination for malignant melanoma detection

in dermoscopy images,” Skin Research and Technology, vol. 13, pp.
62–72, 2007.

[183] W. V. Stoecker, W. W. Li, and R. H. Moss, “Automatic detection
of asymmetry in skin tumors,” Computerized Medical Imaging and
Graphics, vol. 16, pp. 191–197, 1992.

[184] W. Stoecker, K. Gupta, R. Stanley, and et al., “Detection of asymmetric
blotches (asymmetric structureless areas) in dermoscopy images of ma-
lignant melanoma using relative color,” Skin Research and Technology,
vol. 11, pp. 179–184, 2005.

[185] W. Stoecker, M. Wronkiewiecz, R. Chowdhury, and et al., “Detection of
granularity in dermoscopy images of malignant melanoma using color
and texture features,” Computerized Medical Imaging and Graphics,
vol. 35, pp. 144–147, 2011.

[186] W. Stolz, A. Riemann, and A. B. Cognetta, “ABCD rule of der-
matoscopy: a new practical method for early recognition of malignant
melanoma,” European Journal of Dermatology, vol. 4, pp. 521–527,
1994.

[187] C. Szegedy, W. Liu, Y. Jia, and et al., “Going deeper with convolutions,”
in IEEE CVPR 2015, 2015, pp. 1–9.

[188] T. Tanaka, S. Torii, I. Kabuta, and et al., “Pattern classification of nevus
with texture analysis,” IEEJ Transactions on Electrical and Electronic
Engineering, vol. 3, pp. 143–150, 2008.

[189] K. Thon, H. Rue, S. O. Skrøvseth, and et al., “Bayesian multiscale
analysis of images modeled as gaussian markov random fields,” Com-
putational Statistics & Data Analysis, vol. 56, pp. 49–61, 2012.

[190] C. N. Vasconcelos and B. N. Vasconcelos, “Experiments using deep
learning for dermoscopy image analysis,” to appearn in Pattern Recog-
nition Letters, 2018.

[191] C. G. Watts, C. Madronio, R. L. Morton, and et al., “Clinical features
associated with individuals at higher risk of melanoma: a population-
based study,” JAMA dermatology, vol. 153, pp. 23–29, 2017.

[192] P. Wighton, T. K. Lee, H. Lui, and et al., “Chromatic aberration
correction: an enhancement to the calibration of low-cost digital
dermoscopes,” Skin Research and Technology, vol. 17, pp. 339–347,
2011.

[193] ——, “Generalizing common tasks in automated skin lesion diagnosis,”
IEEE Transactions on Information Technology in Biomedicine, vol. 15,
pp. 622–629, 2011.

[194] F. Xie, H. Fan, Y. Li, , and et al., “Melanoma classification on
dermoscopy images using a neural network ensemble model,” IEEE
transactions on medical imaging, vol. 36, pp. 849–858, 2017.

[195] S. Yang, B. Oh, S. Hahm, and et al., “Ridge and furrow pattern clas-
sification for acral lentiginous melanoma using dermoscopic images,”
Biomedical Signal Processing and Control, vol. 32, pp. 90–96, 2016.

[196] X. Yang, Z. Zeng, S. Y. Yeo, and et al., “A novel multi-task deep
learning model for skin lesion segmentation and classification,” arXiv
preprint arXiv:1703.01025, 2017.

[197] T. Yao, Z. Wang, Z. Xie, and et al., “A multiview joint sparse
representation with discriminative dictionary for melanoma detection,”
in IEEE DICTA 2016. IEEE, 2016, pp. 1–6.

[198] T. Yoshida, M. E. Celebi, G. Schaefer, and et al., “Simple and
effective pre-processing for automated melanoma discrimination based
on cytological findings,” in IEEE Big Data 2016, 2016, pp. 3439–3442.

[199] S. Yoshino, T. Tanaka, M. Tanaka, and et al., “Application of morphol-
ogy for detection of dots in tumor,” in IEEE SICE 2004, vol. 1, 2004,
pp. 591–594.

[200] L. Yu, H. Chen, Q. Dou, and et al., “Automated melanoma recogni-
tion in dermoscopy images via very deep residual networks,” IEEE
transactions on medical imaging, vol. 36, pp. 994–1004, 2017.

[201] Z. Yu, D. Ni, S. Chen, and et al., “Hybrid dermoscopy image clas-
sification framework based on deep convolutional neural network and
fisher vector,” in IEEE ISBI 2017, 2017, pp. 301–304.

[202] W. Zhang, L. Gao, and R. Liu, “Using deep learning method for
classification: A proposed algorithm for the isic 2017 skin lesion
classification challenge,” arXiv preprint arXiv:1703.02182, 2017.

[203] M. Zortea, T. R. Schopf, K. Thon, and et al., “Performance of
a dermoscopy-based computer vision system for the diagnosis of
pigmented skin lesions compared with visual evaluation by experienced
dermatologists,” Artificial intelligence in medicine, vol. 60, pp. 13–26,
2014.


