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ABSTRACT

This paper considers the representation of human trajectories in
video signals. These trajectories are modeled by switched dynami-
cal models, based on motion fields that drive the pedestrian during
consecutive time intervals. This paper addresses the estimation of
uncertainty in trajectory generation by using space-varying covari-
ance matrices estimated from the video data. Experimental results
show that the proposed model outperforms previous methods, based
on static and isotropic covariance matrices.

Index Terms— Human motion, multiple dynamical models,
space-varying covariance matrices.

1. INTRODUCTION

Understanding and predicting human motion in a scene is of major
importance to many applications, such as surveillance (e.g., iden-
tification of abnormal behaviors), sport performance analysis, and
human-robot interactions [15]. The images can be acquired using
two different settings: i) short range, where the camera is close to the
observed person and we have access to detailed information of the
human pose; and ii) far field, where the camera covers a wide area
(see Fig. 1) and is no longer able to provide detailed information. In
this work, we are interested in the latter setting, in which most meth-
ods rely on the characterization of the trajectories performed by the
pedestrians.

Two classes of approaches have been used to characterize trajec-
tories. The first one is based on human-human interactions, basically
assuming that the pedestrian motion is governed by attractive and re-
pulsive forces, created by neighbor pedestrians (social forces mod-
els) [10, 13]. Alternatively, one can assume that the motion is defined
by the interaction between the pedestrian and the geometry of the
scene. In this case, the number of typical motions is finite, making
it possible to estimate the motion patterns [17]. The methodologies
proposed in this context may be divided into two groups: discrimina-
tive and generative. Discriminative methods include splines [16, 2],
clustering [2, 18], and classification algorithms (e.g., reinforcement
learning [12] or recurrent neural networks [1, 14]) strategies. Despite
their promising results, these methods may be too rigid and, thus, un-
able to model the inherently stochastic behavior of the trajectories,
which depends on factors such as the presence of other agents in
the scene or the time of the day. Some discriminative methods have
tried to tackle this issue by combining motion models with social
forces approaches (e.g., [1, 8]). On the other hand, generative meth-
ods, such as the ones based on Gaussian processes (GP) [7, 11, 6] or
switching motion vector fields [20], allow us to be explicit regarding
the uncertainty induced by the aforementioned factors.

In this work we will focus on modeling trajectories using vector
fields, which have been shown to efficiently describe not only pedes-
trian trajectories [20], but also GPS data from hurricanes, vehicles,
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Fig. 1: Pedestrian trajectory and corresponding space-varying noise
covariance.

and cellphones [9]. Our starting point will be the method proposed
in [20], where trajectories are defined as a sequence of points, each
generated by one vector field. Although only one motion model is
active at each time instant, it is assumed that switching between them
may occur at any point in the domain, according to a space-varying
probability. This makes the model flexible enough to characterize a
wide variety of motion patterns. The drawback of the previous ap-
proach is the formulation of the noise covariance of the trajectory
segments, i.e., their uncertainty. This covariance is assumed to be
isotropic and the same across all the domain, which is rigid and un-
realistic. Moreover, it is incorrect to estimate covariances in regions
of the domain where no data is available. These limitations are ad-
dressed in this paper, where we propose a framework to estimate
space-varying covariance matrices that also depend on the type of
motion (see Fig. 1). Covariance matrices will only be estimated in
regions where observations are available and set to a high value in
all of the others. Models based on GP also allow the estimation of
space-varying covariances. However, GP do not consider switching
between models and the covariances are a combination of the trajec-
tory noise and model uncertainties [6, 3].

To sum-up, the main contributions of this paper are the proba-
bilistic reformulation of [20] to include space-varying noise covari-
ances, as well as the description of an optimization strategy to es-
timate them. The remaining of the paper is organized as follows.
Section 2 describes the trajectory model and Section 3 explains the
formulation of the space-varying covariance matrices. Section 4 ad-
dresses the estimation of the covariance matrices and the optimiza-
tion method. Section 5 presents the experimental results and Section
6 concludes the paper.

2. TRAJECTORY MODEL

Different types of trajectories can be observed in an outdoor scene.
These can be aggregated into different motion regimes, where each
regime is represented by a motion field, as suggested in [20]. Let
Tk : [0, 1]2 → R2, be the k− th motion field, where [0, 1]2 denotes
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the image plane and k ∈ {1, . . . ,K} is the motion regime (label).
We assume that only one motion field drives the pedestrian trajec-
tory at each instant of time, the so-called active field, but switch-
ing between different motion fields is allowed, during the pedestrian
evolution in the scene.

Let (x1, . . . , xL), with xt ∈ [0, 1]2, be the trajectory of a pedes-
trian in the image plane and (k1, . . . , kL), with kt ∈ {1, . . . ,K},
be the sequence of active fields. We will assume that xt is generated
according to the dynamical equation

xt = xt−1 + Tkt(xt−1) + wt, (1)

where Tkt(xt−1) is the active motion field driving the pedestrian at
time t, and wt is a white noise perturbation with Gaussian distri-
bution wt ∼ N(0, σ2

ktI). We also assume that switching between
motion fields is described by a first order Markov chain with space-
varying transition probabilities

P (kt = j|kt−1 = i, xt−1) = bij(xt−1), (2)

where bij(x) is the element ij of the transition matrix B(x)
(stochastic matrix), evaluated at position x.

The space-varying motion fields, Tk, and transition matrix, B,
are defined using a regular grid of

√
n×
√
n nodes. The motion fields

and transition matrix are estimated at the grid nodes, and defined at
the other points by bilinear interpolation.

To be specific, the k − th motion field is obtained by multiply-
ing a dictionary of node velocities, Tk ∈ R2×n, by the vector of
interpolation coefficients Φ(x) ∈ Rn×1, i.e.,

Tk(x) = TkΦ(x) . (3)

The space-varying transition matrix, B(x), is represented in a
similar way using the same regular grid.

3. TRAJECTORY UNCERTAINTY

The previous model, adopts flexible descriptions for the motion
fields and transition matrix. However, it uses a rigid formulation for
the noise covariance matrix, cov{wt} = Σkt ∈ R2×2. This matrix
is assumed to be isotropic and the same across all the pedestrian
positions, i.e., Σk = σ2

kI . These assumptions are unrealistic, since:
i) pedestrian motion is conditioned by the geometry of the scene;
and ii) there is no guarantee that the covariance of the noise is the
same in all the directions.

Therefore, in this work we postulate that the noise covariance
depends not only on type of motion, but also on the pedestrian po-
sition, i.e., cov{wt} = Σkt(x) ∈ R2×2. The noise covariance
associated with the k− thmotion field and position x is obtained by
interpolating the covariance matrices associated to a regular grid of
nodes, similar to the one used in previous section

Σk(x) =

n∑
i=1

Σi
kφ

i(x), (4)

where Σi
k and φi(x) are, respectively, the covariance matrix and the

interpolation coefficient of the i−th node. Since 0 ≤ φi(x) ≤ 1,∀i,
the interpolated matrix is guaranteed to be semidefinite positive.

4. SPACE-VARYING COVARIANCE ESTIMATION

We wish to estimate the model parameters θ = (T ,B,Σ) where T
is the dictionary of the motion vectors, B is the dictionary of the tran-
sition matrices (stochastic) and Σ is the dictionary of the noise co-
variance matrices associated to the nodes. These parameters should
be retrieved from pedestrian trajectories detected in the video signal.

Let X =
{
x(1), ..., x(S)

}
be a set of S observed trajectories.

The MAP estimate of θ is obtained by

θ̂ = arg max
θ

[log p(X|θ) + log p(θ)] . (5)

Since the model depends on hidden parameters (label sequences,
k(s), s = 1, . . . , S), the likelihood function cannot be easily ob-
tained. Therefore, we will adopt the EM algorithm [20] to estimate
θ. This amounts to maximizing the auxiliary function

U(θ, θ′) = E
{

log p(X ,K|θ)|X , θ′
}

+ log p(θ)

= U1(θ, θ′) + U2(θ, θ′) + U3(θ, θ′), (6)
where

U1(θ, θ′) = −1

2

S∑
s=1

Ls∑
t=2

K∑
k=1

w
(s)
k (t) log

(
det

(
n∑
i=1

Σi
kφ

i(x
(s)
t−1)

))
,

U2(θ, θ′) = −1

2

S∑
s=1

Ls∑
t=2

K∑
k=1

w
(s)
k (t)‖x(s)

t −x
(s)
t−1−Tk(x

(s)
t−1‖

2

Σk(x
(s)
t−1)

,

U3(θ, θ′) =

S∑
s=1

Ls∑
t=2

K∑
p,q=1

w(s)
p,q(t) logBpq(x

(s)
t−1). (7)

where w(s)
p (t) = P (k

(s)
t = p|x(s), θ′) and w(s)

p,q(t) = P (k
(s)
t−1 =

p, k
(s)
t = q||x(s), θ′). These weights are obtained in the E step.
The optimization with respect to T ,B is described in [20, 19, 4].

The optimization with respect to Σ is new and requires the compu-
tation of the derivatives ∂(U)

∂Σ
γ
η

, for each node γ and type of motion η.
After cumbersome calculations, we obtain

∂U1

∂Σγ
η

= −1

2

∂

∂Σγ
η

S∑
s=1

Ls∑
t=1

K∑
k=1

w
(s)
k (t) log

(
det

(
n∑
i=1

Σi
kφ

i
(
x

(s)
t−1

)))

= −1

2

S∑
s=1

Ls∑
t=1

w(s)
η (t)

∂

∂Σγ
η

log

(
det

(
n∑
i=1

Σi
ηφ

i
(
x

(s)
t−1

)))

= −1

2

S∑
s=1

Ls∑
t=1

w(s)
η (t)φγ(x

(s)
t−1)

(
n∑
i=1

Σi
ηφ

i(x
(s)
t−1)

)−1

,

∂U2

∂Σγ
η

= −1

2

∂

∂Σγ
η

S∑
s=1

Ls∑
t=1

K∑
k=1

w
(s)
k (t)‖x(s)

t − x
(s)
t−1 − Tk(x

(s)
t−1)‖2

Σk(x
(s)
t−1)

= −1

2

∂

∂Σγ
α

S∑
s=1

Ls∑
t=1

K∑
k=1

w
(s)
k (t)tr

((
n∑
i=1

Σi
kφ

i(x
(s)
t−1)

)−1

G
(s)
t

)

= −1

2

S∑
s=1

Ls∑
t=1

w(s)
η (t)

∂

∂Σγ
η

tr

((
n∑
i=1

Σi
ηφ

i(xst−1)

)−1

G
(s)
t

)

= −1

2

S∑
s=1

Ls∑
t=1

w(s)
η (t)φγ(x

(s)
t−1).

.

((
n∑
i=1

Σi
ηφ

i(x
(s)
t−1)

)−1

G
(s)
t

(
n∑
i=1

Σi
ηφ

i(x
(s)
t−1)

)−1)T
,

∂U3

∂Σγ
α

= 0, (8)

where

G
(s)
t = (x

(s)
t −x

(s)
t−1−Tη(x

(s)
t−1))(x

(s)
t −x

(s)
t−1−Tη(x

(s)
t−1))T . (9)

The stationary conditions for node γ and motion regime η

∂U

∂Σγ
η

= 0 , (10)
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Fig. 2: Experimental dataset: syntethic case 1 (left), synthetic case
2 (mid), and Campus dataset (right).

cannot be analytically solved. Therefore, we will resort to numerical
optimization methods (gradient algorithm)

Σγ
η ← Σγ

η + µ
∂U

∂Σγ
η
, (11)

where µ is the step. This recursion should be applied for each grid
node of each motion regime until a stop condition is met. The choice
of the step η is done using the Barzilai-Borwein (BB) method [5].

The covariance estimates should be symmetric and positive def-
inite matrices. The first condition is automatically guaranteed by the
gradient algorithm but the second is not. To overcome this difficulty,
we project the covariance estimates into the set of positive definite
matrices in each iteration of the algorithm. This is accomplished
by performing eigendecomposition of the covariance estimates and
replacing negative and null eigenvalues by small positive ones. We
stress that null singular values are not acceptable since they lead to
instabilities in the computation of U .

5. EXPERIMENTAL RESULTS

We evaluate the proposed methodology in three datasets: i) syn-
thetic trajectories generated using a linear or circular motion field,
without switching (case 1); ii) synthetic trajectories generated using
motion fields with switching probabilities (case 2); and iii) real tra-
jectories from the Campus data set [20]. The experiments with the
synthetic data allow us to compare the estimates of the model pa-
rameters θ = (T ,B,Σ) against a known ground truth, while the ex-
periment with the Campus dataset gives us a qualitative evaluation
of the proposed method in the real world. In both of the synthetic
experiments, three subsets of equal size are generated, each using a
different configuration for Σ: i) isotropic and equal for each node
of a motion field; ii) anisotropic in the direction of the motion and
equal for each node of a motion field; and iii) anisotropic in the di-
rection of the motion and space varying (random). All of the noise
covariances are in the range

[
1× 10−6, 1× 10−3

]
.

The following metrics are used to evaluate the estimated model
parameters:

eTk =
1

#Ω

∑
i∈Ω

‖T ik − T o,ik ‖
2
2 , (12)

eBi = ‖vec(Bi)− vec(Bo,i)‖22 , (13)

eΣk =
1

#Ω

∑
i∈Ω

S∑
s=1

Ls∑
t=2

wsk(t)φi(xst−1)‖vec(Σi
k)− vec(Σo,i

k )‖22 ,

(14)
where T o,ik , Bo,i, and Σo,i

k are the ground truth values of the i− th
node and k − th motion type, and Ω is the set of nodes that is
supported by, at least, 30% of the observations.

5.1. Synthetic Data Without Switching

In this example, which we will call synthetic case 1, the trajectories
are generated according to K = 2 motion regimes: counterclock-
wise and linear, as shown in Fig. 2 (left). Linear trajectories start

Fig. 3: Ground truth (left) and estimated velocity fields T and space-
varying covariance matrices Σ (right) for synthetic case 1. In yellow
we show the trajectories associated to each motion regime.

at a region around point [0.55, 0.05]T , while circular trajectories are
centered on point [0.5, 0.5]T and exhibit varying radius. We define
the motion fields in a regular grid of 11 × 11, being impossible to
switch between fields in any of the nodes.

Table 1: Fields and covariances estimation errors for synthetic case
1. ”Fixed” identifies the isotropic covariance σ2

kI and ”Space-
Varying” identifies the proposed strategy. In bold we highlight the
best results.

Noise type Covariance type eTk eΣk

Isotropic Fixed [20] 2.80× 10−3/2.30× 10−3 5.19× 10−5/5.19× 10−5

Space-Varying 2.50× 10−3/1.50× 10−3 2.63× 10−5/1.12× 10−5

Anisotropic Fixed [20] 1.10× 10−3/2.70× 10−3 2.67× 10−5/1.14× 10−4

Space-Varying 1.30× 10−3/2.60× 10−3 9.20× 10−6/5.87× 10−5

Random Fixed [20] 1.40× 10−3/1.30× 10−3 1.89× 10−5/8.82× 10−5

Space-Varying 1.60× 10−3/3.00× 10−4 6.20× 10−6/3.49× 10−5

We randomly generate 100 trajectories according to (1), for each
type of noise covariances (isotropic, anisotropic, and random). Due
to space constraints, we only show the trajectories generated using
the random anisotropic covariances (Fig. 2 left) . Noise covariances
are shown in Fig. 3 (left). Please note that the displayed covariances
are anisotropic and depend on the motion. Each set of trajectories
is used to estimate the model parameters θ = (T ,Σ) (here B is not
considered), as described in Section 4. Furthermore, for comparison
purposes, we also estimate the parameters using the formulation of
[20], where Σk is set to σ2

kI in all of the grid nodes. The motion
fields T are randomly initialized and the covariance matrices Σ are
initialized as σ2

initI , where σ2
init = {10−3, 5× 10−3, 10−2}.

Table 1 reports the best error values eTk and eΣk for each mo-
tion model and σinit = 10−3, using the proposed method and [20].
Fig. 3 (right) shows the estimated fields and covariances. These re-
sults demonstrate that the proposed method is able to successfully
estimate the model parameters θ = (T ,Σ) in the nodes where tra-
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Fig. 4: Ground truth (1st row) and estimated space-varying covari-
ance matrices Σ (2nd row) for synthetic case 2.

jectories are observed, while assigning high covariances to nodes
that have few observations. Moreover, the error values prove that the
proposed method outperforms [20] not only estimation of the covari-
ance matrices, which was expected, but also in the estimation of the
fields.

5.2. Synthetic Data With Switching

The synthetic case 2 comprise K = 3 motion regimes, as exem-
plified in Fig. 2 (mid). These trajectories are generated as follows.
First, we randomly choose the starting point between a small region
around [0.5, 0]T and [0, 0.9]T . In the first case, the motion regime
is an up motion from the bottom to the top of the image, while in
the second case it is a down motion with approximately 45◦ of ori-
entation. The trajectories may switch between these motions and a
third motion regime, orientated from left to right, at the center of the
image. This switching is governed by the following transition matrix
Bc =

[
0.7 0.1 0.2
0.2 0.2 0.6
0 0 1

]
. As before, we define the model in a regular grid

of 11× 11 nodes.
We conduct the experiments described in the previous section,

using three datasets of 100 randomly generated trajectories with
varying types of noise covariance. Here we are also interested in
estimating B, as well as in evaluating the error eBi in the transition
node. The experimental results are summarized in Table 2 and the
estimated covariances for the anisotropic noise are shown in Fig. 4.
Once more, the proposed method is able to successfully estimate
the model parameters and outperform the previous approach is most
of the results. The estimated switching matrix for the example is
B̂c =

[
0.8 0.05 0.15
0.23 0.17 0.6

0 0 1

]
, which is similar to the real one.

Table 2: Fields and covariances estimation errors for synthetic case
2. ”Fixed” identifies the isotropic covariance σ2

kI and ”Space-
Varying” identifies the proposed strategy. In bold we highlight the
best results.

Noise type Covariance type eTk eΣk eBi

Isotropic

Fixed [20]
3.20× 10−3 5.28× 10−5

0.611.50× 10−3 4.59× 10−5

1.20× 10−3 5.77× 10−5

Space-Varying
3.40× 10−3 2.44× 10−5

0.311.90× 10−3 2.24× 10−5

1.40× 10−3 3.27× 10−5

Anisotropic

Fixed [20]
5.10× 10−3 1.28× 10−4

0.728.00× 10−4 1.93× 10−4

3.20× 10−3 1.43× 10−4

Space-Varying
4.30× 10−3 3.80× 10−5

0.194.00× 10−4 1.33× 10−4

2.70× 10−3 1.57× 10−4

Random

Fixed [20]
2.20× 10−3 8.61× 10−5

0.751.00× 10−3 1.33× 10−4

2.50× 10−3 1.12× 10−4

Space-Varying
1.10× 10−3 4.00× 10−5

0.321.10× 10−3 1.20× 10−4

1.80× 10−3 1.03× 10−4

Fig. 5: Estimated velocity fields T for the Campus dataset. In yellow
we show the trajectories associated to each motion regime.

Fig. 6: Estimated node covariances Σ for the Campus dataset.

5.3. Real Data

This experiment was carried on the Campus data set [20], which
comprises 134 pedestrian trajectories acquired by a static far field
camera at the IST university campus in Lisbon (see Fig. 2, right).
An homography was performed to correct the distortion cause by the
perspective projection, and the transformed trajectories were used to
estimate the model parameters θ = (T ,B,Σ).

The number of motion regimes was set to K = 4 (north, south,
east, and west) and the regular grid was defined to be 11× 11. Sim-
ilarly to the previous experiments, the fields were randomly initial-
ized, while the covariance matrices were set to be Σk = σ2

initI .
Since we do not know the ground truth of any of the parameters, we
are only able to perform a qualitative assessment of the estimated
fields T and space varying noise covariances Σ. Figures 5 and 6
respectively display each of these estimates.

6. CONCLUSIONS

This paper proposes a new methodology for the estimation of the
uncertainty in pedestrian trajectory generation, applied to models
that are based on switching motion fields. It is assumed that the co-
variance of the trajectory noise depends both on the type of motion
and pedestrian position, i.e., it is considered to be space-varying.
The approach used to estimate the space-varying covariances is in-
troduced and several experiments are carried out to evaluated the
method. Synthetic and real datasets have been used to conduct the
experiments, and it was demonstrated that our assumption is reason-
able and that it outperforms the previous method based on global and
isotropic noise covariances.
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