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Abstract. Modeling the trajectories of pedestrians is a key task in video
surveillance. However, finding a suitable model to describe the trajecto-
ries is challenging, mainly because several of the models tend to have a
large number of parameters to be estimated. This paper addresses this
issue and provides insights on how to tackle this problem. We model the
trajectories using a mixture of vector fields with probabilistic switching
mechanism that allows to efficiently change the trajectory motion. De-
pending on the probabilistic formulation, the motions fields can have a
dense or sparse representation, which we believe influences the perfor-
mance of the model. Moreover, the model has a large set of parame-
ters that need to be estimated using the initialization-dependent EM-
algorithm. To overcome the previous issues, an extensive study of the
parameters estimation is conducted, namely: (i) initialization, and (ii)
priors distribution that controls the sparsity of the solution. The various
models are evaluated in the trajectory prediction task, using a newly pro-
posed method. Experimental results in both synthetic and real examples
provide new insights and valuable information how the parameters play
an important in the proposed framework.
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1 Introduction

Activity recognition, movement prediction (see Fig. 1), and detection of abnor-
mal behaviors are critical tasks in surveillance applications, requiring appropriate
models to describe them. Since many of the surveillance settings are based on
far-field cameras that do not provide detailed information about the pedestrians
in a video scene, several of these models are based on the characterization of
the trajectories performed by the pedestrians. In fact, trajectories allow us to
identify and collect statistics of typical motions, activities, and interactions in a
video scene [1]. Consequently, having a reliable description of the possible tra-
jectories is of major importance. However, trajectory modeling is a challenging
problem due to its great spatial and temporal variability.

Various methods have been proposed to efficiently describe trajectories. Amongst
these methods, we are interested in the ones that resort to a generative approach,
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Fig. 1: Pedestrian trajectory: past (yellow) and possible future motions (green).

i.e, the trajectories are assumed to follow a dynamical equation and are governed
by known motion patterns. In [2–4] a Gaussian process (GP) regression is used
for trajectory modeling under a probabilistic viewpoint. More specifically, in [3]
the authors present an unsupervised algorithm in which GP is used to estimate
the instantaneous velocity of the pedestrian, while in [2] GP is used to model
flow functions. The latter representation also allows for incrementally predicting
possible paths and detecting anomalous events from online trajectories. In [4]
it is proposed an incremental and unsupervised approach, where the model is
updated by receiving new trajectory samples. Dirichlet processes have also been
used to model trajectories [6, 8, 7], as well as vector fields estimated using the
k-means algorithm [5]. The latter work demonstrated the ability of vector fields
to describe other types of trajectories besides pedestrian ones (e.g., hurricanes
and cell-phone GPS data).

Our work is related to [9] where vector fields are used to model pedestrian
trajectories. This method assumes that a grid with

√
n×
√
n nodes is defined in

the image domain. Each node is characterized by the following parameters: (i) a
set of motion vector fields (velocity vectors), (ii) a field of isotropic covariance
matrices, and (iii) a switching probability matrix that governs the transition
between fields in that node. Only one motion field is active at each trajectory
point and the transition between them depends on the spatial location of the
pedestrian in the grid. This method has been show to efficiently characterize tra-
jectories in the task of activity recognition [9]. However, it has some limitations:
(i) the parameter estimation is performed using the EM algorithm that strongly
depends on the initialization, and may encourage wrong estimates; and (ii) the
fields were assumed to be dense and estimated in nodes where information was
not available. Recently, a new formulation was proposed to deal with the lat-
ter issue: imposing a sparsity constraint to the vector fields [10]. However, this
work failed to demonstrate the impact of such strategy at describing pedestrian
trajectories. Moreover, to the best of our knowledge, none of the vector fields
models has ever been used to predict future positions in a trajectory. We believe
that this is a critical task in surveillance applications.

This paper provides valuable and comprehensive contributions, namely: (i)
provides an effective way on how to initialize the vector fields in the EM algo-
rithm, (ii) evaluates different vector fields formulations, and (iii) provides a new
methodology for trajectory prediction, using the space-varying dynamical model.
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For the first item, we perform a systematic study comprising the following three
strategies: (a) random, (b) uniform, and (c) clustering initialization, thus not
jeopardizing deficient estimates related to poor initializations. For the second
item, we compare the vector fields formulations of [9] and [10]. The proposed
prediction strategy is used to evaluate the initialization and type of fields.

2 Switching Dynamical Model

In this work, the trajectory of a pedestrian is assumed to be represented as a
sequence of positions x = (x1, . . . , xL), with xt ∈ [0, 1]2. We also consider that
all of the possible motions in a scene may be described using K motion fields
Tk : [0, 1]2 → R2, where k ∈ {1, ...,K} is the identifier of the field. Only one
of these fields is active at a specific time instant, but it is possible to switch
between them. Under these assumptions, each position is generated as follows

xt = xt−1 + Tkt(xt−1) + wt , (1)

where kt denotes the active motion field at time t and wt ∼ N(0, σ2
kt
I) is a white

random perturbation with zero mean and isotropic covariance.

Switching between active fields depends on the pedestrian position, and it is
modeled as a first order Markov process

P (kt = j|kt−1 = i, xt−1) = Bij(xt−1) , (2)

where B(x) = {Bij(x), i, j ∈ {1, . . . ,K}} is a stochastic space-varying matrix of
switching probabilities (transition matrix) that depends on the position x, i.e.,
switching probabilities at different positions are usually different.

We specify the motion fields Tk and the transition matrix B using a regular
grid on the image G =

{
gi ∈ [0, 1]2, i = 1, . . . , n

}
. This means that each node gi

of the grid is associated with K velocity vectors T ik and a transition matrix Bi.
Outside of the nodes, the velocity vector Tk(x) and switching matrix B(x) are
obtained by bilinear interpolation, as detailed below

Tk(x) = TkΦ(x) , (3)

B(x) =

n∑
i=1

Biφi(x) , (4)

where Tk is the dictionary of node velocities T ik associated with the k− th field,
Bi is the switching matrix associated with node gi, Φ(x) is a N × 1 normalized
sparse vector of known interpolation coefficients, and φi(x) is its i− th element.

If we assume a L-sequence trajectory and a known sequence of active fields
k = (k1, ..., kL), it is easy to compute the joint probability p(x, k)
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p(x, k|θ) = p(x1, k1)

L∏
t=2

p(xt|kt, xt−1)p(kt|kt−1, xt−1)

= p(x1)P (k1)
∏

N(xt|xt−1 + Tkt(xt−1), σ2
ktI)

×Bkt−1,kt(xt−1) , (5)

where θ = (T, B, σ2) denotes the complete set of model parameters. From

(5), it is clear that the sequence of active fields k = (k1, ..., kL) is modeled as a
realization of a first order Markov process, with some initial (known) distribution
P (k1) and a space-varying transition matrix, i.e., Bkt−1,kt(xt−1). In the following
section we address the estimation of the model parameters.

3 MAP Estimation Of The Model

Lets assume that we have a set of S observed trajectories, denoted as X ={
x(1), . . . , x(S)

}
, where x(j) = (x

(j)
1 , ..., x

(j)
Lj

) is the j-th trajectory with Lj sam-

ples. Naturally, the corresponding sequences of active fields K = {k(1), ..., k(S)}
are missing. Given this set, our goal is to estimate the model parameters θ =
(T, B, σ2) using the MAP formulation

θ̂ = arg max
θ

[
log p(X|θ) + log p(θ)

]
, (6)

where log p(θ) =
∑K
k=1 log p(θk) is the log prior distribution. Assuming indepen-

dence between the various parameters, it is possible to further decompose the
prior as follows

log p(θ) =

K∑
k=1

log p(Tk) +

K∑
k=1

log p(σ2
k) + log p(B) . (7)

The complete likelihood log p(X,K|θ) may also be easily defined from (5), by
computing a sum over all the trajectories. However, its marginalizing over all
the admissible labels K cannot be computed.

The aforementioned limitation may be addressed using the Expectation-
Maximization (EM) method to estimate the model parameters. This amounts
to iteratively maximizing the auxiliary function

U(θ, θ′) = E
{

log p(X,K|θ)|K, θ(t)
}

+ log p(θ) (8)

with respect to θ and taking into account the available estimates θ′ from the
previous iteration.

Using (5) and replacing into (8) we obtain the following expression (disre-
garding the constants)
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U(θ, θ′) = −
S∑
s=1

L∑
t=2

K∑
k=1

w
(s)
k (t) logN(xt|xt−1 + Tkt(xt−1), σ2

ktI)

+

S∑
s=1

L∑
t=2

K∑
p,q=1

w(s)
p,q(t) logBkt−1,kt(xt−1)

+

K∑
k=1

log p(Tk) +

K∑
k=1

log p(σk) + log p(B) , (9)

where w
(s)
p (t) = P (k

(s)
t = p|x(s), θ′) and w

(s)
p,q(t) = P (k

(s)
t−1 = p, k

(s)
t = q||x(s), θ′).

These weights are computed in the E-step, using the forward-backward algorithm
proposed in [12]. The optimization with respect to θ is performed in the M-step,
and involves a separate maximization with respect to T, B, and σ2 [9].

As discussed in [10] the prior log p(θ) may be used to incorporate a priori
knowledge about the parameters, as well as to enforce specific properties. In
particular, efforts have been made to define a prior distribution p(T) that could
lead to smooth and sparse fields:

log p(Tk) = α‖∆Tk‖22 + β‖Tk‖pp , (10)

where ∆ is an operator that computes all differences between velocities of neigh-
boring nodes and ‖.‖p denotes the pth norm. Here, the first term sets that any
neighbor grid nodes xg1, xg2 ∈ G should have similar estimated velocities, i.e.,
the difference Tkt(xg1) − Tkt(xg2) should be small. The second term enforces
small velocity values in most of the nodes. These values may be zero if p = 1,
leading to sparse vector fields where the velocities are only estimated for nodes
that are supported by observations [10]. The values chosen for the regularization
constants α and β and norm p define the importance of each term, and may
influence the estimation of the fields Tk. However, the assessment of their role
and relevance has never been performed.

Besides the priors, another criteria that strongly influences the estimation of
the model is the initialization of the parameters θinit, since the EM algorithm
is very sensitive to initialization [11]. In the following section we propose an
experimental framework to evaluate the role of these criteria in the estimation
of the motion models.

4 Experimental Setup

The goal of this work is to provide an extensive experimental study on the role of
both initialization and the prior p(T) in the estimation of the motion models. To
conduct such a study it is necessary to i) identify the types of initialization and
priors to be tested; ii) select one or more datasets to conduct the experiments;
and iii) define an evaluation metric. In this section we address each of these
requirements.
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Fig. 2: Experimental datasets: synthetic examples (1st row) and real pedestrian trajec-
tories (2nd row).

i) Initialization: The EM-algorithm, which is used in the estimation of
the parameters, strongly depends on initialization. Thus, we will evaluate three
types of initialization: i) random, where each node of a field is initialized with
a random velocity vector; ii) uniform, where each node of a field is initialized
with the same (random) velocity vector; and iii) clustered, where we perform a
preliminary clustering of the velocity values and set the number of centroids to
be equal to the number of fields K.

ii) Prior: Another goal of this paper is to provide a comprehensive study
of the role of the fields’ prior (10). This means that for each of the aforemen-
tioned initializations, we train several models using different combinations of
α ∈ {0.5, 1, 2}, β ∈ {0, 0.05, 0.1, 0.15}, and p ∈ {1, 2}, leading to a total of 21
models per initialization type.

iii) Datasets: Our study is conducted using four datasets (two synthetic and
two real). The first synthetic case comprises K = 3 motion types and 100 ran-
domly generated trajectories, as is exemplified in Fig. 2 (1st row-left). The tra-
jectories were generated according to the following procedure. First, the starting
point was randomly chosen between a small region around [0, 0.9]T and [0.5, 0]T .
Conditioned on the selected point, the motion regime can either be a down mo-
tion with a slope of 45◦ or an up motion. When the trajectories reach the center
of the image there is a probability of switching between these motions and a
third one, oriented form left to right.
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Table 1: Dataset description. L̄ is the average trajectory length and v̄ = 1
L

∑L
t=1 ‖xt−

xt−1‖22 is the average displacement.

Dataset # Trajectories L̄ v̄ (×10−3)

Synthetic 1 100 27± 5 46± 4

Synthetic 2 100 77± 40 21± 0.4

Stairway 86 57 ± 18 12± 2

Campus II 1083 50± 48 2± 0.9

The second synthetic example mimics a roundabout with four entrance/exist
points, as exemplified in Fig. 2 (1st row-right). Three motion regimes (K = 3) are
considered: a circular and counterclockwise one, and two linear movements that
represent, respectively, the entrance and exiting of the roundabout. Switching
may occur at any of the entrance/exit points. As before, we randomly generate
100 trajectories.

The two real datasets were acquired at the IST university campus in Lisbon
(see Fig. 2 (2nd row)), using static far field cameras. The first dataset (2nd row-
left), which we call Stairway, comprises 86 trajectories of pedestrians going up
and down a stairway, while the second dataset, called Campus II (2nd row-right),
comprises more than 900 trajectories of pedestrians crossing the IST campus.
Two cameras were used to acquired the Stairway dataset, while the Campus II
dataset was acquired using only one. In the first case, two homographies were
performed to i) align the images and ii) correct the distortions cause by the
perspective projection. Regarding the Campus II dataset, it was only necessary
to correct the distortions. We set the number of motion fields to be estimated to
K = 2 for the stairway example (up and down), and to K = 4 in the Campus
II set (roughly north, south, east, and west).

In Table 1 we summarize the properties of each dataset, namely the number
of trajectories, the mean trajectory length (L̄), and the average displacement
between two consecutive trajectory points.

iv) Evaluation - prediction: Finding an appropriate metric to evaluate
the role of the initialization and prior is a challenging task. One could assess the
error in the estimation of the model parameters, but such metric is suitable only
when we know the ground truth values that generated the trajectories. Such
information is only available in the case of the synthetic data. Alternatively,
we can assess the ability of the estimated models to predict the future of the
trajectory, i.e., given a sequence of past positions (x(1), ..., x(t0)) we want to
predict the position x̂(t0 + δ), δ steps ahead in time using the dynamical model
(1).

In our case, this means that we have to predict not only the position, but also
the most probable motion field k∗ that leads to it (see Fig. 1). To achieve this
goal, we apply the forward-backward algorithm [12] used in the E-step of model
estimation, namely the forward part, that works as follows. First, lets consider
the past, i.e., t ≤ t0, and assume the existence of a set of forward variables

αi(t) = Pr{x(1), ..., x(t), kt = i|θ̂} , (11)



8

such that α(t) = [α1(t), ..., αK(t)] is a vector that stores all of the forward
probabilities of time instant t. For a given past instant, α(t) is estimated as
follows:

α(t) = D(xt)B(xt−1)Tα(t− 1), t = 2, ..., t0, α(1) = D1π , (12)

D(xt) ∈ RK×K is a diagonal matrix with

Dii = N
(
xt;xt−1 + Ti(xt−1), σ2

i I
)
, i = 1, ...,K . (13)

For t > t0 the real position x(t) is unknown. Therefore, matrix D can not be
computed and the estimation of the forward probabilities α̂(t) is given by:

α̂(t) = B(x̂t−1)T α̂(t− 1), t = t0 + 1, ..., t0 + δ , (14)

where
x̂t = x̂t−1 + Tk∗t (x̂t−1) + 0 . (15)

k∗t denotes the active field at each instant t > t0, and is defined as: k∗ =
maxk αk(t) .

We use the displacement error (DE) as the evaluation metric:

DE =

L−δ∑
t0=1

‖x(t0 + δ)− x̂(t0 + δ)‖22 , (16)

where x̂(t0 + δ) is computed by recursively applying (14) to estimate the best
field and (15) to predict the position. We set δ = 5, as proposed in other works
(e.g., [13]).

5 Results

In Fig. 3 we show the best performances for each dataset (synthetics 1 and 2,
Stairway, and Campus II). These results were obtained using leave-one-trajectory-
out cross validation and the performances were computed for each pair (initial-
ization,prior). Here dense means that β = 0, while l2 and l1 correspond to
p = 2, 1, in (10). Table 2 shows the best overall performances, as well as the
combination of model parameters and initialization that led to it. These results
demonstrate that the proposed prediction strategy is able to successfully the
estimate the position of a pedestrian δ = 5 time steps ahead, achieving a low
DE in all datasets.

A more thorough analysis of the results suggest that the initialization method
has a significant impact in the synthetic and Stairway datasets, while the per-
formance in the Campus II remains almost unchangeable. The role of the ini-
tialization is particularly notorious for synthetic example 2 (the roundabout),
where velocity clustering leads to a large increase in the DE. This higher error
explained by the existence of a circular movement that is inefficiently modeled
by velocity clustering.
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Fig. 3: Experimental results for synthetic examples (red and blue) and real pedestrian
trajectories (green and magenta).

Table 2: Best experimental results out of 63 possible configurations for each dataset.

Dataset DE Prior Best Configuration

Synthetic 1
5.0± 11.0× 10−3 Dense Random, α = 0.5, β = 0
4.7± 10.9× 10−3 l2 Random, α = 0.5, β = 0.1
4.0± 9.0× 10−3 l1 Random, α = 0.5, β = 0.05

Synthetic 2
1.1± 0.80× 10−2 Dense Random, α = 1, β = 0
7.4± 5.8× 10−3 l2 Random, α = 0.5, β = 0.15
4.6± 3.0× 10−3 l1 Random, α = 0.5, β = 0.15

Stairway
3.7± 5.8× 10−3 Dense Clustering, α = 2, β = 0
3.7± 6.4× 10−3 l2 Clustering, α = 0.5, β = 0.05
4.4± 8.4× 10−3 l1 Clustering, α = 1, β = 0.05

Campus II
2.2± 0.5× 10−4 Dense Clustering, α = 2, β = 0
2.4± 0.6× 10−4 l2 Clustering, α = 0.5, β = 0.15
2.4± 0.5× 10−4 l1 Random, α = 0.5, β = 0.05

Enforcing sparsity in the estimation of the fields (p = 1) leads to improved
prediction results for the synthetic data. However, the opposite is observed for
the real datasets, where dense fields achieve the best results. Such disparity
may be due to the proportionally higher variability that exists in pedestrian
velocities, when compared with the synthetic datasets (see Table 1). Setting
p = 2 in (10) has some impact in the performance, but it is clearly outperformed
by the other priors. Regarding the prior regularization constants, α and β, it
seems that setting α = 0.5 and β = 0.05 is the preferred combination for the
sparse prior in three out of the four datasets. In the case of the dense prior, we
observe that setting α to a higher value leads to the best results for the real
datasets, while no trend is observed for the synthetic ones.



10

Conclusions

Efficiently modeling the trajectories of pedestrians is critical for most surveil-
lance setups. However, several of the models proposed to tackle this issue rely
on complex methods that require the tunning of multiple parameters. In this
paper we addressed this issue, taking as starting point a motion model based on
switching motion fields.

Our contributions are two-folded. First we proposed a trajectory prediction
strategy for the aforementioned method, which allows a qualitative evaluation of
the method. Second, we conducted a thorough study of the model parameters,
namely initialization, velocity priors, and constants, in order to obtain insights
of their role. Both contributions are original of this paper. Experiments were
conducted in four datasets and the obtained results are relevant and promising.
Future work should rely on exploring the applicability of the motion fields to
other tasks, such as the detection of abnormal trajectories or activities.
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