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ABSTRACT

Obtaining the segmentation of an object in a sequence of im-
ages is usually achieved using a tracking methodology. How-
ever, in some applications, the whole sequence is available
beforehand. This means that the segmentations can be deter-
mined simultaneously for all the frames in the sequence and
taking into account the motion of the object. This paper pro-
poses a new framework to incorporate motion information in
the segmentation of image sequences using an active shape
model (ASM). The motion of the object is modeled using a
vector field, which is learned and refined online as the seg-
mentation algorithm proceeds. The vector field is determined
from the trajectories described by ASM points throughout the
sequence. The vector field, in turn, influences the estimation
of the ASM parameters by acting as a regularizer, ensuring
that the segmentations are in agreement with the expected mo-
tion. The results show that coupling these models during the
segmentation leads to an increase in performance, in particu-
lar by guarantee more consistent segmentations and by avoid
gross errors in more challenging frames.

Index Terms— Segmentation, Active Shape Model, Mo-
tion Model, Vector Field

1. INTRODUCTION

Taking into account the motion of an object is often benefi-
cial to achieve better results in its segmentation in sequences
of images. The traditional approach is to adopt a tracking
methodology, e.g., the Kalman filter, in which the segmen-
tation in a specific frame is influenced by the segmentation
obtained in the previous frame, through the dynamical model.
In some applications, however, the sequence is fully avail-
able beforehand. This means that the segmentations do not
have to be determined sequentially, but can be estimated si-
multaneously. The advantage is that this allows each frame
to influence (and be influenced by) all the remaining frames,
and not just the following frame. This has the potential to im-
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prove the results by making the segmentations more robust in
frames where the image conditions are more challenging.

An example where this approach is useful is the segmen-
tation of cardiac magnetic resonance (CMR) data. A CMR
sequence typically covers one cardiac cycle and the segmen-
tation of the frames in which the heart is contracted is harder
because boundaries are not so clearly defined [1]. Therefore,
motion information allows the segmentation of these frames
to be less dependent on image information and more reliant
on the segmentations of the remaining frames.

In this work, we propose a framework to combine an ac-
tive shape model (ASM) [2] with a motion model to deter-
mine the object position in the whole sequence simultane-
ously. This motion model acts as a regularizer in the esti-
mation of the ASM parameters, ensuring that the segmenta-
tions are in agreement with the expected dynamics. Here, the
motion model is described by a vector field that is learned
and refined online, as the segmentation algorithm iterates, by
analyzing the trajectories of the model points throughout the
sequence. This information is then used to update the seg-
mentations in a alternating scheme.

2. RELATED WORK

Adding motion information to an ASM-based methodology
has been accomplished using two approaches: i) embedding
this information within the deformation modes of a high-
dimensional shape model [3, 4, 5, 6]; and ii) combining the
ASM with a specific motion model [7, 8, 9, 10, 11, 12].

In the first approach (embedding), the traditional ASM is
extended to jointly model the position of an object in an im-
age sequence (instead of a single image). Similarly to the
principal component analysis (PCA) performed to extract the
deformation modes, in the extended version, the same analy-
sis is used to extract not only local shape variations but also
the variation along time. The downside of this approach is
that it requires a large amount of training data, a problem that
is typically called the curse of dimensionality [6, 13]. To over-
come this limitation, most works resort to hierarchical ASMs
[3, 5, 6, 9]. This variation of the traditional ASM divides the
model into several patches and learns the shape statistics inde-
pendently for each patch. This leads to a significant reduction
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in the data dimensionality. However, splitting the model into
patches induces a loss of notion about the connectivity be-
tween patches, which may cause unexpected segmentations
to be obtained. Furthermore, the model is also unable to cap-
ture the patterns of variation along time that the patches might
share.

Regarding the second type of approach (combining), sev-
eral motion models have been proposed to represent the object
dynamics. A popular approach is to model the motion be-
tween consecutive frames using optical flow or registrations
techniques [10, 11, 12]. The above methods provide a vector
field between consecutive frames based on the comparison of
intensity images (or other features derived from them). This
type of approach is similar to the one proposed in this work.
However, instead of using image features to determine the
vector fields, we rely on the trajectories described by the esti-
mated position of the ASM points along time. The following
section describes the proposed methodology in more detail.

3. PROPOSED APPROACH

The proposed framework consists of alternating between two
main steps: 1) Estimating the motion model based on the es-
timated ASM position in all frames; 2) Updating the shape
model parameters based on observation points extracted
from the image and according to the motion model estimated
in 1). These steps are described next.

3.1. Estimating the motion model

We represent the motion model as a vector field (VF), defined
on a regular grid within the image domain, where each vector
in the grid determines the motion in a specific position of the
image [14]. Let V =

[
v>1 , . . . ,v

>
N

]> ∈ R2N denote the
collection of the all the motion vectors in the grid with N
nodes, where vn ∈ R2 is the vector associated with the n-
th node. We define V : R2 7→ R2 as a function that maps
a position in the image to the corresponding motion vector.
For a generic position x ∈ R2 within the image domain, the
corresponding motion vector, V (x) ∈ R2, is given by

V (x) =

N∑
n=1

φn(x)vn

= Φ(x)V , (1)

where Φ(x) ∈ R2×2N is a sparse matrix that determines the
contribution of each node in the grid to the computation of
V (x), such that

Φ(x) =

[
φ1(x) 0 . . . φN (x) 0

0 φ1(x) . . . 0 φN (x)

]
. (2)

We adopt a bilinear interpolation scheme, where only the
four closest grid nodes contribute to the computation of

the motion vector, i.e., at most, only fours elements of
{φ1(x), . . . , φN (x)} are non-zero, and they satisfy the con-

straints 0 ≤ φn(x) ≤ 1 and
N∑

n=1
φn(x) = 1.

Following [14], the VF, V , is estimated from the tra-
jectories described by each model point in the sequence.
Let us assume we are given a set of K independent tra-
jectories, such that the k-th trajectory is given by X k =
{xk(1), . . . ,xk(T )}, where x(f) ∈ R2 denotes the posi-
tion of a point at a specific frame f ∈ {1, . . . , T}. 1 The
VF describes the trajectory of a point through the following
dynamical model

x(f) = x(f − 1) + V
(
x(f − 1)

)
+w (3)

where w ∼ N (0, σI) is white noise with Gaussian distribu-
tion. Replacing (1) into (3) we obtain

x(f) = x(f − 1) + Φ
(
x(f − 1)

)
V +w, (4)

The maximum posterior estimate of the VF is given by
(see details in [14])

V ? = arg min
V

1

σ2

K∑
k=1

T∑
f=2

∥∥∆xk(f)−Φ
(
xk(f − 1)

)
V
∥∥2 +

+ αV >Λ−1V , (5)

where ∆xk(f) = xk(f) − xk(f − 1), and the second term,
αV >Λ−1V , is related to a Gaussian prior. This prior acts
as a smoothness regularizer by penalizing large differences
between the vectors of neighboring nodes, encoded in Λ. The
parameter α determines the strength of the prior.

The solution of (5), V ?, is obtained by computing the
derivative of the objective function with respect to V and
equating to zero, which leads to the following linear equation(
αΛ−1 +

1

σ2

K∑
k=1

T∑
f=2

Φ>
(
xk(f − 1)

)
Φ
(
xk(f − 1)

))
V ? =

=
1

σ2

K∑
k=1

T∑
f=2

Φ>
(
xk(f − 1)

)
∆xk(f). (6)

3.2. Updating the shape model parameters

The ASM models the position of the contour point by

xi(f) = A(f)(xi +Dib(f)) + t(f), (7)

such that xi and Di are the mean position and the deforma-
tion modes, respectively, learned from a training set. The seg-
mentation of the object in a frame f is determined by the set of
ASM parameters Θ̂(f) = {A(f), t(f), b(f)}. The estima-
tion of these parameters is accomplished using an extension of

1Without loss of generality, in the following equations the trajectories are
all assumed to be sampled at the same instants and the same number of times.
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the EM-RASM [15] (expectation-maximization robust ASM)
formulation for sequences of images. Given a set of obser-
vation points, {yi(f)}i=1,...,M , f = 1, . . . , T , extracted from
the image sequence, the shape model parameters are updated
iteratively with the EM algorithm. In the E-step, the weight
of each observation point is computed as follows

wi(f) ∝ N (yi(f); x̂i(f),Σi), (8)

where x̂i(f) depends on the ASM parameters estimate in the
current iteration t, Θ̂(t)(f). These weights correspond to the
likelihood of that observation belonging to the target object.
In the M-step, the ASM parameters in all the frame are up-
dated by minimizing a weighted least squares fit between the
observations and the corresponding model points,

{Θ̂(1), . . . , Θ̂(T )}(t+1) =

arg min
Θ(1),...,Θ(T )

T∑
f=1

M∑
i=1

wi(f)
∥∥xi(f)− yi(f)

∥∥2
Σi , (9)

where ‖v‖2Σ = v>Σ−1v, Σi is a diagonal covariance matrix
associated with xi(f), and the position of xi(f)

In order to combine this estimation with the motion
model, an additional VF term is included. This new term
penalizes large deviations between each point, xi(f), and its
expected position according to the VF, given by

yi
V (f) = xi(f − 1) + V (xi(f − 1)), (10)

where V (xi(f − 1)) is computed by (1). Formally, we add
the following new term,

T∑
f=2

M∑
i=1

∥∥xi(f)− yi
V (f)

∥∥2
Σi , (11)

to the objective function in (9), leading to

{Θ̂(1), . . . , Θ̂(T )}(t+1) =

= arg min
Θ(1),...,Θ(T )

T∑
f=1

M∑
i=1

wi(f)
∥∥xi(f)− yi(f)

∥∥2
Σi +

+ λV
∥∥xi(f)− yi

V (f)
∥∥2
Σi , (12)

where λV is a constant that determines the importance of the
VF term, and, for the first frame, yi

V (1) = xi(1) (i.e., the
motion model does not influence the first frame).

We impose that yi
V (f − 1), computed using (10), is fixed

given the current ASM parameters. Therefore, it does not de-
pend on the Θ̂(f − 1). In practice, this can be seen as consid-
ering new observation points given by the expected motion,
which are all weighted by λV . This will introduce a bias in
the estimation of the ASM parameters that will make the seg-
mentations combine the information from the images with the
expected motion.

The solution of (12) is approximated by first minimiz-
ing with respect to the transformation parameters, a(f), t(f),
f = 1, . . . , T , and then minimizing with respect to the defor-
mation coefficients, b(f), f = 1, . . . , T (see details in [15]).

4. EXPERIMENTAL SETUP

The proposed approach is evaluated on two problems: 1) the
segmentation of the left ventricle in CMR; and 2) the segmen-
tation of lips in face images. For the first problem, we use the
CMR sequence dataset [6], which comprises 33 sequences of
volumes of healthy and disease patients. Each sequence con-
tains 20 volumes, covering the systole and diastole phases of
the cardiac cycle. Each volume contains 5-10 slices, with a
spacing of 6-13 mm. Each slice is a 256× 256 image, with a
resolution of 0.93-1.64 mm, with a total of 5011 images. For
the second problem, we use 61 sequences of 490 × 640 face
images from the “happy” expression of the Cohn-Kanade ex-
pression database [16], each with 10-45 frames, for a total of
1241 images. The ground truth (GT) segmentations of both
datasets is also provided.

The ASM (mean shape and modes of deformation) is
learned using a leave-one-sequence-out strategy, i.e., to test
on a specific sequence, the model is learned using the remain-
ing sequences. The quantitative evaluation of the segmenta-
tions is performed using two metrics: (i) the Dice coefficient,
dDice, and (ii) the average perpendicular distance, dAV.

In order to evaluate the advantage of the proposed ap-
proach, we compare our results with the segmentations ob-
tained without the information from the motion model, i.e.,
each frame is analyzed independently and without any notion
of temporal dependency.

5. RESULTS

5.1. LV segmentation in CMR sequences

In the case of the LV segmentation, two VFs have to be
learned: one for the contraction phase and one for the dilation
phase. To separate these two phases, the trajectories of the
model points along the sequence are divided in two parts. The
first set of trajectories, associated to the frames f = 1, . . . , fs,
are used to compute the VF of the contraction phase, whereas
the trajectories from frames f = fs, . . . , T are used to com-
pute the VF of the dilation phase. The switching frame fs is
determined as the frame in which the LV area was the small-
est (i.e., corresponding to the end of the contraction phase).
An example of the VFs obtained is shown in Fig. 1.

Table 1 shows the average accuracy across the entire
dataset with both metrics. It is possible to see that there is an
increase in the performance when using information from the
motion model. In particular, this information makes the seg-
mentation algorithm give more consistent results across time
and avoid many of the gross errors obtained when analyzing
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Table 1. Mean (std) accuracy on LV segmentation in CMR
sequences from [6].

Motion Model None VF
dDice 84.2 (9.2) 85.6 (7.4)
dAV 2.5 (1.5) 2.3 (1.2)

Fig. 1. Example of the VFs obtained to represent the motion
of the LV during contraction (left) and dilation (right).

Fig. 2. Examples of LV segmentations with (blue) and with-
out (red) the motion model and comparison with the GT
(green).

each frame independently. Examples of the segmentations
obtained with and without the motion model are shown in
Fig. 2. In the examples shown in the top row, both methods
have a similar performance. However, in the bottom row we
show examples where there is a clear advantage in using the
motion model.

5.2. Lip segmentation in face image sequences

In the lip segmentation problem, we observed the same ad-
vantages discussed above. The accuracy of the segmentation
is increased when the motion model is included, leading to
the overall improvement shown in Table 2. An example of
the VF obtained in a particular sequence is shown in Fig. 3,
where it is possible to see that it represents the motion of the
lips when a person starts smiling. Fig. 4 shows a compari-
son between the segmentation obtained with and without the
motion model. As previously, the top row shows examples in

Table 2. Mean (std) accuracy on lip segmentation in face
image sequences from [16].

Motion Model None VF
dDice 85.1 (6.9) 86.2 (5.6)
dAV 3.1 (1.4) 2.9 (1.1)

Fig. 3. Example of the VF obtained to represent the motion
of the lips.

Fig. 4. Examples of lip segmentations with (blue) and without
(red) the motion model and comparison with the GT (green).

which the performance is similar in both approaches, but the
bottom row shows examples where it was beneficial to use the
VF constraint.

6. CONCLUSIONS

This paper proposes a framework to incorporate motion in-
formation for the segmentation of sequences using an ASM-
based model. In this new framework, the segmentation of
each frame in the sequence occurs simultaneously. The mo-
tion of the object is modeled using a VF, which is learned and
refined online, as the segmentation algorithm iterates. The
VF acts as a regularizer in the estimation of the ASM param-
eters, ensuring that the segmentations obtained are in agree-
ment with the expected motion of the object. The results show
that there is a clear advantage in using this information dur-
ing the segmentation, in particular to guarantee consistency
between segmentations in different frames and by avoid gross
errors in more challenging frames.
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