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Abstract. In many surveillance applications the area of interest is either
wide or includes alleys or corners. Thus, the images from multiple cam-
eras need to be combined and this fact motivates the use of distributed
optimization approaches. This work proposes three distributed estima-
tion approaches to motion field estimation from target trajectory data:
(1) purely decentralized, without communication, (2) distributed estima-
tion based on a cooperative game, and (3) distributed Alternating Direc-
tion Method of Multipliers (ADMM). Their performance in estimating
different classes of motion fields is important to select the best approach
for each application. Experiments using synthetic and real data show
that (a) the cooperative game approach is very susceptible to changes in
motion direction, and (b) the distributed ADMM approach is the most
robust and reliable approach to estimate changing direction motion fields.
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1 Introduction

The estimation of motion fields based on target (e.g., pedestrians or vehicles)
trajectories provides information about the usual motion flow of targets in a
scene [1]. This information can be used in surveillance systems to detect unusual
trajectories [2], plan accessibility conditions in cities [3], or for crowd analysis [4].

In many surveillance applications the area of interest is very large or includes
alleys or corners. Thus, images from a single camera may not cover the entire
area of interest, and the images of two or more cameras need to be combined.
In this case, it is reasonable to assume that there is some overlap among the
images of the different cameras to make sure the whole area is covered. Multi-
camera systems involve several coherence constraints, which motivates the use
of distributed optimization algorithms. While previous studies focused on target
tracking using image features [5, 6], the focus of this work is to ensure coherence
among the motion fields estimated using trajectory data from several cameras.

In distributed optimization algorithms, several agents estimate a set of vari-
ables without the need for a central coordinating agent, nor widespread knowl-
edge of every variable. Distributed algorithms usually involve two steps: the
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communication step and the computation step. In the communication step, each
agent shares its local information (e.g., the new estimates) with its neighbours.
In the computation step, each agent minimizes its local cost function using infor-
mation shared by its neighbours in the prior communication step. Some popular
distributed estimation approaches rely on the Alternating Direction Method of
Multipliers (ADMM) [7], or on game theory [8].

This work focuses on the estimation of the motion field that describes the
observed target trajectories. The proposed distributed estimation approaches
are: (1) a purely decentralized approach, without communication among agents,
(2) a distributed estimation approach based on a cooperative game, and (3)
a distributed version of ADMM. The performance of these approaches in the
estimation of different types of motion fields, using different number of trajec-
tories, and with different overlaps among camera images is important to select
the best approach for each application. Moreover, it should be relevant to set-up
multicamera surveillance systems according to the geometry of the scene, and
to optimize existing set-ups. In this framework, the paper contributions are the
distributed estimation of motion fields using the three proposed methods and
the comparison of their estimation performance considering different classes of
motion fields.

This work is organized as follows. Section 2 describes the dynamic model of
target trajectories, the parametric motion field representation, and the basic cost
function for motion field estimation. Section 3 describes the three proposed dis-
tributed estimation approaches. Section 4 presents experiments using synthetic
and real target trajectory data, followed by some conclusions in Section 5.

2 Dynamic Model and Motion Field Estimation

2.1 Dynamic Model of Target Trajectories

This work assumes that the target trajectories, x = (x1, . . . ,xL), on the full
image plane (i.e., [0, 1]2) are driven by the motion field, T(x), according to

x(t) = x(t− 1) + T(x(t− 1)) + w(t) , (1)

where x ∈ [0, 1]2, T : [0, 1]2 → R2, and w(t) ∼ N (0, σ2 I) is a white random
perturbation.

2.2 Motion Field Representation

The motion field is defined only at the grid nodes of an over-imposed uniform
grid, G = {gi ∈ [0, 1]2, i = 1, . . . , N}, on the full image plane. This grid contains
the open scene and the target trajectories. However, the target trajectories can
be defined in any image coordinate, even if it does not correspond to a grid node
(x /∈ G). Therefore, it is necessary to use a bilinear interpolation to represent



the motion field that drives the trajectories on any coordinate of the full image
plane. The bilinear interpolation of the motion field is given by

T(x) =

N∑
i=1

φi(x) ti , (2)

which is defined in x /∈ G, and where φi(x) are the interpolation coefficients,
and ti the motion field velocity vectors at the grid nodes.

2.3 Motion Field Estimation

The motion field, T, that rules a set of S collected trajectories X = {x1, . . . ,xS}
on the full image plane is the minimizer of the following cost function

f(T) = ‖V −TΦ‖22 + α ‖∆T‖22 + β ‖T‖1 , (3)

where ‖.‖p, p ∈ {1, 2} defines the pth norm of a vector. T ∈ R2×N , V ∈
R2×S (L−1), and Φ ∈ RN×S (L−1) are given by

T =
[
t1 . . . tN

]
, (4)

V =
[
v(2) . . . v(L1) . . . v(2) . . . v(LS)

]
, (5)

Φ =

φ1(1) . . . φ1(L1 − 1) . . . φ1(1) . . . φ1(LS − 1)
...

...
...

...
φN (1) . . . φN (L1 − 1) . . . φN (1) . . . φN (LS − 1)

 , (6)

where matrices V and Φ respectively consider the velocity, v(t) = x(t)−x(t−1),
and the interpolation coefficients per grid node, for each trajectory time point.
In (3), the first term is the usual data fidelity criterion, the second term refers
to smoothness between pairs of neighbour grid nodes, (xg1, xg2) ∈ G, such that
the velocity difference, ∆T = T(xg1) − T(xg2), should be small, and the third
term refers to sparsity of the motion field.

3 Distributed Estimation Approaches

In this work, the full image plane, i.e., [0, 1]2, is composed of several sub-regions,
R = {1, 2, . . . , R}, delimited by the fields of view of the different cameras. Each
camera and the respective field of view corresponds to an estimator agent.

There is a set of estimator agents A = {1, 2, . . . , A}. An agent i ∈ A has at
least one neighbour, j ∈ Ni. Each agent is composed of sub-regions, r ∈ Ri ⊂ R,
that may overlap with neighbour agents. An overlapping sub-region of agent j

with its neighbours i is defined as o ∈ O(j)
i , j ∈ Ni, where O(j)

i is the set of
overlapping sub-regions of agent j with its neighbours i.

Each estimator agent yields its own motion field estimate. A motion field
estimate is the set of estimated velocity vectors sitting on the grid nodes that



belong to the set of sub-regions of the respective agent, i.e., T̄(i) = {tg}, g ∈ Ri,
in reference to the full image coordinate system. Whenever applicable, T̄(i) are

agent-specific motion field estimates, and T
(i)
r , r ∈ Ri are sub-region-specific

motion field estimates.

3.1 Purely Decentralized Estimation

The first approach is a purely decentralized estimation problem in which com-
munication among agents is not allowed. This approach aims to minimize the
local cost functions, fi defined as in (3). The problem to be solved is

minimize
T̄(i)

fi(T̄
(i))

subject to x(i)(t) = x(i)(t− 1) + T̄(i)(x(i)(t− 1)) + w(t) , i ∈ A ,
(7)

for each agent i, where x(i) are the target trajectory data within region Ri.
Because there is no communication among agents, (7) can be solved in parallel.

3.2 Distributed Estimation Based on a Cooperative Game

The second approach is based on a distributed cooperative game, which aims
to minimize a global cost function. There are three actions, i.e. strategies, that
each agent can take to solve the motion field estimation problem. Either keep
the previous strategy and share the last best estimate that yielded the global
minimizer; cooperate and share an altruist estimate that solves its neighbours
motion field estimation problems; or defect and selfishly ask its neighbours to
share what it believes to be the best input for its own motion field estimation
problem. Thus, in this approach, each agent estimates its motion field, T̄(i),

assuming the neighbour agents share either (a) the last best estimate, T̄
(j)
b ; (b)

the altruist estimate, T̄
(j)
a ; or (c) the selfish estimate, T̄

(j)
∗ [9].

The cooperative game algorithm has 2 computation instances, that can be
done in parallel, and 2 communication instances. Each agent computes local
motion field estimates and cost function values, and shares local motion field
estimates with its neighbours and local cost function values with all agents. The
problem to be solved is

minimize
T̄(1),...,T̄(A)

A∑
i=1

fi
(
T̄(i)|v(i)

r , T(j)
o

)
subject to x(i)(t) = x(i)(t− 1) + T̄(i)(x(i)(t− 1)) + w(t), i ∈ A ,

v(i)
r (t) = x(i)

r (t)− x(i)
r (t− 1) , r ∈ Ri \ O(i)

j ,

T(j)
o ∈ {T

(j)
b , T

(j)
∗ , T(j)

a }, o ∈ O
(j)
i , j ∈ Ni ,

(8)

where x
(i)
r and v

(i)
r are the target trajectory data and respective velocities within

agent i sub-region r ∈ Ri\O(i)
j , j ∈ Ni (where A\B represents the set of elements



of set A that are not in set B). In iteration k, each agent i computes its selfish
motion field estimate according to

T̄
(i),k+1
∗ = arg min

T̄(i)

fi(T̄
(i)|v(i)

r ,T
(j),k
b ) , (9)

which is computed given local data, v
(i)
r , r ∈ Ri \O(i)

j , and the neighbours best
motion field estimates from the previous iteration regarding the overlapping

regions, T
(j),k
b . Each agent i also computes the altruist motion field estimate it

wishes to receive from its neighbours according to

T̄(j),k+1
a = arg min

T̄(j)

fi(T̄
(j)|v(i)

o ,T
(i),k+1
∗ ) , (10)

which is computed given the data from the overlapping regions, v
(i)
o , o ∈ O(j)

i , j ∈
Ni, and its new selfish motion field estimate from its local sub-region, T

(i),k+1
∗ .

Then, the agents share their new estimates with their neighbours. This
way, each agent can compute its local cost function, defined as in (3), where

V(i) =
[
v

(i)
r

{
T

(j)
o

}
j∈Ni

]
considers the neighbours possible new estimates re-

garding the overlapping regions. The updated local cost function values are
also shared. Finally, the decision about which estimate each agent should se-
lect is made considering the sums of the local cost functions over all agents,

F =
∑A
i=1 fi

(
T̄(i)|v(i)

r ,T
(j)
o

)
, for all the possible combinations of pairs of neigh-

bour agents estimates,
(
T̄(i), {T(j)

o }j∈Ni

)
∈
{
T

(·)
b , T

(·)
∗ , T

(·)
a

}|Ni|+1
.

3.3 Distributed Estimation Based on ADMM

The third approach is based on the Alternating Direction Method of Multipliers
(ADMM) [7]. This work follows the distributed ADMM algorithm [10], adapted
to the motion field estimation problem. Each agent i only knows its own cost
function, fi defined as in (3), and the shared motion field estimates from its

neighbours, T
(j)
o , o ∈ O(j)

i , j ∈ Ni. The problem to be solved is

minimize
T̄(1),...,T̄(A)

A∑
i=1

fi(T̄
(i))

subject to T(i)
o = T(j)

o , o ∈ O(j)
i , j ∈ Ni ,

x(i)(t) = x(i)(t− 1) + T̄(i)(x(i)(t− 1)) + w(t) , i ∈ A ,

(11)

where x(i) are the target trajectory data within each agent region Ri. The con-
straints translate in each agent i having a copy of the motion field estimates at
its overlapping regions.

The current problem formulation is not yet a distributed optimization prob-
lem. A colouring scheme similar to [10] allows the formulation of a distributed



version of ADMM by defining

T̃c =

{
{T̄(i)}i∈A∩Cc , if j /∈ Ni , (i, j) ∈ A
∅, if j ∈ Ni , (i, j) ∈ A

, (12)

where T̃c is the set of T̄(i) from the agents with colour c. This colouring scheme
applied to the constraints of (11), allows their separation into C coupled con-
straints, such that it is rewritten as

minimize
T̃1,...,T̃C

∑
i∈C1

fi(T̄
(i)) + · · ·+

∑
i∈CC

fi(T̄
(i))

subject to M̃1 T̃1 + · · ·+ M̃C T̃C = 0 ,

x(i)(t) = x(i)(t− 1) + T̄(i)(x(i)(t− 1)) + w(t) , i ∈ A ,

(13)

where M̃c is the diagonal concatenation of the transpose of the neighbour-
overlap (i.e., node-arc) incidence matrices Mc

1,Mc
2, . . . ,Mc

O, over the set of

overlapping sub-regions o ∈ O(j)
i , for all pairs of neighbour agents. This prob-

lem can be solved using the multi-block/distributed ADMM [10], where λijo
is the dual variable associated to T

(i)
o = T

(j)
o , o ∈ O(j)

i , j ∈ Ni, and γ =∑
i∈Cc

∑
j∈Ni

λijo . The augmented Lagrangian of (13) is

Lρ(T̃1, . . . , T̃c; γ) =

C∑
c=1

∑
i∈Cc

fi(T̃
(i)) +

C∑
c=1

γ> M̃c T̃c +
ρ

2

∥∥∥ C∑
c=1

M̃c T̃c
∥∥∥2

, (14)

with penalty parameter, ρ > 0. The problem to be solved consists of a sequence
of C sub-problems, obtained by minimizing (14) with respect to each block T̃c,
and of updates of the dual variable γ. The resulting Distributed-ADMM (D-
ADMM) algorithm updates are

T̃1, k+1 = arg min
T̃1

∑
i∈C1

fi(T̄
(i)) + γk>M̃1 T̃1+

ρ

2

∥∥∥M̃1 T̃1+

C∑
c=2

M̃c T̃c,k
∥∥∥2

, (15)

...

T̃C, k+1 = arg min
T̃C

∑
i∈CC

fi(T̄
(i)) + γk>M̃C T̃C+

ρ

2

∥∥∥C−1∑
c=1

M̃c T̃c,k+1+ M̃C T̃C
∥∥∥2

,

(16)

γk+1 = γk + ρ

C∑
c=1

M̃c T̃c,k+1 . (17)

There are (C − 1) + 1 communication instances in each iteration: (a) the agents
of colour c share their new estimates with neighbour agents of colour c + 1,
and (b) all neighbour agents get the new estimates and the updated Lagrange
multipliers. Each update T̃c can be decomposed into |Cc| problems that can be
solved in parallel, given that agents of the same colour cannot be neighbours.



4 Experimental Results

This section presents motion field estimation experiments, on the image plane,
using synthetic and real trajectory data and the three proposed estimation ap-
proaches described above. These experiments consider only 2 estimator agents.

Motion field estimation performance is assessed both regarding the magni-
tude and the relative angle of the estimated pairs of vectors via a vector field
evaluation (VFE) diagram [11], which considers the vector similarity coefficient
(Rv) and the vector root mean square length (RMSL) defined as,

Rv =
1

N

N∑
i=1

A∗i ·B∗i , (18)

RMSL = L2
V =

1

N

N∑
i=1

‖Vi‖22 , (19)

where “·” is the inner product between two normalized vector fields A∗i and
B∗i , with V∗i = Vi

LV
given Vi = (xvi, yvi), i = 1, 2, . . . , N , and ‖.‖2 represents

the l2-norm of a vector. These metrics respectively assess the mean of the inner
product of normalized vector pairs (18), and the systematic difference in the
mean vector length (19). To facilitate interpretation of the results, RMSL is
normalized with respect to LV , where V is either the known generating motion
field (in the synthetic case) or the full image estimated motion field (in the
real case) when the focus is accuracy assessment, or the estimated motion field
from agent 1 when the focus is consensus assessment. Thus, in the figures below,
values closer to the black circumference represent better performance.

The values of the cost function parameters α and β on (3) were the minimizers
of the motion field estimation problem considering the full image where ρ = 0.
Then, the D-ADMM penalty parameter, ρ, was selected to yield a good trade-off
between accuracy and consensus among neighbour agent estimates. The selected
parameter values were α = 0.2, β = 0.2, and ρ = 1. The noise variance of the
synthetic data was σ2 = 10−4. Motion field estimation depended on the number
of available trajectories (S = 5, 80), and on the width of the overlapping region
(|o| = 1, 3, 5, 7) within an over-imposed grid of 11× 11 nodes.

4.1 Synthetic Target Trajectory Data

Synthetic data consisted on target trajectories of length L generated with differ-
ent types of motion fields: (a) a circular motion field (changing motion direction);
(b) a V-shaped upwards motion field (composed of two upwards diagonal motion
fields – to the left or to the right).

Regarding the different types of motion field, we expected the circular motion
field to highlight the robustness of the D-ADMM approach in estimating motion
fields with changing direction within the overlapping region, and the suscepti-
bility of the Cooperative game to local optima. Moreover, because the V-shape
upwards motion field was created to mimic the generating motion field of the



real target trajectory data, we expected it to provide ground truth results for
comparison. Regarding the conditions for motion field estimation, we expected
more available trajectories to improve accuracy and consensus error of the esti-
mates. We also expected D-ADMM to be more robust to changes in the width
of the overlapping region.

Circular motion field. The top row of Figure 1 shows that higher |o| yields
higher angle similarity between pairs of vectors for all approaches. The Coop-
erative game is the approach that is most affected by changes in |o|. The lack
of consensus between neighbour agent estimates is mostly due to differences in
the relative angle of the estimated vectors (see Figure 2). This effect is due to
changes in the direction of the generating motion field in the overlapping region,
which are not easy to extrapolate between neighbour agents. The bottom row of
Figure 1 shows that the Decentralized and the D-ADMM approaches, yield more
accurate estimates than the Cooperative game approach. This effect is observed
in the magnitude of the estimated vectors.

Moreover, fewer available trajectories also yield less accurate estimates for
the Cooperative game and the D-ADMM approaches (see Figure 2). Regions
where there are no available trajectories are the most affected, as expected.

V-shaped upwards motion field. The zoom in panels of Figure 3 show that
medium |o| yields better matching and more accurate vector field estimates for
all approaches. The D-ADMM approach is the least affected by changes in |o|,
and the one that yields more accurate vector field estimates (see Figure 4). This
experiment, with fixed S = 50, serves as ground truth for comparison with the
real data experiment.

4.2 Real Target Trajectory Data

The video signal was acquired using a Sony HDR-CX260 video camera with
a resolution of 8.9 megapixels per frame and working at a frame rate of 30
frames per second. The targets trajectories were extracted using a tracking algo-
rithm [12]. The trajectories were then sub-sampled at a frame rate of 1 frame per
second, and the association errors were corrected. There were S = 47 available
trajectories (see bottom-right panel of Figure 4).

V-shaped upwards motion field. Figure 5 shows that medium to high |o|
yields better matching and more accurate vector field estimates for all ap-
proaches. The D-ADMM approach is the least affected by changes in |o|, re-
garding consensus of the estimated vector pairs, and the one that yields more
accurate estimates.

In comparison with the V-shape upwards motion field estimation using syn-
thetic data, these results yield similar trends in consensus and accuracy assess-
ment. Regarding the consensus, the effect of |o| is larger for the estimated vector
length of the real data example than in the synthetic data example, especially
for the Decentralized and the Cooperative game approaches. Regarding the ac-
curacy, the effect of |o| is larger for both the relative angle and vector length of
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Fig. 1. Vector field diagrams to assess consensus between estimated motion fields of
neighbouring agents (top row) and estimation accuracy with reference to the circular
motion field (bottom row). The different colours represent each distributed estima-
tion approach. The columns represent different available trajectories (S = 80, 5). The
symbols represent several widths of the overlapping region (|o| = 1, 3, 5, 7).
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Fig. 3. Vector field diagrams to assess consensus between estimated motion fields of
neighbouring agents (top row) and estimation accuracy with reference to the V-shaped
upwards motion field (bottom row). The different colours represent each distributed
estimation approach. The columns represent different available trajectories (S = 80, 5).
The symbols represent several widths of the overlapping region (|o| = 1, 3, 5, 7).
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D-ADMM estimation Fig. 4. V-shaped upwards motion field
results (thick arrows). Black thin arrows
are the ground truth. Below : the real data
images with over-imposed trajectories.
Left : V-shaped upwards motion field es-
timates for the D-ADMM approach with
|o| = 3, using synthetic (top) and real
(bottom) trajectory data. There are two
estimator agents: one from the bottom
until the upper horizontal line, and the
other from the lower horizontal line until
the top.
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Fig. 5. Vector field diagrams to assess consensus between estimated motion fields of
neighbouring agents (top row) and estimation accuracy with reference to the V-shaped
upwards motion field (bottom row). The different colours represent each distributed
estimation approach. The columns represent different available trajectories (S = 80, 5).
The symbols represent several widths of the overlapping region (|o| = 1, 3, 5, 7).

the real data example than of the synthetic data example. This difference can
be due to using low σ2 for generating synthetic data, when compared to the real
data.

5 Conclusions

This work proposes three distributed approaches to estimate motion fields from
target (e.g., pedestrians or vehicles) trajectories in an open scene. The motion
fields are assumed to rule the target trajectories [1]. This work focuses on surveil-
lance scenarios of very large spaces or including alleys or corners, in which cases
the images from a single camera are insufficient to cover the whole area of in-
terest. The first approach considered was a purely decentralized one without
communication among estimator agents. The second approach was a distributed
estimation approach based on a Cooperative game. In this scenario, the agents
estimates do not necessarily converge to the optimum. The third approach was
a distributed version of the ADMM algorithm. In this scenario, the goals are
to obtain both accurate estimates and consensus among neighbour agents esti-
mates.

The experiments using synthetic target trajectory data show that the D-
ADMM approach is the most robust and reliable approach to estimate generating
motion fields with changes in direction within the overlapping regions of neigh-
bour agents because only the D-ADMM approach considers a flexible equality
constraint among neighbour agents estimates. Contrarily, the Cooperative game



approach is very susceptible to changes in motion direction in the overlapping
region of neighbour agents.

Regarding the number of available trajectories, the experiments show that
fewer available trajectories hamper motion field estimation, as expected. Re-
garding the overlapping region, the D-ADMM approach is the most robust to
different overlapping widths. Finally, the results on the V-shaped upwards mo-
tion field estimation showed that, from the proposed approaches, the D-ADMM
yields more accurate and consensual estimates.
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tributed MPC based on a team game. In Maestre, J.M., Negenborn, R.R., eds.:
Distributed Model Predictive Control Made Easy. Springer Publishing Company,
Incorporated (2013) 407–419

10. Mota, J.F., Xavier, J.M., Aguiar, P.M., Puschel, M.: Distributed Optimization with
Local Domains: Applications in MPC and Network Flows. IEEE Transactions on
Automatic Control 60(7) (2015) 2004–2009

11. Xu, Z., Hou, Z., Han, Y., Guo, W.: A diagram for evaluating multiple aspects of
model performance in simulating vector fields. Geoscientific Model Development
9(12) (2016) 4365–4380

12. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence
for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell. 23(1) (2001)
54–72


