Shape-based Trajectory Clustering

Telmo J. P. Pires¹, Mário A. T. Figueiredo¹

¹Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de Lisboa, Portugal
{telmopires, mario.figueiredo}@tecnico.ulisboa.pt

Keywords: Unsupervised Learning, Directional Statistics, k-means, EM Algorithm, Nonnegative Matrix Factorization, Trajectory Clustering.

Abstract: Automatic trajectory classification has countless applications, ranging from the natural sciences, such as zoology and meteorology, to urban planning, sports analysis, and surveillance, and has generated great research interest. This paper proposes and evaluates three new methods for trajectory clustering, strictly based on the trajectory shapes, thus invariant under changes in spatial position and scale (and, optionally, orientation). To extract shape information, the trajectories are first uniformly resampled using splines, and then described by the sequence of tangent angles at the resampled points. Dealing with angular data is challenging, namely due to its periodic nature, which needs to be taken into account when designing any clustering technique. In this context, we propose three methods: a variant of the k-means algorithm, based on a dissimilarity measure that is adequate for angular data; a finite mixture of multivariate V on Mises distributions, which is fitted using an EM algorithm; sparse nonnegative matrix factorization, using complex representation of the angular data. Methods for the automatic selection of the number of clusters are also introduced. Finally, these techniques are tested and compared on both real and synthetic data, demonstrating their viability.

1 INTRODUCTION

In recent years, an exponential growth in the amount of available data for analysis has been experienced in most fields of knowledge. These huge data quantities, far beyond the scope of manual analysis, have stimulated a growing interest in automated methods. Trajectory data is no exception, thanks to the growing number of tracking devices, including GPS receivers, RFID tags, tracking cameras, and even cell phone call traces (Becker et al., 2011). This has led to a growing interest in automatic trajectory clustering, as a means to perform activity recognition and classification. The study of traffic patterns, human mobility, and even air pollution exposure of populations (Demirbas et al., 2009); the detection of common behaviors in meteorological phenomena (Elsner, 2003); animal movement analysis (Brillinger et al., 2004); automated sports analysis; and automatic surveillance are just a few of the applications of these techniques.

Besides being influenced by many factors not directly related to the phenomenon in study, such as seasonality, in the case of hurricane tracks, trajectories introduce many challenges by being represented by a sequence of space-time data points:

1. Differences in the speed of tracked objects cause misalignments in the trajectories, as illustrated in Figure 1(a). Varying sampling rates have a similar effect.
2. Similar trajectories may have a different number of points, as illustrated in Figure 1(b).
3. In some applications, trajectories differing only in a translation (and possibly orientation) should be treated as being similar.
4. Besides being affected by noise, trajectories can also have big, but sparse errors, called outliers.

(a) Objects moving at different speeds, leading to misaligned, but similar tracks.
(b) Similar tracks with a different number of points.

Figure 1: Some of the challenges faced with trajectory data.

In this paper, a novel approach is introduced for
clustering 2D trajectories, based exclusively on their shapes. This means trajectories are clustered independently of their location and of a global change of scale. Optionally, it is also possible to have orientation invariance.

2 PREVIOUS WORKS

Other authors have studied the problem of trajectory clustering. Their approaches can be divided into two main groups: the distance metric approach and the model based (generative) approach.

2.1 Distance Metric Approaches

These approaches aim to find (dis)similarity measures between trajectories, and then cluster them based on those measures. For example, the Euclidean distance is used in (Fu et al., 2005) and (Hu et al., 2007), which requires trajectories with the same number of points and uniformly sampled, so a preprocessing step is needed.

To avoid the need for uniformly sampled trajectories, methods that try to find an optimal alignment between time-varying sequences, such as dynamic time warping (Pierobon et al., 2005) and longest common subsequence (Vlachos et al., 2002) have been successfully applied to trajectory clustering.

Another important method is TRACLUS (Lee et al., 2007). This method allows sub-trajectory clustering, instead of clustering the trajectories as a whole, which may be useful in some applications. This method works by partitioning trajectories in sub-trjectories, and then performing density-based clustering, using a specially defined metric.

2.2 Model-based Approaches

Model-based methods, on the other hand, attempt to find a model capable of describing the whole dataset, instead of directly comparing trajectories.

In (Gaffney and Smyth, 1999), trajectories are represented as polynomial functions of time, and the parameters of these functions are modeled as a finite mixture. A similar approach is used in (Wei et al., 2011), but trajectories are modeled using B-splines.

Another common approach to trajectory clustering models trajectories as vector fields. Some of these works are (Ferreira et al., 2012), in which a variant of k-means for vector fields was proposed, and (Nascimento et al., 2013), where a mixture of vector fields model allowing transitions between fields was proposed.

3 DATA PRE-PROCESSING

Trajectories are usually given as sequences of points, so a pre-processing step is needed in order to capture their shapes. In our case, shape is characterized as a sequence of angles: the angles of the tangents to the trajectory, sampled at uniformly spaced points, as illustrated in Figure 2. As seen below, the sequence of angles is invariant under changes in location and scale of the trajectory.

![Uniformly resampled trajectory and respective tangents. Shape is characterized by the angles of the tangent vectors w.r.t. the horizontal.](image)

This pre-processing step solves the problem of trajectories having different lengths and the problem of misalignment, by assuring all trajectories are similarly sampled. In this work, the resampling is performed using cubic splines, fitted separately for both the x and y coordinates. In order to fit splines, an independent variable is needed, and it must be the same for each coordinate. A natural choice is time. But many datasets only have spatial information. In these cases, the independent variable must be estimated from data, using

\[\tau_{p+1} = \tau_p + \sqrt{(x_{p+1} - x_p)^2 + (y_{p+1} - y_p)^2}, \]

with \(\tau_1 = 0 \), where we assume that the speed is uniform.

To reduce the influence of noise, we use smoothing splines, which are fitted by minimizing the cost (De Boor, 2001)

\[p \sum_{i=1}^{m} w_i (x(\tau_i) - f(\tau_i))^2 + (1 - p) \int (D^2 f(\tau))^2 d\tau, \]

where \(p \) is a parameter that controls the trade-off between smoothness and accuracy, \(w_i \) are weights we set to 1, and \(D^2 f(\tau) \) is the second derivative of function \(f \). Many implementations of these algorithms are readily available, such as the Curve Fitting toolbox in MATLAB, which was used in this work.
For a uniform resampling to \(d \) points, splines should be evaluated at:
\[
\tau_i = \tau_1 + \frac{\tau_m - \tau_1}{d-1} (i-1), \quad i = 1, \ldots, d,
\]
where \(\tau_1 \) and \(\tau_m \) are the \(\tau \)'s calculated according to Eq. (1).

The angles of the tangents are obtained by
\[
\omega_p^{(i)} = \text{atan2}(D f_y^{(i)}(\tau_p), D f_x^{(i)}(\tau_p)), \quad \omega_p^{(i)} \in [-\pi, \pi],
\]
where \(\text{atan2}(\cdot) \) is the 4-quadrant inverse tangent function and \(D f_y^{(i)}(\tau_p) \) and \(D f_x^{(i)}(\tau_p) \) refer to the first derivatives of the fitted splines, evaluated at \(\tau_p \). This way, we get a \(d \)-dimensional vector \(\omega^{(i)} \) describing the trajectory.

Besides being invariant to spatial translation and scaling, another interesting property of this formulation is that it allows trajectories to be invariant to rotation with a small modification: by working with the differences between consecutive angles, instead of the angles themselves.

3.1 Choosing Parameters \(p \) and \(d \)

The pre-processing step requires two input parameters: \(p \) and \(d \). For choosing \(p \), no systematic procedure is available, and so we try several values until a good one is found. The choice of \(d \), on the other hand, can be automated. This is done by finding the smallest number of points that can accurately describe a trajectory, called the characteristic points, which provides a lower bound for \(d \), as the characteristic points may not be equally spaced. In order to fully characterize the trajectories, we use \(d \) approximately 5 times the maximum number of characteristic points found in the given dataset.

In (Lee et al., 2007), a method for finding the characteristic points of a trajectory was proposed, which uses the minimum description length (MDL) principle. The idea is to loop through all the points in a trajectory and to compute, \(\text{MDL}_{\text{par}}(p_{\text{start}}, p_{\text{curr}}) \), the MDL cost assuming \(p_{\text{start}} \) and \(p_{\text{curr}} \) are the only characteristic points in the interval \(p_{\text{start}}, \ldots, p_{\text{curr}} \), and \(\text{MDL}_{\text{nopar}}(p_{\text{start}}, p_{\text{curr}}) \), the MDL cost preserving the original trajectory. If \(\text{MDL}_{\text{par}} \leq \text{MDL}_{\text{nopar}} \), then choosing \(p_{\text{curr}} \) as a characteristic point makes the MDL cost lower. This procedure is shown in algorithm 1.

The MDL cost, or MDL length, of a given partitioning consists of two components, \(L(H) \) and \(L(D|H) \), given by
\[
L(H) = \sum_{j=1}^{par-1} \log_2(\text{length}(p_c, p_{\text{curr}})),
\]
\[
L(D|H) = \sum_{j=1}^{par-1} \sum_{k=j}^{par-1} \left[\log_2(d_\parallel(p_{\text{start}}, p_{\text{curr}})) + \log_2(d_\perp(p_{\text{start}}, p_{\text{curr}})) \right],
\]
where \(\text{length}(\cdot) \) is the Euclidean length of a segment, \(d_\parallel(p_a, p_b) \) is the segment defined by points \(p_a \) and \(p_b \) and \(d_\perp(p_a, p_b) \) are the perpendicular and angular distances, defined as:
\[
d_\parallel(s e_i, s e_j) = \frac{p_{\text{start}}^2 + p_{\text{end}}^2}{l_{\parallel} + l_{\perp}}
\]
\[
d_\perp(s e_i, s e_j) = \begin{cases}
\text{length}(s e_i) \times \sin \theta & 0 \leq \theta < \pi/2 \\
\text{length}(s e_j), & \pi/2 \leq \theta \leq \pi
\end{cases}
\]
where \(l_{\parallel} \) and \(l_{\perp} \) are the distances illustrated in Figure 3.

To reduce the influence of noise in the procedure above, we only apply it to estimate \(d \) after having smoothed the trajectories with the \(p \) given by the user and using \(d \) twice the length of a trajectory, to assure its shape is well captured.

From this point on, whenever we mention trajectories we mean the trajectories after pre-processing, i.e., the set \(\{\omega_1^{(i)}, \ldots, \omega_m^{(i)}\} \), where each trajectory \(\omega^{(i)} \) is a sequence of angles \(\omega_1^{(i)}, \ldots, \omega_d^{(i)} \).

Algorithm 1: Approximate Trajectory Partitioning.

Input: A trajectory, as a sequence of points, \(p_1, \ldots, p_m \)

Output: \(N_c \), the number of characteristic points

1. \(N_c = 1 \) // Add the starting point
2. \(\text{start_index} = 1 \)
3. \(\text{length} = 1 \)
4. while \(\text{start_index} < m \)
5. \(\text{curr_index} = \text{start_index} + \text{length} \)
6. \(\text{cost_par} = \text{MDL}_{\text{par}}(p_{\text{start}}, p_{\text{curr}}) \)
7. \(\text{cost_nopar} = \text{MDL}_{\text{nopar}}(p_{\text{start}}, p_{\text{curr}}) \)
8. if \(\text{cost_par} > \text{cost_nopar} \)
9. \(\text{cost_nopar} = \text{MDL}_{\text{nopar}}(p_{\text{start}}, p_{\text{curr}}) \)
10. \(\text{cost_par} = \text{MDL}_{\text{par}}(p_{\text{start}}, p_{\text{curr}}) \)
11. \(\text{start_index} = \text{curr_index} - 1 \)
12. \(\text{length} = 1 \)
13. else
14. \(\text{length} = \text{length} + 1 \)
15. end
16. \(N_c = N_c + 1 \) // Add the ending point

4 K-MEANS

4.1 Introduction

The k-means algorithm is one of the most famous clustering techniques (Jain, 2010), despite offering no global optimality guarantees. Arguably, its popularity is due to the fact that it is a very simple and fast approach to clustering.

Given a set of points and the number of desired clusters, k-means stores a set of k centroids, \(\mu_1, \ldots, \mu_k \), and alternates between two steps: assignment and centroid update.

1. Assignment step: set \(c(i) := \arg\min_j \| x(i) - \mu_j \| \) for all \(i \), where \(c(i) = j \) if the \(i \)th input sample belongs to cluster \(j \). In other words, assign each sample to the closest centroid. Possible ties are broken by some arbitrary rule.

2. Centroid update step: set \(\mu_j := \frac{\sum_{m=1}^m 1(c(i) = j)x(i)}{\sum_{m=1}^m 1(c(i) = j)} \) for all \(j \), where \(1\{c(i) = j\} \) is an indicator function, taking the value 1 if \(c(i) = j \) and 0 otherwise, that is, move each centroid to the mean of the points assigned to it.

Originally, k-means was developed to work with Euclidean distances, although many other versions have been proposed in the literature. In our case, we need to adapt it to handle the sequences of angles that describe each trajectory.

4.2 Measuring Distances

A classical measure of the distance between two angles is the length of the chord between them, as illustrated in Figure 4. It can be shown that, if the difference between two angles is \(\Delta \omega \), the length of the corresponding chord (red line in Fig. 4) is given by \(2 \sin \frac{\Delta \omega}{2} \). Since \(\sin \) is an odd function, it returns a negative length if the angular difference is negative.

This is unintended, so we take the squares,

\[
\left(2 \sin \frac{\Delta \omega}{2} \right)^2 = 2 \left(1 - \cos \Delta \omega \right) = 1 - \cos \Delta \omega,
\]

where the constant “2” is irrelevant and dropped, since this function will only be used to compare distances. Thus, the final metric is \(1 - \cos \Delta \omega \). The extension of this expression to \(d \)-dimensional data is trivial:

\[
D^2(\omega^{(1)}, \omega^{(2)}) = \sum_{p=1}^d \left(1 - \cos(\omega_p^{(1)} - \omega_p^{(2)}) \right),
\]

where the \(\omega^{(i)} \)'s are angular vectors and \(\omega_p^{(i)} \) is the \(p \)th component of vector \(i \). The notation \(D^2 \) is used to indicate this metric is a squared value (of the chord).

4.3 Updating the Centroids

The arithmetic mean cannot be used for updating the coordinates of a centroid, as it does not work well with circular data. In this work, we define the mean of a sequence of angles \(\{\omega^{(1)}, \ldots, \omega^{(m)}\} \) as:

\[
\bar{\omega} = \arctan2 \left(\frac{\frac{1}{m} \sum_{i=1}^m \sin \omega^{(i)}}{\frac{1}{m} \sum_{i=1}^m \cos \omega^{(i)}} \right)
\]

The extension of this result to vectorial data is straightforward: the mean of an angular vector is the angular mean of each of its coordinates.

4.4 Algorithm Description

For the algorithm to be completely described, initialization and stopping criteria must be specified. Regarding initialization, k-means++ (Arthur and Vassilvitskii, 2007) is used, but using Eq. (3) instead of the Euclidean distance. The termination condition is when the assignments no longer change between consecutive iterations.
Algorithm 2: circular k – means algorithm.

Input: Data set, \(\{\omega^{(1)}, \ldots, \omega^{(m)}\} \), and number of clusters, \(k \)

Output: Cluster centroids, \(\mu_1, \ldots, \mu_k \), and cluster assignments, \(c^{(1)}, \ldots, c^{(m)} \)

1. Initialize \(k \) cluster centroids: \(\mu_1, \ldots, \mu_k \)

2. repeat
 3. foreach \(i \) do
 4. Set \(c^{(i)} := \arg \min_j D(\omega^{(i)}, \mu_j) \)
 5. // Assign centroids to samples
 6. foreach \(j \) do
 7. Set \(\mu_j = \text{atan2} \left(\frac{\sum_{i=1}^{m} z^{(i)} \omega_j(i) \cos \omega_j(i)}{\sum_{i=1}^{m} z^{(i)} \omega_j(i) \sin \omega_j(i)} \right) \)
 8. for \(p = 1, \ldots, d \) // Update each coordinate of the centroids
 end
3. until convergence

4.5 Model Selection

In real-world situations, the number of clusters, \(k \), is not given, and it is necessary to estimate it. One common choice used in conjunction with k-means is the so-called elbow method. This method involves computing a distortion function for several values of \(k \) and finding an elbow, that is, a point after which the rate of decrease is significantly smaller. The distortion function is just the sum of the distances of each data sample to the respective centroid. For circular k-means, this is given by

\[
J(\omega^{(1)}, \ldots, \omega^{(m)}, c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_k) = \sum_{i=1}^{m} \sum_{p=1}^{d} \left(1 - \cos(\omega_p(i) - \mu_p(j)) \right).
\]

5 FINITE MIXTURE MODELS

Given a set of \(d \)-dimensional trajectories, \(\{\omega^{(1)}, \ldots, \omega^{(m)}\} \), which is to be partitioned into \(k \) clusters, we can model this set as i.i.d. samples of a finite mixture,

\[
p(\omega^{(i)}| \theta) = \sum_{j=1}^{k} \alpha_j p(\omega^{(i)}| z^{(i)} = j, \theta),
\]

where the \(z^{(i)} \)'s are latent variables, with \(z^{(i)} = j \) meaning the \(i \)th trajectory belongs to cluster \(j \). Each parameter \(\alpha_j = p(z^{(i)} = j) \) is the mixing probability, and \(\theta \) a set of parameters characterizing the distributions. The likelihood function of the given set of trajectories can be written as

\[
p(\omega^{(1)}, \ldots, \omega^{(m)}| \alpha, \theta) = \prod_{i=1}^{m} p(\omega^{(i)}| \alpha, \theta)
\]

\[
= \prod_{i=1}^{m} \sum_{j=1}^{k} \alpha_j p(\omega^{(i)}| z^{(i)} = j, \theta).
\]

A popular distribution for modeling circular data is the Von Mises distribution, making it a natural choice for our mixture model. This way, the \(p(\omega^{(i)}| z^{(i)} = j, \theta) \) are Von Mises pdf’s. The pdf of a multivariate Von Mises is (Mardia et al., 2008)

\[
p(\omega, \mu, \kappa, \Lambda) = T(\kappa, \Lambda)^{-1} \exp \left(\kappa^T c(\omega, \mu) \right) + \frac{1}{2^d} (\omega, \mu)^T \Lambda s(\omega, \mu),
\]

where

\[
c(\omega, \mu)^T = [\cos(\omega_1 - \mu_1), \ldots, \cos(\omega_d - \mu_d)],
\]

\[
s(\omega, \mu)^T = [\sin(\omega_1 - \mu_1), \ldots, \sin(\omega_d - \mu_d)],
\]

and \(T(\kappa, \Lambda)^{-1} \) is a normalizing constant, which is unknown in explicit form for \(d > 2 \). Parameters \(\mu \) and \(\kappa \) are the \(d \)-dimensional mean and concentration of the distribution; \(\Lambda \) is a \(d \times d \) symmetric matrix (with zeros in the diagonal), where entry \(\Lambda_{ij} \) measures the dependence between \(\omega_i \) and \(\omega_j \). Matrix \(\Lambda \) can be seen as the analogous to the covariance matrix in a Gaussian distribution.

The usual choice for obtaining maximum likelihood (ML) or maximum a posteriori (MAP) estimates of the mixture parameters is the EM algorithm (Dempster et al., 1977), which is an iterative procedure with two steps:

- **E-step:** Set \(w_j^{(i)} = p(z^{(i)} = j| \omega^{(i)}; \alpha, M, K, L) \), where \(M \), \(K \), and \(L \) are used in place of \(\{\mu_1, \ldots, \mu_k\}, \{\kappa_1, \ldots, \kappa_k\}, \) and \(\{\Lambda_1, \ldots, \Lambda_k\} \), respectively.

 Using Bayes’ Theorem, the E-step reduces to computing, for every \(i \) and \(j \),

\[
w_j^{(i)} = \frac{\alpha_j p(\omega^{(i)}| z^{(i)} = j; \mu_j, \kappa_j, \Lambda_j)}{\sum_{k=1}^{k} \alpha_k p(\omega^{(i)}| z^{(i)} = k; \mu_k, \kappa_k, \Lambda_k)},
\]

where \(p(\omega^{(i)}| z^{(i)} = j; \mu_j, \kappa_j, \Lambda_j) \) is a multivariate Von Mises pdf.

- **M-step:** this step requires maximizing the following function, with respect to the parameters of the model:

\[
\sum_{i=1}^{m} \sum_{j=1}^{k} w_j^{(i)} \ln \frac{p(\omega^{(i)}| z^{(i)} = j; \mu_j, \kappa_j, \Lambda_j) p(z^{(i)} = j; \alpha)}{w_j^{(i)}}.
\]
The multivariate Von Mises pdf depends on $T(\kappa, \mathbf{A}_j)$, an unknown constant, which presents a challenge for ML or MAP estimation. To avoid having to use special numeric procedures, we assume that the components of the $\omega^{(i)}$ vector are independent of the others, which makes the multivariate Von Mises distribution equivalent to the product of d (the number of features) univariate Von Mises distributions:

$$p(\omega^{(i)} | z^{(i)} = j; \mu_j, \kappa_j, \mathbf{A}_j) = \prod_{p=1}^{d} \frac{e^{\kappa_j p \cos(\omega_p^{(i)} - \mu_j^{(i)})}}{2\pi I_0(\kappa_j)} ,$$

where μ_j^p, κ_j^p, and $\omega_j^{(i)}$ refer to the pth component of vectors μ_j, κ_j, and $\omega^{(i)}$, respectively, and I_0 is the modified Bessel function of first kind and order 0.

Using ML estimation, the update equations for μ_j^p (the qth component of μ_j), α_j and κ_j^q are as follows:

$$\mu_j^p = \text{atan2} \left(\frac{\sum_{i=1}^{m} w_j^{(i)} \sin \omega_j^{(i)}}{\sum_{i=1}^{m} w_j^{(i)} \cos \omega_j^{(i)}} \right) ,$$

$$\alpha_j = \frac{1}{m} \sum_{i=1}^{m} w_j^{(i)} ,$$

$$\kappa_j^q = A_1^{-1} \left(\frac{\sum_{i=1}^{m} w_j^{(i)} \cos(\omega_j^{(i)} - \mu_j^{(i)})}{\sum_{i=1}^{m} w_j^{(i)}} \right) ,$$

where $A_1(\cdot) = \frac{\frac{\partial}{\partial \kappa} I_0(\kappa)}{I_0(\kappa)}$, with I_1 and I_0 denoting the modified Bessel functions of the first kind and orders 1 and 0, respectively.

In some cases, it is of interest to restrict κ_j, in order to avoid overfitting small datasets. We refer to this variant as a constrained Von Mises mixture (VMM), as opposed to the unconstrained (previous) case. To constrain the concentration parameter, the components of the κ_j are forced to be the same, i.e., $\kappa_j^1 = \kappa_j^2 = \ldots = \kappa_j^q = \kappa_j$, so (11) is replaced by

$$\kappa_j = A_1^{-1} \left(\frac{1}{d} \sum_{p=1}^{d} \frac{\sum_{i=1}^{m} w_j^{(i)} \cos(\omega_j^{(i)} - \mu_j^{(i)})}{\sum_{i=1}^{m} w_j^{(i)}} \right) .$$

5.1 Prior on the Concentration Parameter

Due to the asymptotic behavior of the A_1^{-1} function, the estimation of the concentration parameter is prone to numerical problems. One way to deal with this is to introduce a prior, limiting its range of possible values. In this work, the conjugate prior of the Von Mises distribution is used (Fink, 1997),

$$p(\kappa; c, R_0) = \begin{cases} \frac{1}{K} \frac{e^{\kappa \theta_0}}{I_0(\kappa \theta_0)} & , \kappa > 0 \\ 0 & , \text{otherwise} \end{cases} ,$$

where $K = \int_0^{\infty} \frac{e^{\kappa \theta_0}}{I_0(\kappa \theta_0)}$ is a normalizing constant, and $c > 0$ and $R_0 \leq c$ are parameters that control the shape of the prior. Using this prior, the update rule for κ_j^q is:

$$\kappa_j^q = A_1^{-1} \left(\frac{1}{1+c} \left[\frac{\sum_{i=1}^{m} w_j^{(i)} \cos(\omega_j^{(i)} - \mu_j^{(i)})}{\sum_{i=1}^{m} w_j^{(i)}} + R_0 \right] \right) ,$$

When constraining κ_j, a similar expression is obtained, but whose argument is averaged over the d dimensions.

5.2 Algorithm Description

Algorithm 3: Mixture of Von Mises for trajectory clustering algorithm.

| Input: $\{\omega^{(1)}, \ldots, \omega^{(m)}\}$ and the number of clusters, k |
| Output: $\{\mu_1, \ldots, \mu_k\}, \{\kappa_1, \ldots, \kappa_k\}$ and α |
| Initialize $\alpha, \{\mu_1, \ldots, \mu_k\}, \{\kappa_1, \ldots, \kappa_k\}$ |
| repeat |
| // E-step |
| foreach i, j do |
| Set $w_j^{(i)} := \frac{\alpha_j p(\omega^{(i)} | z^{(i)} = j; \mu_j, \kappa_j)}{\sum_{k=1}^{K} \alpha_j p(\omega^{(i)} | z^{(i)} = k; \mu_k, \kappa_k)}$ |
| end |
| // M-step |
| Update α_j with Eq. (10) for $j = 1, \ldots, k$ |
| Update μ_j^p with Eq. (9) for $j = 1, \ldots, k$ and $p = 1, \ldots, d$ |
| Update κ_j^q with Eq. (11), (12), or (14) for $j = 1, \ldots, k$ and $p = 1, \ldots, d$ |
| until convergence condition is satisfied |
| // Compute cluster assignments |
| foreach $i = 1, \ldots, m$ do |
| $c^{(i)} := \arg\max_{j=1,\ldots,k} w_j^{(i)}$ |
| end |

To completely describe the algorithm, an initialization procedure and a termination condition are needed. Regarding initialization, we set $\alpha_j = \frac{1}{k}, \forall j$, that is, we assume all clusters are equally likely; κ_j is initialized with the global κ over all dimensions and all samples; the centroids are initialized with the results of running k-means with k-means++ initialization.
5.3 Model Selection

One advantage of using probabilistic methods is the ability to use formal approaches for model selection, such as the MDL principle (Lee, 2001), (Rissanen, 1978).

The MDL cost has two components: the length of the model, \(L(H) \), and the length of data encoded with the model, \(L(D|H) \). In our case, the MDL cost can be shown to be

\[
MDL_{\text{cost}} = -\sum_{i=1}^{m} \ln \sum_{j=1}^{k} \alpha_j p(\omega_i^j | \epsilon^j = j, \mu_j, \kappa_j) + \frac{c}{2} \ln m,
\]

where \(c \) is the number of parameters of the model. For unconstrained VMM’s, \(c = k \times (2d + 1) \); for constrained, \(c = k \times (d + 2) \).

For selecting the number of clusters, several values are tried, and the one minimizing the MDL cost is chosen. To avoid local optima, EM is run several times for each \(k \), and only the highest likelihood solution is considered (Lee, 2001).

6 MATRIX FACTORIZATION

Nonnegative matrix factorization (NMF) is a special type of matrix factorization where a nonnegative data matrix, \(V \), is decomposed as the product of two low-rank matrices, \(W \) and \(H \), also nonnegative (Lee and Seung, 1999). One of the many reasons for the recent interest NMF has received is its close relationship with k-means. In fact, it has been shown that it is equivalent to k-means, with appropriate constraints. Since we are sometimes interested in factorizing matrices with negative entries, variants such as semi-NMF have been proposed (Caner Türkmen, 2015).

Unfortunately, the constraints that make NMF equivalent to k-means lead to an intractable problem, thus they must be relaxed. One way to do this is by using sparse semi-NMF (SSNMF) (Li and Ngom, 2013), which solves the following optimization problem:

\[
\min_{W,H \geq 0} \left[\| V - WH \| F^2 + \eta \| W \| F^2 + \beta \sum_{i=1}^{m} | h_i |^2 \right],
\]

where \(| h_i | \) is the \(\ell_1 \)-norm of the \(i \)th column of \(H \), while \(\eta \) and \(\beta \) are tuning parameters: \(\eta > 0 \) controls the size of the elements of \(W \), while \(\beta > 0 \) controls the trade-off between sparseness and accuracy of the approximation.

6.1 Application to Circular Data

Unfortunately, the standard factorization techniques do not directly work with circular data. One way to deal with this is to convert the angles to unit vectors, which do not have the problems of circular data. This can be done by stacking the set of trajectories, \(\{\omega^{(1)}, \ldots, \omega^{(m)}\} \), as columns of the \(\Omega \) matrix, and use the duality between 2D vectors and complex numbers. This way, we can define matrix \(V \) as:

\[
V = e^{i\Omega} = \left[|e^{i\omega^{(1)}}|, |e^{i\omega^{(2)}}|, \ldots, |e^{i\omega^{(m)}}| \right],
\]

where \(j \) is the imaginary unit and \(e^{i\omega^{(i)}} \) is the complex vector:

\[
e^{i\omega^{(i)}} = \left[e^{i\omega^{(i)}_1}, \ldots, e^{i\omega^{(i)}_d} \right]^T,
\]

where \(\omega^{(i)}_p \) is the \(p \)th entry of trajectory \(\omega^{(i)} \). In this work we use the exponential of a matrix as the exponential of its entries. It can be shown that factorizing this matrix is approximately equivalent to minimizing the squares of the chords corresponding to the differences between angles.

Using this matrix, we may use SSNMF for clustering. One last step can be applied to avoid working with complex valued matrices: since the real and imaginary parts of matrix \(V \) are treated independently, one can get the same results by factorizing \(V' \) instead, where

\[
V' = \begin{bmatrix} \Re\{e^{i\Omega}\} \\ \Im\{e^{i\Omega}\} \end{bmatrix}. \quad (16)
\]

The W matrix will change by a similar transformation. Since we are only interested in the angles, and not the vectors themselves, the matrix of the shape centroids is

\[
W = \arg \left(W'_1 + jW'_2 \right). \quad (17)
\]

where \(W'_1 \) and \(W'_2 \) are, respectively, the top and bottom halves of the \(W' \) matrix obtained by factorizing \(V' \). Function \(\arg (\cdot) \) returns the argument of each entry of the input matrix. In this work, “The NMF MATLAB Toolbox” was used (Li and Ngom, 2013).

6.2 Algorithm Description

The complete clustering algorithm using SSNMF is described in Algorithm 4.

The \(\eta \) parameter is set to 0 in our tests, as there is no interest in constraining the \(W \) matrix. For \(\beta \), the default value is 0.1.
Algorithm 4: Sparse NMF applied to clustering of trajectories.

Input: Set of trajectories, \(\{\omega^{(1)}, \ldots, \omega^{(m)}\} \), number of desired clusters, \(k \) and \(\eta \) and \(\beta \) parameters

Output: Clustering assignments, \(c^{(i)} \)'s, and, if needed, centroid matrix, \(W \)

1. Compute \(V' \) matrix from Eq. (16).
2. Using “The NMF MATLAB Toolbox”, find \(W' \) and \(H \) minimizing Eq. (15).
3. Compute \(W \) from Eq. (17).
4. foreach \(i = 1, \ldots, m \) do
5. \(c^{(i)} = \arg\max_{j=1,\ldots,k} H_{ji} \)
6. end

6.3 Model Selection

The MDL principle can not be directly applied to SS-NMF, but other methods can be used. The elbow method works as for k-means, but uses a different cost function: \(J(V', W', H) = \|V' - W' H\|_F^2 \). The so-called consistency method works as follows (Kim and Park, 2008):

1. For each \(k \), compute the consistency matrix:
\[
C_k(i, j) = 1 \iff i \text{ and } j \text{ are in the same cluster}
\]
2. Repeat the previous step multiple times, and compute the mean consistency matrix.
3. Finally, compute the consistency of each clustering using:
\[
\rho_k = \frac{1}{n^2} \sum_{i=1}^{m} \sum_{j=1}^{m} 4 \left(C_k(i, j) - \frac{1}{2} \right)^2, \quad 0 \leq \rho_k \leq 1,
\]
and choose \(k \) where \(\rho_k \) drops.

The reasoning behind this choice for \(k \) is that, for the right \(k \), SSNMF should be consistent, but not for higher \(k \)'s. For smaller ones, it may or may not be so.

7 RESULTS

In this section, k-means, unconstrained and constrained VMM’s, and SSNMF are tested and compared, on both synthetic and real datasets.

7.1 Synthetic Datasets

The performance of the proposed algorithms is analyzed using the following two datasets:

- The roundabout dataset (Figure 5) models a roundabout where vehicles enter at the bottom and circulate counterclockwise. There are 4 possible exits, and each of these 4 clusters is composed of 20 noiseless trajectories. The radius and the center of the roundabout were randomly generated for each trajectory, making their shapes a little different.

- The circles dataset (Figure 6) shows 100 circular trajectories, in 4 equal size clusters. The top two clusters correspond to objects circulating counterclockwise, while the bottom two, to objects circulating clockwise. The radius and center of each trajectory change between samples, and each trajectory starts at a random orientation in the interval \([0, 2\pi]\). To ignore the changes in orientation, we cluster the differences between angles of the tangents, instead of the angles themselves. This way, there are two distinguishable clusters in the dataset, composed by the top and bottom circles.

7.2 Real Datasets

The real datasets tested are:

- The Noisy dataset (Figure 7(a)) was designed for testing the effect of noise on the performance of the algorithms. This dataset has 4 clusters, with 50 trajectories each, and is corrupted by zero noise.

Figure 5: Roundabout synthetic dataset and its 4 clusters.

Figure 6: Circles dataset and its 2 clusters. The two top circles rotate counterclockwise, while the bottom two rotate clockwise.

Figure 7: Noisy synthetic dataset and its 4 clusters.
mean Gaussian noise, with a standard deviation of 1.5 m.
- The Concentration dataset (Figure 7(b)) was created to illustrate the advantages of probabilistic modeling (VMM’s) over the other techniques. This dataset contains 100 trajectories, equally distributed between the two clusters, and was generated by the same mean trajectory, but with different variances (standard deviations of 0.5 m and 2 m).

Figure 7: Noisy datasets.

For the noiseless and Concentration datasets, no smoothing was used. For the Noisy dataset, several possible values for \(p \) were tested. In the noiseless datasets, 50 features were used, and 30 in the other two. Each of the 4 clustering algorithms was run on these datasets and given the right number of clusters. This was repeated 1000 times, and the percentage of trials the correct clustering was found is shown in Table 1.

Table 1: Percentage of times the optimal assignment was achieved out of 1000 trials in the synthetic datasets. The '*' indicate numerical issues.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(k)-means</th>
<th>unconstrained VMM</th>
<th>constrained VMM</th>
<th>SSNMF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundabout</td>
<td>96.7%</td>
<td>96.7%</td>
<td>96.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Circles</td>
<td>100.0%</td>
<td>100.0%*</td>
<td>100.0%*</td>
<td>100.0%</td>
</tr>
<tr>
<td>Noisy ((p = 1))</td>
<td>58.1%</td>
<td>58.4%</td>
<td>58.4%</td>
<td>42.6%</td>
</tr>
<tr>
<td>Noisy ((p = 0.5))</td>
<td>58.8%</td>
<td>59.0%</td>
<td>59.0%</td>
<td>64.3%</td>
</tr>
<tr>
<td>Noisy ((p = 0.1))</td>
<td>65.4%</td>
<td>65.4%</td>
<td>65.4%</td>
<td>83.6%</td>
</tr>
<tr>
<td>Noisy ((p = 0.01))</td>
<td>82.4%</td>
<td>82.4%</td>
<td>82.4%</td>
<td>92.4%</td>
</tr>
<tr>
<td>Noisy ((p = 1 - 5))</td>
<td>99.1%</td>
<td>99.1%</td>
<td>99.1%</td>
<td>35.7%</td>
</tr>
<tr>
<td>Noisy ((p = 0))</td>
<td>99.7%</td>
<td>99.7%</td>
<td>99.7%</td>
<td>34.6%</td>
</tr>
<tr>
<td>Concentration</td>
<td>99.4%</td>
<td>60.9%</td>
<td>79.4%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

In both noiseless datasets, the true clusterings were found most of the time. There were some numerical issues with the circles dataset, as the trajectories are too similar. To avoid this, a prior with \(c = R_0 = 5e - 5 \) was introduced and used in this and all the following tests. In the Noisy dataset, it was observed that below a certain level of smoothing, all algorithms performed better with the decrease in \(p \). Stronger smoothing led to poorer results for SSNMF, but better for the other methods. It is important to note, however, that shape information is lost with too much smoothing, so it is not advised. Overall, the best results were obtained for \(p = 0.01 \). In the Concentration dataset, only the VMM’s were able to find the right clusters, as expected. It is interesting to note that the constrained version outperformed the unconstrained one, probably due to the latter having too many degrees of freedom for the available dataset.

7.2 Influence of \(\beta \) on SSNMF Results

In the previous tests, the \(\beta \) parameter of SSNMF was set to 0.1. To determine its effect on the results, a parametric study was conducted, using the Noisy dataset. With \(p = 0.01 \), \(\beta \) was varied, and the tests were repeated 100 times. Table 2 summarizes the results. For \(\beta \in [0.1, 0.5] \), performance is approximately constant, thus justifying the choice of \(\beta \) used. Low and high \(\beta \)'s give poorer results.

Table 2: Percentage of times the optimal assignment was achieved out of 100 trials for various values for \(\beta \).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>0</th>
<th>0.0 1</th>
<th>0.01</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results</td>
<td>1%</td>
<td>32%</td>
<td>92%</td>
<td>94%</td>
<td>92%</td>
<td>91%</td>
<td>82%</td>
<td>63%</td>
<td>64%</td>
<td>63%</td>
</tr>
</tbody>
</table>

7.3 Model Selection on the Synthetic Datasets

In the previous tests, the algorithms were given the correct number of clusters. Since this is not the case in real problems, we now evaluate the model selection criteria. For this, \(k \) was varied in the range 1, . . . , 10 and the tests were repeated 20 times for each \(k \), to avoid local optima, for each dataset and algorithm. A parametric study of the influence of \(p \) on model selection was also performed. Results are shown in tables 3 and 4.

In the noiseless datasets, the elbow method (using \(k \)-means and SSNMF) found the right number of clusters. MDL minimization using an unconstrained VMM also found the right \(k \) in these cases and in the Concentration dataset. In the noisy dataset, only MDL minimization using an unconstrained VMM found the true \(k \), except for very small \(p \)'s. This is because too much smoothing makes local patterns emerge, and also causes higher likelihoods. The other two criteria, MDL minimization using constrained VMM’s and consistency performed poorly. The former performed poorly because the VMM uses very few parameters, and so too complex models are not penalized enough. The latter, on the other hand, performed badly because SSNMF was consistent even for values of \(k \) higher than the true one.
Table 3: Results of automatic model selection criteria.

<table>
<thead>
<tr>
<th>Method</th>
<th>Roundabout</th>
<th>Circles</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained VMM</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Constrained VMM</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>k-means</td>
<td>4</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>SSNMF (elbow/consistency)</td>
<td>4/5</td>
<td>2/3</td>
<td>–/–</td>
</tr>
</tbody>
</table>

Table 4: Influence of p on model selection in the noisy tracks dataset. The true number of clusters is 4 and the * indicates no clear k could be chosen.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$p = 1$</th>
<th>$p = 0.5$</th>
<th>$p = 0.1$</th>
<th>$p = 0.01$</th>
<th>$p = 10^{-3}$</th>
<th>$p = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained VMM</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Constrained VMM</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>k-means</td>
<td>4</td>
<td>4/5*</td>
<td>4/5*</td>
<td>4/5*</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SSNMF (elbow method)</td>
<td>3</td>
<td>3</td>
<td>3/4*</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>SSNMF (consistency)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

7.4 Real Datasets

The campus dataset is shown in Fig. 8, and is composed of 134 trajectories. Since the number of clusters is unknown, the methods for model selection were executed 20 times for each k between 1 and 20. By trial-and-error, we set $p = 0.001$ and 100 features were used.

Only the MDL minimization using the unconstrained VMM, which found the 14 clusters shown in Fig. 8, gave meaningful results. For having few parameters, MDL minimization with the constrained VMM chooses the biggest k tested. Using the elbow method, on the other hand, no elbow was found for k-means, and only a “weak” elbow was found at $k = 3$ using SSNMF, but it gives meaningless clusters. SSNMF was highly consistent for all k’s, and the only sharp decrease happened at $k = 4$, which gives poor clusters.

The staircase dataset is shown in Fig. 9. It shows a series of people going up and down the stairs, tracked from two different views, totaling 90 different trajectories. By trial an error, $p = 0.01$ was found, and 50 features were used. The number of clusters was varied from 1 to 12 and the tests were repeated 20 times, to avoid bad local optima. In this case, all methods except MDL minimization using the constrained VMM found 4 clusters, shown in Fig. 9. This criteria failed for not penalizing enough more complex models.

8 CONCLUSIONS

In this work, we have presented a novel approach to trajectory clustering, based on shape, and 3 algorithms were developed for this purpose. These methods were then tested on both synthetic and real datasets. In both cases, all algorithms could find good cluster assignments when given the desired number of clusters. With model selection, the results differed much between techniques. Overall, the best method was MDL minimization using unconstrained VMM’s, which found good clusters most of the time.

Possible future work includes an extension of this methodology to 3-dimensional trajectories and an adaptation of this methodology to clustering parts of trajectories.

ACKNOWLEDGMENT

This work was partially supported by FCT (Fundação para a Ciência e Tecnologia), grants PTDC/EEI-PRO/0426/2014 and UID/EEA/5008/2013.

An extended version of this work can be found in (Pires, 2016).

REFERENCES

