
Adaptive Control with Sparse Models

Rui Miguel Diogo Brás

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. João Manuel Lage de Miranda Lemos

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. João Manuel Lage de Miranda Lemos

Members of the Committe: Prof. Mário Alexandre Teles de Figueiredo

September 2017

A plurality is not to be posited without necessity.
William of Ockham

Acknowledgments

I would like to start by thanking my supervisor, Prof. Dr. João Miranda Lemos for his guidance and

invested time throughout this entire thesis. If it were not for his availability, knowledge, and wisdom,

none of this work would have been possible.

I want to thank INESC-ID for their financial support and access to multiple resources and materials.

A special thanks to the Eng. Mário de Matos for providing the acquired data files from the electrical

energy consumption of the buildings of IST.

I would also want to address and to thank my colleagues and friends, in particular Francisco Teles

and Pedro Sá, who shared the most time with me during the entire course of this thesis.

Finally, I would like to express my sincere gratitude to my family, especially to my parents and

sister, for always being supportive over these past 5 years.

The work in this dissertation was performed within the framework of project SPARSIS, Sparse

Modeling and Estimation of Motion Fields, financed by FCT under contract PTDC/EEIPRO/0426/2014.

iii

Abstract

The main motivation for the control strategies proposed in this work is to predict and estimate linear

time-invariant and time-varying dynamical systems, while reducing the process model complexity. The

identification problem studied aims at estimating the transfer function coefficients recursively and the

order of the system, using classical methods of recursive model identification, such as Recursive

Least Squares. Sparse constraints are appended to these methods such as to achieve subset model

selection, and thus avoid model over-parameterization.

Owing to the nature of the `1 norm penalty, a sparse model parameter vector of estimates is

obtained, and the true order of the system is revealed. The algorithms proposed are described and

applied to the identification of sparse systems.

Two control strategies are considered in this work, one based on one-step ahead prediction, and

other based on multi-step ahead prediction. These strategies are coupled to the algorithms described,

and they are then tested and illustrated by simulation.

Keywords

Sparsity, Adaptive Control, System Identification, Prediction, Minimum Variance Control, General-

ized Predictive Control.

v

Resumo

A principal motivação para as estratégias de controlo propostas é a predição e estimação da

dinâmica de sistemas lineares invariantes no tempo e de sistemas lineares variantes no tempo.

O problema da identificação de sistemas estudado tem como objectivo a estimação recursiva dos

coeficientes da função de transferência do sistema e respectiva ordem. Neste trabalho são utilizados

métodos tradicionais para a realizar a identificação de sistemas de forma recursiva, como é o caso da

versão recursiva do método dos mı́nimos quadrados. Estes métodos são depois aliados a restrições

que enforçam a esparsidade das soluções, na busca pela obtenção de modelos simplificados, que

evitem assim a sobre-parametrização de modelos.

Dada a natureza da norma `1, torna-se possı́vel obter um vector de parâmetros esparso, que

revela a correcta ordem do sistema. Os algoritmos propostos são descritos e aplicados através de

simulações.

Neste trabalho, duas estratégias de controlo são consideradas, uma baseada em predição um

passo à frente, e uma outra baseada em predição múltiplos passos à frente. Estas estratégias são

acopladas aos algoritmos de estimação enunciados e são depois testadas e ilustradas em simulação.

Palavras Chave

Esparsidade, Controlo Adaptativo, Identificação de Sistemas, Predição, Controlo de Variância

Mı́nima, Controlo Preditivo Generalizado.

vii

Contents

1 Introduction 1

1.1 Context and Motivation . 2

1.2 State Of The Art . 3

1.3 Thesis Contributions . 5

1.4 Thesis Outline . 6

1.5 Notation . 6

2 Sparsity 7

2.1 Sparsity and the `1 norm . 8

2.2 LASSO . 13

2.3 Proximity operator of the `1 norm . 14

3 System Identification 20

3.1 Model Selection . 21

3.2 Parameter Estimation . 22

3.2.1 Recursive Least Squares . 22

3.2.2 Variable Forgetting Factor . 24

3.2.3 Least Mean Square . 25

4 Sparsity Aware Recursive Algorithms 27

4.1 RZA-NLMS . 28

4.2 `1-RLS . 30

4.3 RLS-Weighted LASSO . 32

4.4 Results . 36

4.4.1 Case I: Time Invariant Scenario . 36

4.4.2 Case II: Time varying Scenario . 40

4.4.3 Case III: Using Sparse Estimators to avoid instability 44

5 Adaptive control with sparse estimation 46

5.1 Minimum Variance Control . 48

5.2 Generalized Predictive Control . 50

5.3 Target following as a control problem . 52

5.4 Results . 54

ix

5.4.1 MVC results . 54

5.4.2 GPC results . 57

5.4.3 Prediction of electrical energy consumption . 63

6 Conclusions and Future Work 68

Bibliography 71

Appendix A Matrix Inversion Lemma A-1

Appendix B Diophantine Equation Solution B-1

Appendix C Generalized Predictive Control (GPC) for time-varying systems with no Dio-

phantine equations C-1

x

List of Figures

1.1 Self-Tuning Adaptive Controller architecture . 3

2.1 Convex function illustration . 9

2.2 Geometric interpretation of the `p norm balls in 2D-space. The graph axes represent

the x1 and x2 components of x. 11

2.3 Geometry solutions of `1 and `2 norms minimization in 2D-space. 11

2.4 Distinct configurations of tangent points of the `1 norm ball and the least squares error

surfaces, keeping their centers fixed. 12

2.5 Lower semi-continuous function f . 15

2.6 Function f and its Moreau envelope fα, for α equal to 0.5 and 1. 16

2.7 Proximity operator step at different points. 16

2.8 Proximity Operator and Moreau envelope (first iteration). 18

2.9 Proximity Operator and Moreau envelope (second iteration). 18

3.1 RLS Block Diagram . 24

4.1 At the origin, the `0 pseudo-norm (in blue) is better approximated by the log-sum

penalty (in yellow) function than by the traditional `1 norm (in red). 29

4.2 Weight function of equation (4.23) for values of µ(k) = 0.3 and a = 3.7. 34

4.3 Impulse response of the system. The blue color represent the system of equation

(4.28) and the orange color represent the estimated system using the RLS-Weighted

LASSO (RW-LASSO) algorithm. 37

4.4 Impulse response of the system. The blue color represent the system of equation (4.29)

and the orange color represent the estimated system using the RW-LASSO algorithm. . 39

4.5 Estimators bias and variance as function of θ size. 39

4.6 Mean Square Error (MSE) values of the algorithms for different levels of noise. 40

4.7 Percentage of correctly estimated zero elements of θ and `1 parameter estimation error. 41

4.8 Time evolution of the system parameter a1 during Simulation III (upper plot) and time

evolution of the variable forgetting factor, using the sparsity-aware algorithm. 42

4.9 Variance as a function of the rising time. 42

4.10 Second order RC series circuit. 43

4.11 Time evolution of the system parameter a2. 43

xi

4.12 System from equation (4.31) a) impulse response , and b) Z plane with the pole/zero

locations. 44

4.13 Z plane with the pole/zero locations of a) the system from equation (4.31), and b) the

system resulting from sparse estimation. 45

4.14 Impulse responses of a) the system from equation (4.31), and b) the system resulting

from sparse estimation. 45

5.1 Model Predictive Control (MPC) application scheme (adapted from [57]). 48

5.2 Block diagram of the target following problem. 53

5.3 Plant output signal y(k) and reference signal (upper plot), and control signal u(k) (lower

plot). 54

5.4 Estimated model parameters. 55

5.5 Plant output signal y(k) and reference signal (upper plots), and control signal u(k)

(lower plots) when ρ is not used and when ρ = 0.01, a) and b) respectively. 56

5.6 Plant output signal y(k) and reference signal (upper plots), and control signal u(k)

(lower plots) using Recursive Least Squares (RLS) and a sparsity-aware algorithm, a)

and b) respectively. 57

5.7 Plant output and reference in noise absence conditions, using a prediction horizon

equal to 10. 57

5.8 Plant output and reference, and control signal in noise absence conditions, using a

prediction horizon equal to 1, as in Minimum Variance Control (MVC). 58

5.9 Plant output and reference affected by Gaussian white noise with variance equal to 1,

using a prediction horizon equal to 10. 58

5.10 Plant output and reference affected by a step disturbance and Gaussian white noise

with variance equal to 1, using a prediction horizon equal to 10. 59

5.11 Plant output affected by Gaussian white noise with variance equal to 1, using N1 = 1,

N2 = 7, Nu = 3, and assuming no knowledge of future reference values. 60

5.12 Plant output affected by Gaussian white noise with variance equal to 1, using N1 = 1,

N2 = 7, Nu = 3, and knowing the future reference values. 60

5.13 Plant output affected by Gaussian white noise with variance equal to 0.1, using N1 = 1,

N2 = 17, Nu = 7. 61

5.14 Estimated model parameters. 62

5.15 Electrical energy consumption data from October 1, 2014 to November 30, 2014. 64

5.16 Electrical energy consumption data from October 27, 2014 to November 2, 2014. 64

5.17 Electrical energy consumption data over one weekday. 65

5.18 Electrical energy consumption data from October 27, 2014 to November 2, 2014, after

removing the weekends consumption. 65

5.19 Electrical energy consumption data without seasonal part. 66

xii

5.20 Comparison between 200 samples of the original and one step-ahead predicted elec-

trical energy consumption processes. 66

5.21 Autocorrelation of ỹ(k). 67

5.22 Comparison between the original process and the predicted process with horizon m =

1, . . . , 100. 67

xiii

List of Tables

4.1 Estimation results of a second order system after 1000 data points. 37

4.2 Estimation results of a fourth order system after 1000 data points. 38

xiv

Acronyms

ARMA AutoRegressive Moving Average

ARMAX AutoRegressive Moving Average with eXogeneous input

ARX AutoRegressive with eXogeneous input

CARIMA Controlled AutoRegressive Integrated Moving Average

CARMA Controlled AutoRegressive Moving Average

LASSO Least Absolute Shrinkage and Selection Operator

GPC Generalized Predictive Control

LMS Least Mean Square

LS Least Squares

MPC Model Predictive Control

MSE Mean Square Error

MVC Minimum Variance Control

NLMS Normalized Least Mean Square

R-LASSO Recursive LASSO

RLS Recursive Least Squares

RW-LASSO RLS-Weighted LASSO

RZA-NLMS Reweighted Zero-Attractor Normalized Least Mean Square

ZA-LMS Zero-Attractor Least Mean Square

xv

1
Introduction

Contents
1.1 Context and Motivation . 2
1.2 State Of The Art . 3
1.3 Thesis Contributions . 5
1.4 Thesis Outline . 6
1.5 Notation . 6

1

The purpose of this thesis is to develop control strategies for sparse linear systems. The problem

of overestimation is common to a wide range of applications where the system dynamics is unknown

or slowly-varying. The definition of the problem is presented in the following section, and a literature

review on this matter is done afterwards. This chapter also includes the main contributions, the thesis

outline, and some of the notational choices made.

1.1 Context and Motivation

Adaptive control is one of the broadly used control strategies to design advanced control systems.

Originally conceived in the 1950s, adaptive controllers popularity and growth result from their clearly

defined goal: to control plants with unknown or slowly varying parameters. Some mechanisms can

create variations in process dynamics, and sometimes reducing these variations can be as simple as

introducing nonlinear compensations in the controller. Different controller parameters can be designed

for different operating points, if the process is well-known. However variations of process dynamics

may come from many different sources of disturbances, most of them not fully understood. In these

cases adaptive control can be much more advantageous, since searching for an explanation of the

process variations sources can be unfeasible or not very economical.

The richness in terms of algorithms and design techniques comprises a vast number of applica-

tions such as chemical processes, ship steering, robotics [1], or biomedical systems, like anesthesia

administration [2]. Another application of adaptive control is aircraft control. In fact, the design of

autopilots for high-performance aircraft was one of the major motivations for the research and studies

on adaptive control [3].

PID controllers are the standard tool in control and their purpose is to drive the error between a

reference signal and the output of the plant to zero. They consist of three parts: the proportional part

amplifies the error, the integral part eliminates the steady-state error, and the derivative part is used

to reduce oscillations caused by the other two. The three signals resulting from each part are added

together and plugged in the plant input. Herewith, each system requires manually tuning the gains of

the PID. The parameters of a plant can change as the result of state changes, systems degradation

or environmental issues, and whenever the parameters of the plant change, the gains of the PID

need to be retuned. Adaptive control is prepared to deal with these changes by estimating the new

plant parameters and recalculating the gains of the controller. In this work the focus is on Self-Tuning

Adaptive Control [4, 5] even though there are numerous types of adaptive controllers [6].

Figure 1.1 shows the block diagram of Self-Tuning Adaptive Controllers. The Plant represents

the dynamical system to be controlled while the Controller manipulates the system input u at each

time instant k, to drive the system output y toward the reference r. Since the plant parameters

may change continuously, the Self-Tuning Adaptive Controller needs to calculate these parameters,

and thus the controller parameters online, which requires an estimation algorithm that updates the

parameters recursively. Known as the certainty equivalence principle, the estimates are assumed

to be equal to the true parameters of the process. The architecture consists of an Adapter and a

2

Controller. The Adapter itself is a combination of two other blocks, the Recursive Identifier and the

Design Control blocks. The former is responsible for the identification procedure, at which a recursive

estimation algorithm [7] is used to estimate the unknown plant parameters θ given the plant inputs

and outputs. The latter is a design method that recalculates the controller gains K according to the

new estimates of the model. Estimation based designs are more versatile and applicable allowing a

Figure 1.1: Self-Tuning Adaptive Controller architecture

choice of parameter update laws from a wide list of gradient and least squares optimization algorithms.

This versatility owes to the fact that the Adapter can be analyzed as an independent module whose

properties and conditions can be tested and guaranteed individually.

A basic principle in system identification is the parsimonious principle, which states that the final

model should have a dimension only large enough to represent the underlying dynamics. According

to this principle, selecting a simple model whose representation is enough to explain the system

behavior becomes essential. This argument is even more meaningful when dealing with large data

sets. Not only we want to consume less computational time but also save storage space. To cope

with it, additional constraints, reflecting specific properties or assumptions, must be introduced.

A good fit to the measured data can not be achieved with few parameters (underfitting). On the

other hand, if too many parameters are used, the fit to this data can be really good, but for a different

dataset the fit may be very poor (overfitting). The simplest assumption that can be made about

the problems structure is the solution sparsity, which assumes that only a relatively small subset of

variables is critical in a specific context. The exploitation of sparsity to improve estimation performance

has been attracting considerable interest and it is the leading motivation of this work [8, 9].

1.2 State Of The Art

In recent years, sparsity has become an important topic in estimation. The idea of adding a

regularization term to cost functions, in order to penalize nonzero elements, arises in a plethora of

3

problems, from system identification [10] to signal processing [11–13].

When designing controllers, models are a key component due to its heavy influence. Systems

are often of low order or else they can be represented by a few number of parameters. While the

proper representation may be known, the specific coefficients with nonzero value within it are un-

known. Since there is no certainty about which parameters are nonzero, the parameter vector may

be represented having an high dimension − sparse system. After defining the model structure of the

system, an appropriate method is used to identify its parameters. A basic technique to estimate the

model parameters is the Least Squares (LS) method [14], which is fairly simple if the model is linear

in the parameters.

However, LS estimates are nonzero, even of parameters that have zero as their true value, making

the interpretation of the final model really challenging for large data sets. To estimate p parameters

one should have far more n observations than p. In fact, if p > n, the LS estimates are not unique.

There is an infinite set of solutions that minimize the objective function, almost surely leading these

solutions to overfit the data. If p � n and the underlying model is not sparse, then the number of

observations n is too small to accurately estimate the parameters. Nonetheless if the true model is

indeed sparse, it is then possible to effectively estimate the parameters using proper algorithms and

methods.

In many scenarios of system identification, the system impulse response can be assumed to be

sparse [10], containing only a few large parameters distributed among many minor ones. The basis of

sparse system identification is to incorporate this sparse prior information to improve the estimation

procedure.

The field of hybrid system identification has also benefited from new discoveries and methods

using convex relaxations and sparsity [15, 16]. One example is model segmentation, a special case

in which the system parameters are piecewise constant, and change only at rare time instants. In

[17], a sparse representation aids in the identification of infrequently changing parameters.

Several techniques for sparse estimation have been successfully used for model subset selec-

tion [18–20] with the Least Absolute Shrinkage and Selection Operator (LASSO) [21] leading to a

significant evolution and development of sparse representations in a broad range of problems.

In [22], Zhang et al. summarized a vast number of sparse representation algorithms and methods,

from viewpoints of the mathematical and theoretical optimization, developed prior to 2015. Despite

the clear merits of all the contributions, developing more efficient and robust sparse representation

methods is still a challenging task.

Most of these algorithms are, however, unable to identify the unknown system/signal online, and

the relevance of this work is precisely to solve this problem using recursive algorithms with ability

exploit the sparse nature of the system/signal.

When systems/signals are time-varying or the available storage and resources are limited, online

algorithms are of great importance. So far, only in a few recent contributions these adaptive methods

have been addressed. In this respect, `0 regularized Least Mean Square (LMS) [23] and `1 regular-

ized LMS [24] algorithms have arisen in the context of adaptive filters. In [25–27], `1 norm regularized

4

Recursive Least Squares (RLS) algorithms has been proposed. Due to the non differentiability of

the `1, subgradient methods are used to provide the information for the following estimates. Simi-

larly, Expectation-Maximization and Kalman filtering algorithms combined with `1 regularization are

proposed in [28, 29]. A projection based adaptive algorithm is developed by Kopsinis et al. in [30],

in which a performance comparison is done to online algorithms up to date. A different approach is

proposed in [31], where a homotopy scheme is used to update the LASSO solution.

Sparse systems can be arbitrary sparse or exhibit additional structure. The latter refers to the case

in which the impulse response of the system is composed of a few distinct clusters of nonzero coef-

ficients − group (or block) sparse system. Applications where group sparse models appear include

multi-band signals [32] and wireless channels [33]. Examples of usage of `1,2 and `1,∞ mixed norms

to promote group sparsity can be found in [34, 35].

Not just in estimation but also in control theory, sparsity related works have been developed with

the intention of reducing the size of control inputs and the number of control actions, for instance, to

spare systems and allow them to last longer.

In recent works, variations of classical quadratic Model Predictive Control (MPC) methods have

been developed. These alternatives use a combination of `1 and `2 penalties to obtain spatially or

temporally sparse control signals [36, 37]. One application of this strategy is the minimum fuel control

[38], in which the amount of fuel consumed is minimized using the `1 norm of the control action.

A different example is the stop-start system of vehicles, in which the internal combustion engine is

stopped when the vehicle stops or the speed is lower than a given threshold to reduce the amount of

time the engine spends idling, thereby reducing fuel consumption and gases emissions. This feature

is also present in hybrid electric vehicles, where the internal combustion engine is stopped and the

electric motor is used as an alternative [39].

1.3 Thesis Contributions

The focus of this work is on the application of adaptive algorithms to control sparse systems.

Based on RLS and LMS, several sparsity aware recursive algorithms are tested and compared with

the aim of estimating the system parameters, thus achieving sparse solutions.

The objective of this dissertation is to develop and test a control strategy using one of the sparsity

aware recursive algorithms. The problem of model over-parameterization is tackled by obtaining

sparse models, enough to explain the systems dynamical behaviors.

The AutoRegressive Moving Average (ARMA) family models are used to describe all the systems

presented in this work. Two control strategies are considered, Minimum Variance Control (MVC)

that uses one-step ahead predictors, and Generalized Predictive Control (GPC), a multi-step ahead

predictor.

The main contribution is then the application of these sparsity inducing recursive algorithms in

control systems, and its demonstration in simulation using distinct models.

The proposal of time varying forgetting for recursive sparse estimation algorithms is also a contri-

5

bution.

1.4 Thesis Outline

The dissertation is organized as follows. Chapter 1 includes an introduction to the work developed

in this dissertation supported by the context and motivation, followed by a literature review, and a

presentation of the main contributions.

In chapter 2 the concept of sparsity is explored as well as the advantages of its use.

In chapter 3 the general method for system identification is detailed.

Chapter 4 describes multiple sparsity enforcing algorithms. Simulations are made to analyze and

compare them, and the respective results are discussed.

In chapter 5 the control strategy for identification and control of sparse models is detailed. Coupled

with the algorithms previously shown, the developed framework is demonstrated through simulation

tests. The results obtained are then presented and discussed.

Chapter 6 recaps the main results. Conclusions are then presented, followed by a summary of

considerations that seem interesting for a future work.

1.5 Notation

In this section the notation used throughout this thesis is established. The following choices were

made:

• Scalars and vectors are represented by lowercase letters, except for the Kalman gain vector

which is represented by K.

• Matrices are represented by uppercase letters.

• To distinguish between the real parameters and the estimated parameters, the former are always

referred to as the parameters of the plant or process, whilst the latter are referred to as the

parameters of the model.

• The `1 norm of vectors is expressed by ‖ · ‖1, while | · | denotes the absolute value of scalars.

Whenever | · | is used as cardinality set a remark is made to discriminate the two.

• q−1 denotes the one-step delay operator satisfying q−1f(k) = f(k − 1), for any time function

f(k).

6

2
Sparsity

Contents
2.1 Sparsity and the `1 norm . 8
2.2 LASSO . 13
2.3 Proximity operator of the `1 norm . 14

7

Sparsity and its applications have been attracting researchers from a variety of fields, including

signal processing, machine learning, image processing, and computer vision, since the second half

of the 20th century [40]. In these past decades, society and researchers in particular have benefited

from the significant discoveries and advances in these areas.

One impressive sparsity-related breakthrough is compressive sensing [11], a technique used in

signal processing to acquire and reconstruct signals. Results show that a sparse signal can be

reconstructed with fewer samples than those required by the classical Shannon-Nyquist Theory [12].

The challenge of processing signals under the frameworks of the Shannon-Nyquist Sampling The-

orem is to reduce signal acquisition costs, that is, sampling efficiently from large data sets without

large memory requirements.

Generally, high-dimensional, limited sample inference is both underdetermined and computation-

ally intractable, except if the problem has specific properties or structure, like sparsity. Saving both

sampling time and sample storage space motivates the development of sparse representation tech-

niques. Examples include finding a subset of genes responsible for specific diseases [21], recon-

structing high-quality images from a compressed set of measurements [41], or in the context of this

work estimating the parameters of a process in a high-dimensional but small sample statistical setting.

A sparse statistical model is one in which only a relatively small number of parameters (or pre-

dictors) plays an important role. This idea matches the philosophical principle of parsimony, also

known as Ockham’s razor, attributed to William of Ockham, which states that “entities should not be

multiplied unnecessarily”.

2.1 Sparsity and the `1 norm

Inferring quantities of interest from measured information is a common task in many practical

problems. Consider a matrix A ∈ Rm×n and a vector y ∈ Rm. The vector x ∈ Rn can be inferred

either from noiseless observations of y

y = Ax, (2.1)

or from noisy observations

y = Ax + e. (2.2)

In the low dimensional case, when the number of observations is larger than the number of vari-

ables such that m > n, as in classical statistical setups, system identification and adaptive control,

the desired x is the unique solution to the system of linear equation.

In the high dimensional case when m < n, the system is underdetermined (more unknowns than

equations), which implies that the solution is not unique, provided that there is at least one. Assuming

a matrix A with full-rank (its columns span the entire Rn) guarantees that a solution can be sought to.

Typically, a single solution is desired and the fact that the system can have an infinite number of

solutions is a major problem. In order to limit this number to one well-defined solution, additional

properties are required. One approach to induce these properties is through regularization. Regu-

8

larization is useful as it encodes additional criteria to the problem, and evaluates the desirability of a

possible solution.

A constrained optimization problem can be defined by rewriting (2.1) as

min
x∈Rn

r(x)

subject to y = Ax
(2.3)

where r(x) denotes the regularization term. Additionally, under noisy conditions, as happens with

realistic measurements and signals, the problem is

min
x∈Rn

r(x)

subject to ‖y −Ax‖22 ≤ ε
(2.4)

with error tolerance ε > 0.

Recall the definition of convex sets and convex functions [42]:

Definition 1. (Convex Set) A set S is convex if ∀x1,x2 ∈ S and ∀α ∈ [0, 1] the convex combination

x = αx1 + (1− α)x2 is also in the set S.

A function f(x): S → R defined on a convex set S in a vector space is convex if

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2), ∀x1,x2 ∈ S,∀α ∈ [0, 1] (2.5)

Regarding (2.5), the left-hand side of the inequality is the function f evaluated at the convex

combination of x1 and x2, that corresponds to a point on the line segment between x1 and x2. This

quantity must be less or equal to f evaluated at the same convex combination of the points at the

endpoints. Geometrically this means that the cord connecting x1 and x2 must lie above the graph of

f as represented in Figure 2.1. If equation (2.5) is a strict inequality, then f is called strictly convex.

Although a convex function may not have a global minimum, if it has a local minimum then this point is

x1 x2(1 − α) + αx1 x2

f()x2

f()x1

(1 − α)f() + αf()x1 x2

f((1 − α) + α)x1 x2

f(x)

x

Figure 2.1: Convex function illustration

also a global minimum. The squared Euclidean norm ‖x‖22 is a well-known regularization term since

it is strictly convex and thus always has a unique minimum. In addition, the solution is available in

closed form.

9

The solution of a constrained optimization problem like (2.3) can often be found by using the so-

called Lagrange multipliers method. The Lagrangian is defined as follows

L(x, λ) = ‖x‖22 + λT (Ax− y), (2.6)

being λ the Lagrange multiplier for the constrained set. Taking the derivative of L(x, λ) with respect

to x yields
∂L(x, λ)

∂x
= 2x + ATλ. (2.7)

Equating (2.7) to zero the solution x̂ is then

x̂ = −1

2
ATλ, (2.8)

and replacing x in (2.1) by (2.8) yields

λ = −2(AAT)−1y, (2.9)

which plugged in (2.8)

x̂ = AT (AAT)−1y. (2.10)

Recall that A was assumed full-rank and therefore AAT is positive-definite and invertible. The

simplicity of the illustrated closed-form and unique solution is the reason for the common use of

the `2 norm, yet it does not necessarily make the Euclidean norm the best choice for regularization

[40, Chapter 1]. Different convex, or strictly convex, functions should be considered. Interesting

choices of regularization functions are the so-called `p norms. Consider an n-dimensional vector

x =
[
x1 x2 . . . xn

]T in an Euclidean space V. A norm is a function f : V → R that satisfies the

following properties:

i) f(x) > 0 for all x ∈ V

ii) f(x + y) ≤ f(x) + f(y) for all x,y ∈ V (triangle inequality)

iii) f(λx) = |λ|f(x) for all λ ∈ C and x ∈ V (positive homogeneity)

iv) f(x) = 0⇔ x = 0

The `p norm of x is given by

‖x‖p =

|j ∈ {j, . . . , n} : xj 6= 0| , if p = 0

(
n∑
j=1

|x|p)
1
p

, if 0 < p <∞

max
j=1,...,n

|xj | , if p =∞

(2.11)

where | · | denotes set cardinality.

For 0 < p < 1, the `p “norm” violates the triangle inequality condition and hence it is called pseudo-

norm. For p = 0 the homogeneity property, when λ 6= 0, is not satisfied, and thus `0 is also called

10

pseudo-norm. As shown in equation (2.11) the cardinality of the vector is the `0 pseudo-norm. Its

association with sparsity is evident as it intuitively corresponds to the number of nonzero elements of

x. Defining supp(x) , {j ∈ {j, . . . , n} : xj 6= 0} then sparsity amounts to having |supp(x)| � n. The

problem of the `p pseudo-norms, with 0 ≤ p < 1, is their non-convexity, nonsmoothness, and global

nondifferentiability.

The `1 norm corresponds to the sum of the absolute values of the elements in x, and it is convex,

nonsmooth and globally nondifferentiable. The `2 norm is convex, smooth and globally differentiable.

The optimal solution of a norm minimization problem is, by inflating the so-called norm ball, the

first point of the corresponding norm ball to hit the hyperplane containing the solutions to the problem

[22]. As it may be useful to take a look at the 2D-space example, Figure 2.2 shows the norm balls of

different `p norms.

x2 x2 x2 x2 x2

x1 x1 x1x1
x1

p = 0 p =
1

2
p = ∞p = 2p = 1

Figure 2.2: Geometric interpretation of the `p norm balls in 2D-space. The graph axes represent the x1 and x2
components of x.

To understand how these different norm balls affect the solutions of said norms minimization and

which of them can, in fact, induce sparse solutions, the geometry solution via `1 and `2 minimizations

for two variables is depicted in Figure 2.3, from left to right.

x̂x̂

x2 x2

x1
x1

p = 2p = 1

Figure 2.3: Geometry solutions of `1 and `2 norms minimization in 2D-space.

The gray areas correspond to the constraint regions while the green ellipses are the level sets of

the objective function ‖y −Ax‖22, where x̂ = (ATA)−1ATy is the minimum.

11

The reasoning behind some norms being more suitable for generation of sparse solutions lies in

the location of the intersection between the norm ball and the set of elliptical contours. When the

penalty function is nondifferentiable at points where xj = 0, it forms a corner in the axes, promoting

that the loss and the penalty functions meet at the axis. When they intersect on one of the coordinate

axes, the solution is sparse (the other component is zero). Notice that the diamond-shaped region

tends to meet the ellipses at the vertices (Figure 2.3 shows the 2D case, but it also generalizes to

higher dimensions), which favours sparse solutions. Similarly, for 0 ≤ p < 1, the `p pseudo-norms are

sparsity inducing. On the other hand, only `p norms with p ≥ 1 are convex.

The `2 norm optimum will only be on one of the axes (that is, be sparse) if the minimum Mean

Square Error (MSE) point x̂ is also on one of the axes, and this event will happen with probability zero.

Because of its sharp contour at the axes, on the `1 regularized system the optimum can be on the

axes even when the minimum MSE point x̂ is not. For the scenario depicted in Figure 2.3 it is clear

that the two surfaces intersect at one of the axes, but typically a question arises “what if x̂ is located

at a different position, will the two surfaces boundaries still intersect at one of the axes?”

Figure 2.4 shows different configurations of the tangent points of the `1 norm ball and the least

squares error surfaces, while their centers remain fixed.

x1

x1 x1

x1

x2x2

x2x2

x̂ x̂

x̂ x̂

a) b)

c) d)

Figure 2.4: Distinct configurations of tangent points of the `1 norm ball and the least squares error surfaces,
keeping their centers fixed.

To understand how Figures 2.4 a), b), c) and d) differ from each other it is important to recall that

in the LASSO objective there is a parameter that sets how important the `1 norm term is, relative

to the `2 norm term. If this regularization parameter is large, then the `1 norm term becomes the

dominant contributor to the LASSO objective, and the minimizer will then have to make the `1 norm

term really small. As the least squares error surface size increases relative to the `1 norm ball, the

point of tangency gets closer to one of the vertices of the `1 norm ball. Therefore, at the minimum

12

the `1 norm ball will be very small if the regularization parameter is very large. The adjustment of

the regularization parameter value allows moving between the distinct scenarios of Figure 2.4, and a

favourable choice will lead to a sparse solution.

The biggest advantage of the `1 norm is the success of achieving variable selection without sur-

rendering the computational complexity of convexity.

2.2 LASSO

Replacing r(x) with ‖x‖0 in (2.4)

min
x∈Rn

‖x‖0

subject to ‖y −Ax‖22 6 ε
(2.12)

yields the optimization problem for sparse signal recovery for the noisy observations case. Finding

the sparsest solution is considered computationally intractable (NP-hard problem) [43], due to its non-

convex combinatorial nature. Consider the simplest case where x is a 1-sparse vector 1 of size n and

the position of the nonzero entry is unknown. There are
(
n
1

)
possibilities that need to be searched in

order to find the unique minimizer. As k grows the number of
(
n
k

)
possibilities grows too. If k is not

known a priori then all n possible values of k have to be considered, and the resulting complexity is
n∑
i=1

(
n
i

)
.

One way to bypass this problem is resorting to approximations such as addressing the problem

via approximate methods, or replace it with convex relaxations. The latter is done by replacing the `0

pseudo-norm with a convex approximation. Any of the `p pseudo-norms (0 ≤ p ≤ 1) is a good option

to seek sparse solutions. From this set, however, the only convex one is the `1 norm. Accordingly, the

problem (2.12) is transformed into a convex optimization problem [42], that is efficiently solvable by

standard convex optimization techniques. The relaxation is then represented as

min
x∈Rn

‖x‖1

subject to ‖y −Ax‖22 6 ε.
(2.13)

Moreover equation (2.13) can be written in two additional forms

min
x∈Rn

‖y −Ax‖22

subject to ‖x‖1 6 d
(2.14)

and

min
x∈Rn

‖y −Ax‖22 + λ‖x‖1, (2.15)

where d and λ are nonnegative real parameters uniquely defined by ε [44, Proposition 3.2.]. Problem

(2.13) is a quadratically constrained linear program called Basis Pursuit Denoising [19]. When ε = 0,

problem (2.13) corresponds to a linear program known as as Basis Pursuit [18]. Finnaly, problem

(2.15) is an unconstrained optimization problem known as LASSO. The sparse estimation methods

of Chapter 4 are based on the LASSO problem.
1A k-sparse vector is characterized by k nonzero entries.

13

The first desirable property of a sparse estimator x̂t (estimator of x after t observations) concerns

support consistency, as the estimator should asymptotically identify the right subset model

lim
t→∞

Pr[supp(x̂t) = supp(x)] = 1, (2.16)

where Pr[Ω] denotes the probability of the event Ω and supp(x) denotes the set of nonzero entries

of x (the support of x). In other words, when the regularization parameter λ is correctly chosen, the

parameters which have nonzero components are correctly estimated with probability tending to 1.

The second property demands weak estimation consistency or optimal estimation rate

√
t [S(x̂t)− S(x)]→d N (0,Σ−1), (2.17)

where →d denotes convergence in distribution. The operator S(x̂t) : Rn → R|supp(x)| selects the en-

tries of x̂t corresponding to supp(x̂t), and x̂t is a consistent estimator of x with normal limit distribution

with Σ−1 as the covariance matrix knowing the true subset model. These two properties are known as

oracle properties [45] since an estimator which meets them is, asymptotically, as good as if supp(x)

was known beforehand. The ideal procedure for variable selection should account for three different

conditions [46]:

• 1. Unbiasedness - The resulting estimator should be nearly unbiased when the true unknown

parameter is large to avoid excessive modeling bias.

• 2. Sparsity - The resulting estimator should be a thresholding rule, automatically estimating

small parameters as zero to reduce model complexity.

• 3. Continuity - The resulting estimator should be continuous in data to avoid model prediction

instability.

The sparse estimators described in Chapter 4 have sparsity imposing constraints, and conse-

quently, as some of the system parameters are reduced to zero, the resulting bias is also reduced.

Even though sparse estimators variable selection may be inconsistent in certain scenarios, the

oracle properties can be achieved using weighted `1 norm constraints. Withal, the oracle properties

do not automatically result in optimal prediction performance [45].

2.3 Proximity operator of the `1 norm

The proximity operator is a natural generalization of the projection operator [47]. It has similar

behavior to a gradient descent step for a given function f . Proximal algorithms are algorithms used for

solving convex optimization problems. They work by iterating a sequence of steps in which proximity

operators of the functions involved in the minimization are evaluated. Although these subproblems

may be solved with standard methods, they often can be solved in closed form solutions or at least

very quickly with simple specialized methods.

Proximal algorithms have several main advantages, among which the fact that they can be ap-

plied to nonsmooth functions or functions that are otherwise difficult to handle. Their simple nature

14

allows them to be applied not only to very particular problems but also to large scale problems (as in

distributed optimization [48, Chapter 5]).

Many optimization problems that arise in statistics take the form

min
x∈Rn

Φ(x) := l(x) + r(x) (2.18)

where l(x) is a convex and smooth function, dependent of the observed data, and r(x) is a lower

semi-continuous, convex, and nonsmooth regularization function. For example, if l(x) =
1

2
‖Ax− b‖22

and r(x) = λ‖x‖1, then equation (2.18) similarly corresponds to the LASSO problem.

Definition 2. (Lower semi-continuous funtion) Consider a function f : Rn → R and a point x0 ∈

Rn. The function f is said to be lower semi-continuous at x0 if

f(x0) ≤ lim
x→x0

inf f(x). (2.19)

Furthermore, a function f : Rn → R is lower semi-continuous if and only if its epigraph is closed,

that is, the set of points lying on or above its graph contains all its limit points [49, 50, Chapter 3].

Figure 2.5 depicts in blue a lower semi-continuous function f .

Figure 2.5: Lower semi-continuous function f .

Definition 3. (Moreau envelope) Let f(x) be a lower semi-continuous function, and let α > 0 be a

scalar. The Moreau envelope fα(x) is

fα(x) := inf
z

{
f(z) +

1

2α
‖z− x‖22

}
≤ f(x). (2.20)

Evaluating the proximity operator can be viewed as a gradient-descent step for a regularized ver-

sion of the original function, with α as a step-size parameter controlling the tradeoff between minimiz-

ing f and being close to x.

The Moreau envelope is a regularized version of f , approximating it from below as shown in Figure

2.6. It has domain Rn and it is continuously differentiable, even when f is not.

15

The yellow line in Fig. 2.6 represents the function f = |z|+ |z− 2|+ |z+ 2| − |z− 1|, while the blue

and red lines depict the Moreau envelope of f for α = 1 and α = 0.5, respectively. The significant

point is that both f and fα have the same set of minimizers. Also, for a smaller value of α, f is better

approximated by the Moreau envelope.

-3 -2 -1 0 1 2 3

x

0

1

2

3

4

5

6

7

8

f1(x)
f0.5(x)
f(x)

Figure 2.6: Function f and its Moreau envelope fα, for α equal to 0.5 and 1.

Definition 4. (Proximity operator) Let f(x) be a lower semi-continuous function, and let α > 0 be a

scalar. The proximity operator proxαf (x) of f with parameter α is

proxαf (x) = arg min
z

{
f(z) +

1

2α
‖z− x‖22

}
, (2.21)

The proximity operator proxαf in Definition 4 specifies the value that solves the minimization prob-

lem introduced by the Moreau envelope definition.

Figure 2.7: Proximity operator step at different points.

Figure 2.7 shows what happens when the proximity operator is applied. The black line corresponds

to the boundary of the domain of f while the dashed lines are its level curves. Picking the red points

and applying the proximity operator results in the corresponding green points. After the red points

already inside the domain of f being mapped by the proximity operator, the corresponding green

16

points remain inside its domain and move towards the minimum. In the situation of the red point

outside the domain of f , it is first moved to the boundary of the domain and then moved towards the

minimum. The parameter α controls the arrows length, with small values conferring smaller steps

towards the minimum of f , and large values allowing bigger steps.

One property of proximity operators is the separable sum. If f(x1,x2) = f1(x1) + f2(x2), then

proxf (x) = (proxf1(x1),proxf2(x2)). (2.22)

Hence, the proximity operator of a separable function can be computed by calculating the proxim-

ity operator of each of the separable parts of the function independently. Evaluating the proximity

operator of a fully separable function reduces to calculating the proximity operator of scalar functions.

The proximity operator can be seen as a gradient-descent step for the Moreau envelope of f

known as the Proximal Gradient Descent. The derivative of the Moreau envelope is

∂fα(x) = ∂ inf
z

{
f(z) +

1

2α
‖z− x‖22

}
=

=
1

α

[
x− proxαf (x)

]
,

(2.23)

and thus that proxαf (x) = x− α∂fα(x).

Proximity operators and fixed-point theory are not entirely unrelated. In fact, proxαf (x∗) = x∗ if

and only if x∗ is a minimizer of f(x). This means that starting at an initial point and continuously

applying the proximity operator such that

xk+1 = xk − α∇fα(xk), (2.24)

the minimum of the Moreau envelope is reached at convergence. Therefore a minimum of f is also

reached, at which ∇fα(xk) = 0, and consequently proxαf (x∗) = x∗.

Considering Φ(x) from equation (2.18), the proximal gradient consists of only two steps that must

be iterated until convergence.

• In the first step, a point vk is defined by calculating the gradient step with respect to the differ-

entiable part of Φ:

vk = xk − α∇l(xk). (2.25)

• The second step is the computation of the proximity operator of the nondifferentiable part of Φ

at vk:
xk+1 = proxαr(vk)

= proxαr(xk − α∇l(xk)).
(2.26)

Proof. If x∗ minimizes Φ then

1

2α
‖x− x∗‖22 + Φ(x) ≥ Φ(x∗) =

1

2α
‖x∗ − x∗‖22 + Φ(x∗), ∀x. (2.27)

Therefore x∗ minimizes
1

2α
‖x− x∗‖22 + Φ(x), and x∗ = proxΦ(x∗). On the other hand, the point x̄

minimizes
1

2α
‖x− z‖22 + Φ(x) if and only if 0 ∈ ∂Φ(x̄) + (x̄− z). Considering x̄ = z = x∗, 0 ∈ ∂Φ(x∗)

thus x∗ minimizes Φ.

17

In this way, the minimizers of Φ correspond to fixed points of proxΦ, and Φ can be minimized just

by finding a fixed point of its proximity operator.

To further illustrate the operation of these operators, the proximity operator of the `1 norm is

exemplified in Figure 2.8. The yellow line represents the function f(x) = |x|, while the red line

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x0

|x|+ 1
2
(x− x0)

2

fα(x)

f(x)

Figure 2.8: Proximity Operator and Moreau envelope (first iteration).

represents the corresponding Moreau envelope fα(x) for α = 1. The blue line is the function |x| +
1

2
(x − x0)2 with x0 = 1.8. The minimum of this function, represented by a black circle, defines the

proximity operator, and its coordinates are (proxf (x0), fα(x0)) = (0.8, 1.3), which is closer to the

minimum of f (at x = 0) than x0. The magenta square is the point that characterizes x1, the next

point to iterate through. Figure 2.9 depicts the second iteration of the algorithm, wherein x1 is taken

as x0 in Figure 2.8. This time the black circle is closer to the minimum of f than x1.

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x0

|x|+ 1
2 (x− x0)

2

fα(x)
f(x)

Figure 2.9: Proximity Operator and Moreau envelope (second iteration).

The optimization problem is

proxα‖·‖1(x) = arg min
z

{
|z|+ 1

2α
‖z− x‖22

}
, (2.28)

18

which is separable, and thus equation (2.28) can be written as follows{
proxα‖·‖1(x)

}
i

= arg min
zi

{
|zi|+

1

2α
(zi − xi)

2

}
. (2.29)

Applying the optimality condition yields

{proxα‖·‖1(x)}i =

xi − α ifxi > α

0 if|xi| ≤ α
xi + α ifxi < −α

. (2.30)

Equation (2.30) is known as the element-wise Soft Thresholding function, and can be written as

{Sα(x)}i = sign(xi)(|xi| −α)+, where (·)+ is the nonnegative part of the function inside parentheses.

For the LASSO problem

min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1, (2.31)

the objective is split in l(x) =
1

2
‖y − Ax‖22 with gradient ∇l(x) = AT (Ax − y), and r(x) = λ‖x‖1

whose proximal operator proxαr(x) = Sλα(x) defined as in equation (2.30).

19

3
System Identification

Contents
3.1 Model Selection . 21
3.2 Parameter Estimation . 22

20

System identification is the experimental approach for modeling a process from input/output data.

Its main steps involve the selection of a suitable model structure, the process model parameters

estimation, and model validation.

The structure of a discrete linear, time-invariant system can be described by its input and output

relationship as follows

A(q−1)y(k) =
B(q−1)

F (q−1)
u(k) +

C(q−1)

D(q−1)
e(k), (3.1)

where
A(q−1) = 1 + a1q

−1 + . . .+ ana
q−na ,

B(q−1) = b0 + b1q
−1 + . . .+ bnb

q−nb , b0 6= 0

C(q−1) = 1 + c1q
−1 + . . .+ cnc

q−nc ,

D(q−1) = 1 + d1q
−1 + . . .+ dnd

q−nd ,

F (q−1) = 1 + f1q
−1 + . . .+ fnf

q−nf ,

(3.2)

are polynomials defined in the backward shift operator q−1, and y(k), u(k) and e(k) are the output,

input, and zero mean white noise respectively.

3.1 Model Selection

Several linear models can be derived from equation (3.1), but this thesis focuses on the AutoRe-

gressive with eXogeneous input (ARX) and the AutoRegressive Moving Average with eXogeneous

input (ARMAX) models that model adequately most situations of interest in Adaptive Control.

The AutoRegressive with eXogeneous input (ARX) model admits the following structure

A(q−1)y(k) = B(q−1)u(k) + e(k), (3.3)

hence, C = D = F = 1. The parameters ai and bi in the model are the system coefficients. Using

equation (3.3), the time-domain output at time k is

y(k) = −a1y(k − 1)− . . .− ana
y(k − na)+

+ b0u(k) + b1u(k − 1) + . . .+ bnb
u(k − nb) + e(k),

(3.4)

that can be written in vector form as

y(k) =
[
−y(k − 1) . . . −y(k − na) u(k) u(k − 1) . . . u(k − nb)

]

a1

...
ana

b0
b1
...
bnb

+ e(k)

= ϕT (k)θ(k) + e(k).

(3.5)

The regression vector ϕ(k) consists of lagged outputs and inputs, and the vector θ contains the

unknown parameters, that are to be estimated.

The ARMAX model is represented by the following structure

A(q−1)y(k) = B(q−1)u(k) + C(q−1)e(k), (3.6)

21

where the difference to the ARX model is the polynomial C(q−1).

Many industrial applications are affected by non stationary disturbances (random steps occurring

at random times and Brownian motion), and it has been argued that integrated models like Controlled

AutoRegressive Integrated Moving Average (CARIMA) are more appropriate as they intrinsically ac-

count for integral action. This model is further explained in Chapter 5.

3.2 Parameter Estimation

A process is described by a set of discrete-time measurements that characterizes the time evo-

lution of its output in response to a known input. This section provides the generic approach for

parameters estimation in system identification using the two most known recursive algorithms, the

RLS and the LMS. They are important not only to understand what is the usual approach for system

identification, but also to serve as a baseline for comparison with other algorithms.

3.2.1 Recursive Least Squares

The LS method consists of driving the parameter estimates of a given model to best fit a data set

according to a quadratic criterion. Consider the ARX model in equation (3.5). Given n observations

the LS method optimum solution

θ̂ = arg min
θ

1

2

n∑
k=1

‖y(k)− ϕT (k)θ‖22, (3.7)

corresponds to the minimum of the sum of the squared errors, defined as the difference between the

true value of the parameter and the estimated by the method. Provided that the inverse exists, a

closed form solution is obtained as

θ̂ = (ΦTΦ)−1ΦTY , (3.8)

where
Φ =

[
ϕT (1) . . . ϕT (n)

]T
,

Y =
[
y(1) . . . y(n)

]T
.

(3.9)

Yet this batch LS method has the disadvantage of being an offline method, requiring all the data

to be known before the estimation process which is not admissible in the context of this work. Fur-

thermore, each time that new information is available, the model parameters need to be calculated

by recomputing (3.8). As time progresses, this procedure becomes unreasonable both because it

turns computationally impractical, and the memory required to store the full data set grows linearly

with it. To deal with these negative considerations a RLS method can be defined, combining previous

estimates with new data acquired.

As new observations become available, the issue is how to find the current estimate θ̂(k) as a

function of the previous estimate θ̂(k − 1), the current system output y(k), and the system input

u(k − 1) in a recursive fashion.

Let Φ(k) and Y (k) be
Φ(k) =

[
Φ(k − 1) ϕT (k)

]T
,

Y (k) =
[
Y (k − 1) y(k)

]T
.

(3.10)

22

The LS closed form solution in (3.8) can also be written as

θ̂(k) = Λ−1(k)

k∑
t=1

y(t)ϕ(t), (3.11)

or

Λ(k)θ̂(k) =

k∑
t=1

y(t)ϕ(t), (3.12)

where

Λ(k) =

k∑
t=1

ϕ(t)ϕT (t) (3.13)

is the information matrix that verifies

Λ(k) = Λ(k − 1) + ϕ(k)ϕT (k). (3.14)

Combining (3.12), (3.13), and (3.14) leads to an equation of the form

θ̂(k) = θ̂(k − 1) + Λ−1(k)ϕ(k)
[
y(k)− ϕT (k)θ̂(k − 1)

]
. (3.15)

As it stands, the algorithm is not well suited for computation given that at each time instant, a

matrix needs to be inverted. To avoid the matrix inversion in each iteration the covariance matrix can

be computed in spite of the information matrix

P (k) =
[
Λ(k − 1) + ϕ(k)ϕT (k)

]−1
. (3.16)

Applying the Matrix Inversion Lemma (see Appendix 6) with

A = P (k − 1), B = ϕ(k), C = 1, D = ϕT (k), (3.17)

and a few matrix manipulations, the RLS equations are then

ε(k) = y(k)− ϕT (k)θ̂(k − 1),

θ̂(k) = θ̂(k − 1) +K(k)ε(k),

K(k) = P (k)ϕ(k),

P (k) = P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

1 + ϕT (k)P (k − 1)ϕ(k)
,

(3.18)

where ε(k) is known as the prediction error, and K is the so-called Kalman Gain that measures how

much the estimate should be changed given a certain measurement. If P (k) is large, it means that the

state is estimated to change a lot which requires changing the estimates with new observations. As

a result the Kalman Gain is high. On the other hand, if P (k) is small then the state does not change

much therefore the Kalman Gain is low. A common choice for the initial values is to take P (0) = cI,

and θ̂(0) = 0 where c is a large constant and I the Identity Matrix. Initial estimates of P (k) and θ̂(k)

are enough to run RLS. The block diagram with the setup previously detailed is depicted in Figure

3.1.

23

RLSy(k), φ(k) θ(k), P(k)

θ(k − 1), P(k − 1)

Figure 3.1: RLS Block Diagram

3.2.2 Variable Forgetting Factor

When the RLS converges, the Kalman gain K(k) decreases, and the algorithm becomes insen-

sitive to parameter variations when identifying time-varying systems. To tackle this difficulty, a cost

function with weights exponentially decaying in the past information direction is used

E(k) =
1

2

k∑
i=0

βk−i
(
y(i)− ϕT (i)θ(i)

)2
, (3.19)

where 0 < β < 1 is known as the forgetting factor. When the forgetting factor is very close to one, the

algorithm achieves low mis-adjustment and good stability, but its tracking capabilities are reduced.

On the other hand, a smaller value of the forgetting factor improves tracking performance but also

increases the mis-adjustment which may affect the stability of the algorithm. The asymptotic memory

N gives the idea of the number of past data affecting the current estimate N =
1

1− β
. The RLS with

exponential forgetting factor equations are

ε(k) = y(k)− ϕT (k)θ̂(k − 1),

θ̂(k) = θ̂(k − 1) +K(k)ε(k),

K(k) = P (k)ϕ(k),

P (k) = β−1

[
P (k − 1)− P (k − 1)ϕ(k)ϕT (k)P (k − 1)

β + ϕT (k)P (k − 1)ϕ(k)

]
.

(3.20)

A fixed exponential forgetting factor can still be inadequate as the algorithm is prone to estimator

windup or covariance blow-up. Under normal operating conditions the forgetting factor acts to increase

the size of the covariance matrix P (k) while the regression vector ϕ(k) acts to decrease it, achieving

a balance between alertness to parameters variations, and convergence. However when the input is

not persistent or it decreases significantly in amplitude, below a given level where the system is not

excited anymore (system is at equilibrium), the regression vector ϕ(k) holds no new information. In

this situation, P (k) = β−1P (k − 1) and since β < 1 the covariance matrix increases in size leading

to unreliable and biased estimates. There also exist some problems with exponential forgetting which

can cause strong misfitting of the estimations. One of these problems is when the parameters are kept

constant over a long period of time and then an abrupt variation occurs. At the time of the variation,

the gain is too low and the estimates converge too slowly to their true values.

Defining a measure of the information content as the weighted sum of the squares of the a poste-

riori errors

Σ(k) = β(k)Σ(k − 1) + (1− ϕT (k)K(k))ε2(k). (3.21)

24

A well-known method of choosing the forgetting factor, described in [51], consists of keeping the

information content of the algorithm constant Σ(k) = Σ(k − 1) = . . . = Σ0.

Knowing that β(k) = 1− 1

N(k)
, and using equation (3.21) results inN(k) =

Σ0

[1− ϕT (k)K(k)] ε2(k)
.

The value of Σ0 is set equal to the expected measurement noise variance (assuming there is some

kind of knowledge about the process) times a nominal asymptotic memory length, Σ0 = σ2
eN0.

If β(k) < βmin then β(k) = βmin. Therefore, at each time instant, the forgetting factor is as follows

β(k) = max

{
βmin, 1−

[
1− ϕT (k)K(k)

] ε2(k)

Σ0

}
, (3.22)

3.2.3 Least Mean Square

Whereas the RLS is based on the minimization of a linear least squares, the LMS algorithm [52]

derives from the minimization of the cost

J(k) =
1

2
|e(k)|2, (3.23)

where e(k) is the instantaneous error, equal to the difference of the desired and the estimated output

e(k) = y(k)− ϕT (k)θ(k). (3.24)

The LMS is very simple to implement, requiring low computational complexity. However, compared to

the RLS, it has a lower convergence rate, and it behaves poorly in presence of coloured signals.

Since this thesis deals with system identification where the input signal is always real-valued, the

use of the conjugate operator is omitted and the non-conjugate matrix transpose ((·)T) is used instead

of the Hermitian transposition ((·)H).

The gradient vector of J(k) can be expressed as

∂J(k)

∂θ(k)
= −r(k) +R(k)θ(k), (3.25)

where r(k) and R(k) are, respectively, the cross-correlation vector between the regression vector and

the output, and the regression vector correlation matrix. The gradient vector is then characterized

using instantaneous estimations of r(k) and R(k)

r(k) = ϕ(k)y(k),

R(k) = ϕ(k)ϕT (k).
(3.26)

Thus, equating equation (3.25) to zero leads to a parameter vector update given by

θ(k) = θ(k − 1)− µ∂J(k)

∂θ(k)

= θ(k − 1) + µe(k)ϕ(k),

(3.27)

where µ is the step size that balances the algorithm convergence and steady-state error. The conver-

gence condition of LMS is imposed by

0 < µ <
1

λmax
, (3.28)

where λmax is the maximum eigenvalue of the regression vector covariance matrix.

25

From equation (3.27) it is visible that the parameters adjustment is directly proportional to the re-

gression vector ϕ(k). When ϕ(k) is large, the LMS undergoes a gradient noise amplification. This

problem is circumvented if the update applied to the parameter vector at each time step is normal-

ized, with respect to the squared euclidean norm of ϕ(k). This modification entails the well-known

Normalized Least Mean Square (NLMS) algorithm

θ(k) = θ(k − 1) + µ
e(k)ϕ(k)

α+ ϕT (k)ϕ(k)
, (3.29)

where the regularization parameter α is used to prevent division by zero, especially during initialization

when ϕ(k) = 0.

26

4
Sparsity Aware Recursive Algorithms

Contents
4.1 RZA-NLMS . 28
4.2 `1-RLS . 30
4.3 RLS-Weighted LASSO . 32
4.4 Results . 36

27

In this chapter the estimation process of a sparse parameters vector performed by several recur-

sive algorithms is described.

4.1 RZA-NLMS

Motivated by LASSO, the `1 norm optimization strategy is incorporated in the NLMS cost function

in order exploit the sparsity of the system. The objective is to minimize the following cost function

J(k) =
1

2
e2(k) + γ‖θ(k)‖1. (4.1)

Calculating the subgradient of J(k), and equating it to zero gives an update equation for the

parameter vector, of the form

θ̂(k) = θ̂(k − 1)− µ∂J(k)

∂θ̂(k)

= θ̂(k − 1)− ρ sgn
(
θ̂(k − 1)

)
+ µ

e(k)ϕ(k)

α+ ϕT (k)ϕ(k)
,

(4.2)

where sgn (·) is the sign function, and ρ = µγ controls the effect of the additional term−ρ sgn
(
θ̂(k − 1)

)
.

First introduced in [24], this term is responsible for attracting the coefficients of θ to zero, hence the

name zero-attractor.

Intuitively, the zero-attractor speeds-up convergence when most of the coefficients of θ are zero

(sparse system) and ρ is a controllable parameter that determines the degree of zero attraction of the

`1 norm for the parameter vector coefficients.

Based on the Zero-Attractor Least Mean Square (ZA-LMS), this algorithm gives biased estimates.

Notwithstanding, an appropriate choice of ρ can be shown to give ZA-LMS results with a lower mean

squared error in comparison to the standard LMS when sparse systems are considered [23, 24].

Regardless, forcing all the parameters to zero uniformly may be problematic, especially for less

sparse systems, in which relevant coefficients should preserve their relevance. Weighting the zero-

attractor can, however, avoid uniform shrinkage. A weighted algorithm can be derived either using the

weighted `1 norm directly or through the log-sum penalty [53]. The Reweighted Zero-Attractor Nor-

malized Least Mean Square (RZA-NLMS) will be derived using the latter while the following sections

will address the former. Hence, the following cost is considered

J(k) =
1

2
e2(k) + γ

n∑
j=1

log

(
1 +
|θ̂j(k)|
ε

)
. (4.3)

Here, the penalty term is no longer the `1 norm but the log-sum penalty, that behaves more similarly to

the `0 pseudo-norm. Figure 4.1 shows the plots of the `0 pseudo-norm, the `1 norm, and the log-sum

function with a value of ε such that they all intersect at the coordinates where the ordinate is equal

to 1. In [54] it was shown that when ε = 0, the log-sum penalty function is essentially the same as

the `0 pseudo-norm. Thus, it is expected that it behaves similarly to the `0 pseudo-norm when ε is

small. Furthermore, as ε→ 0, it is more likely to converge to an undesirable local minimum, therefore

adding the log-sum penalty function turns the problem into a non convex optimization problem with no

28

guarantee that the algorithm converges to a global minimum. Subsequently, it is important to choose

a suitable initial point if possible. In fact, the probability of finding a global minimum can be improved

by starting from a different initialization points and choosing the converged point that achieves the

minimum objective function value.

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

1.2

‖x‖0
‖x‖1
log(1 + |x|/ǫ)

Figure 4.1: At the origin, the `0 pseudo-norm (in blue) is better approximated by the log-sum penalty (in yellow)
function than by the traditional `1 norm (in red).

Additionally, a monotonically decreasing sequence {ε(k)} can be considered, starting with a rela-

tively large value to provide a stable estimate, and then its value can be decreased.

Using the log-sum penalty function the update equation for the parameter vector is then

θ̂(k) = θ̂(k − 1)− ρ
sgn

(
θ̂(k − 1)

)
1 + |θ̂(k − 1)|/ε

+ µ
e(k)ϕ(k)

α+ ϕT (k)ϕ(k)
, (4.4)

where ρ =
µγ′

ε′
and ε =

1

ε′
. The parameters with magnitudes comparable to

1

ε
are affected by the

zero attractor, while on parameters with magnitudes larger than
1

ε
the zero attractor has small effect,

introducing less bias in the estimates.

The algorithm outlined above is summarized in Algorithm 1.

Algorithm 1 RZA-NLMS

µ, ρ, α . inputs

γ(0), β, y(k), θ̂(0) = 0 . initialization

1: for k = 1, 2, . . . do . time recursion

2: θ̂(k) = θ̂(k − 1)− ρ
sgn

(
θ̂(k − 1)

)
1 + |θ̂(k − 1)|/ε

+ µ
e(k)ϕ(k)

α+ ϕT (k)ϕ(k)

3: end for . end of recursion

29

4.2 `1-RLS

The RLS cost function of equation (3.19) is modified as follows

J(k) = E(k) + γ(k)f
(
θ̂(k)

)
, (4.5)

where f : Rn → R is a convex function, and γ(k) ≥ 0 is a regularization parameter that trades-off the

amount of regularization and the estimation error.

Assuming that f is a generic nondifferentiable function, and that E(k) is differentiable everywhere,

then the subgradient is a possible alternative for the gradient computation. Recalling the definition,

one valid subgradient vector of the cost function in equation (4.5) is

∇sJ(k) = ∇E(k) + γ(k)∇sf
(
θ̂(k)

)
. (4.6)

To find the optimal θ̂(k), the subgradient ∇sJ(k) is set to zero. The following equation shows the

relation for the ith term

k∑
m=0

βk−m

y(m)−
n∑
j=1

θ̂j(k)ϕ(m− j)

ϕ(m− i) = γ(k)
{
∇sf

(
θ̂(k)

)}
i
. (4.7)

The same equation can be written for all i = 1, . . . , n and put in matrix form as a system of modified

normal equations

Φ(k)θ̂(k) = r(k)− γ(k)∇sf
(
θ̂(k)

)
. (4.8)

where Φ(k) ∈ Rn×n and r(k) ∈ Rn are, respectively, the deterministic autocorrelation matrix for the

regression vector ϕ(k) and the deterministic cross-correlation estimate vector between y(k) and ϕ(k):

Φ(k) =

k∑
m=0

βk−mϕ(m)ϕT (m) = βΦ(k − 1) + ϕ(k)ϕT (k),

r(k) =

k∑
m=0

βk−my(m)ϕ(m) = βr(k − 1) + y(k)ϕ(k).

(4.9)

Defining a new variable Θ(k) = Φ(k)θ̂(k), equation (4.8) becomes

Θ(k) = r(k)− γ(k)∇sf
(
θ̂(k)

)
. (4.10)

Replacing r(k) in equation (4.10) with the update recursion defined by equation (4.9) results in an up-

date equation for Θ(k). The assumption that γ(k−1) and ∇sf
(
θ̂(k − 1)

)
do not change substantially

each time instant, allows for an update equation of the form

Θ(k) ≈ βΘ(k − 1) + y(k)ϕ(k)− γ(k − 1)(1− β)∇sf
(
θ̂(k)

)
. (4.11)

Note that this assumption implies time invariant and slow variation scenarios only. Using the Matrix

Inversion Lemma (see appendix 6), the covariance matrix P (k), inverse of the autocorrelation matrix

Φ(k), yields the well-known update equation

P (k) = β−1
[
P (k − 1)−K(k)ϕT (k)P (k − 1)

]
, (4.12)

30

where the Kalman gain vector is K(k) =
P (k − 1)ϕ(k)

β + ϕT (k)P (k − 1)ϕ(k)
. The relation Θ(k) = Φ(k)θ̂(k) ⇔

θ̂(k) = P (k)Θ(k) and the update in equation (4.11) allows writing an estimate, at each time instant,

for θ(k)

θ̂(k) = θ̂(k − 1) +K(k)e(k)− γ(k − 1)(1− β)P (k)∇sf
(
θ̂(k)

)
(4.13)

Generally, the suitable values of γ are found through repeated trials so as to reduce the steady-

state error. To avoid tuning the regularization parameter for every distinct simulation, [27] proposes

an automatic selection criterion for the value of γ(k) when white a input is used.

At this point, the algorithm is generically detailed remaining only the choice of f . The true measure

of sparsity is the non convex `0 pseudo-norm but, as seen in chapter 2, the `1 norm is known to be

a great convex approximation. In this case, f (θ(k)) = ‖θ(k)‖1 =
n∑
i=1

|θi(k)| whose subgradient is

∇s‖θ(k)‖1 = sgn (θ(k)), the sign function. Again, the use of the `1 norm penalty lead to biased

estimates by uniformly affecting all the parameters, which prompts the development of a weighted `1

norm scheme

‖Wθ̂(k)‖1 =
n∑
j=1

wj |θ̂j(k)|. (4.14)

The values wj , j = 1, 2, . . . , n are positive weighting factors that affect the corresponding n parame-

ters. W is a diagonal matrix with the values wj on its main diagonal. The subgradient of the weighted

`1 norm is then

∇s‖Wθ̂(k)‖1 = WT sgn
(
Wθ̂(k)

)
, (4.15)

but since W is a positive valued diagonal matrix, equation (4.15) becomes

∇s‖Wθ̂(k)‖1 = W sgn
(
θ̂(k)

)
. (4.16)

Finally, the weighting matrix is selected. In order to approximate the weighted `1 norm to the `0

pseudo-norm, the weights can be picked as inversely proportional to the actual value of the parame-

ters. However, the parameters value are unknown and the best approximation available are their last

estimates. Thereby,

wj =
1

|θ̂j(k − 1)|+ ε
. (4.17)

The parameter ε is positive and its purpose is to avoid numerical errors resulting from division by zero.

In [53], it is shown that a value of lower order than the nonzero estimates is the more suitable choice.

Equation (4.17) goes to show the relationship with the log-sum penalty mentioned earlier.

The algorithm outlined above is summarized in Algorithm 2.

31

Algorithm 2 `1-RLS

β, ε, ϕ(k), y(k) . inputs

γ(0), θ̂(0) = 0, P (0) = aI, a = constant . initialization

1: for k = 1, 2, . . . do . time recursion

2: K(k) =
P (k − 1)ϕ(k)

β + ϕT (k)P (k − 1)ϕ(k)

3: ε(k) = y(k)− ϕT (k)θ̂(k − 1)

4: P (k) = β−1
[
P (k − 1)−K(k)ϕT (k)P (k − 1)

]
5: θ̂(k) = θ̂(k − 1) +K(k)ε(k)− γ(k − 1)(1− β)P (k)

sgn
(
θ̂(k − 1)

)
|θ̂(k − 1)|+ ε

6: end for . end of recursion

The vector division operation in state 5 of Algorithm 2 denotes a simple element-wise division.

4.3 RLS-Weighted LASSO

The batch LASSO [21] in the lagrangian form yields an estimate given by

θ̂(k) = arg min
θ

1

2
‖Y(k)−Φ(k)θ‖22 + λ(k)‖θ‖1, (4.18)

for a sparse vector θ in a regression model of the type Y(k) = Φ(k)θ + e(k) where the observations

up until k are Y(k) =
[
yT (1) . . . yT (k)

]T and Φ(k) =
[
ϕT (1) . . . ϕT (k)

]T . Even though it

is non-differentiable, LASSO is also convex, hence being possible to obtain a global minimum through

linear programming techniques. However as the value of k increases, the size of Y(k) and Φ(k) also

increases, which leads to high complexity along with large memory requirements and computation

time. In that regard, a recursive version is developed to process the observations sequentially. The

Recursive LASSO (R-LASSO) [25, 26] objective is then formulated

J(k)R−LASSO =
1

2

k∑
i=1

βk−i‖y(i)− ϕ(i)θ‖22 + λ(k)‖θ‖1. (4.19)

Recalling the setup for the RLS, (4.19) is equivalent to

θ̂ = arg min
θ

J(k)R−LASSO

= arg min
θ

a(k) + θTR(k)θ − 2θT r(k)

2
+ λ(k)‖θ‖1,

(4.20)

with

a(k) =

k∑
i=1

βk−iy(i)T y(i),

r(k) =

k∑
i=1

βk−iϕ(i)T y(i),

R(k) =

k∑
i=1

βk−iϕ(i)Tϕ(i).

Analogous to RLS the quantities in (4.20) can be recursively updated.

32

Proof.

r(k + 1) =

k+1∑
i=1

βk+1−iϕT (i)y(i) =

k+1∑
i=1

ββk−iϕT (i)y(i) = β

k∑
i=1

βk−iϕT (i)y(i) + ββ−1ϕT (i)y(i)

= βr(k) + ϕT (i)y(i),

R(k + 1) =

k+1∑
i=1

βk+1−iϕT (i)ϕ(i) =

k+1∑
i=1

ββk−iϕT (i)ϕ(i) = β

k∑
i=1

βk−iϕT (i)ϕ(i) + ββ−1ϕT (i)ϕ(i)

= βR(k) + ϕT (i)ϕ(i).

Note that a(k) is just a scalar therefore its updating is not relevant for the minimization procedure.

Unlike RLS, gradient based minimization of J(k)R−LASSO is impossible due to the non-differentiability

of the `1 norm. To overcome it, the authors of [25, 26] use subgradient based iterative minimizers:

θ(k)i+1 = θ(k)i − αi∇̌J(k), (4.21)

where ∇̌J(k) denotes a sub-gradient of J(k)R−LASSO at θ(k)i, being θ(k)i the ith iterate of θ(k) and

αi > 0 the step size, which should be chosen with guarantee of convergence to the global minimum.

Having αi =
α√
i

or αi =
α

i
guarantees it as i → ∞, whilst αi = α guarantees convergence within

some α-dependent range of the optimal value. The subgradient vector is then given by

{∇̌J(k)R−LASSO}n =

{∇L(k)}n + λ(k)sgn(θn), if θn 6= 0

{∇L(k)}n − λ(k), if θn = 0, {∇L(k)}n > λ(k)

{∇L(k)}n + λ(k), if θn = 0, {∇L(k)}n < −λ(k)

0, if θn = 0,−λ(k) < {∇L(k)}n < λ(k)

, (4.22)

where L(k) =
θTR(k)θ − 2θT r(k)

2
is the differentiable LS objective function and ∇L(k) = R(k)θ −

r(k) its gradient. Granted that ∇L(k) can be recursively updated, the sub-gradient iterates can be

updated with reasonable complexity at each time instant k. Even so sub-gradient methods have slow

convergence, O
(

1√
k

)
, and it is not guaranteed that the limit of θ̂(k) necessarily converges to the

true θ as k →∞. An alternative could be the use of proximal gradient methods.

LASSO continuously shrinks the coefficients toward 0 as λ increases, and some coefficients are

exactly shrunk to 0 when λ is large enough. Continuous shrinkage can improve estimation accuracy

due to the bias-variance tradeoff. It has been shown that variable selection with LASSO can be

consistent if the underlying model satisfies specific conditions and that LASSO can perform automatic

variable selection because the `1 penalty is singular at the origin [45]. However LASSO shrinkage

produces biased estimates for the large coefficients, and thus it could be sub-optimal in terms of

estimation risk, hence the oracle properties do not hold.

The R-LASSO cannot guarantee the recovery of the correct support and consistently estimate the

non-zero entries of θ at the same time.

If
√
k < λ(k) < k and the irrepresentable condition [55] is met, R-LASSO guarantees (2.16) but

not (2.17). This happens because the rate of convergence is
k

λ(k)
which is slower than

√
k as in the

second oracle property, thus
[
S(θ̂(k))− S(θ)

]
diverges.

If lim
k→∞

λ(k)√
k

= λ0 ≥ 0 then lim
k→∞

Pr[supp(θ̂(k)) = supp(θ)] = g(λ0) < 1 with g(λ0) being an

increasing function of λ0. Since g(λ0) increases with λ0, for λ(k) ∝
√
k the limit in (2.16) is strictly less

33

than one. In this case the oracle properties are not fulfilled yet the estimates are at least asymptotically

unbiased.

There is no λ(k) for which the oracle properties simultaneously hold therefore the R-LASSO cannot

simultaneously estimate the signal support and the non-zero parameters values consistently. To

bypass these considerations, the `1 weighted version of the R-LASSO is shown next.

To hinder the negative results of R-LASSO a penalty function is sought to. It should weigh the `1

norm term |θn| individually and be signal dependent. A desirable function [25] is then

wµ(k)(|θ|) =
(aµ(k)− |θ|)+

µ(k)(a− 1)
u(|θ| − µ(k)) + u(µ(k)− |θ|), (4.23)

with u(·) being the step function and (·)+ the non-negative part of the function in parentheses. In [25]

the parameter a is set to 3.7 as in the Smoothly Clipped Absolute Deviation penalty [46]. A proper

choice of values for µ(k) and a grant the opportunity to set unwanted or irrelevant coefficients to zero,

while not affecting the remaining ones.

While on R-LASSO all the elements |θn| are identically weighted (w = 1), this weight function

proves the estimator with higher weights on small entries, and lower weights on entries with large

amplitudes. More precisely, as depicted in Figure 4.2, elements of size less than µ(k) are penalized as

in R-LASSO, elements between µ(k) and aµ(k) have a linearly decreasing penalization, and elements

larger than aµ(k) are not penalized at all. The weight function is updated using RLS estimates that

are computed alongside.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

θ

-0.5

0

0.5

1

1.5

w
µ
(k
)(
θ
)

µ(k)

aµ(k)

Figure 4.2: Weight function of equation (4.23) for values of µ(k) = 0.3 and a = 3.7.

Plugging (4.23) in the cost function of the R-LASSO gives

J(k)RW−LASSO =
1

2

k∑
i=1

βk−i‖y(i)− ϕ(i)θ‖22 + λ(k)

N∑
n=1

wµk
(|θ̂RLS

n (k)|)|θn|, (4.24)

where J(k)RW−LASSO is the new objective function to minimize. The now called RLS-Weighted

LASSO (RW-LASSO) holds an estimate given by

θ̂ = arg min
θ

J(k)RW−LASSO, (4.25)

34

which can also be updated similarly to R-LASSO. Although they involve affordable complexity, sub-

gradient methods have slow convergence, the proximity operator referenced in Chapter 2 is applied

instead.

For the specific case of LASSO where h(θ) = λ‖θ‖1, the main step consists of computing

Proxαi‖·‖1(θi − αi∇g(θi)) = Sη(θi − αi∇g(θi)) (4.26)

where [Sη(θ)]n = sign(θn)(|θn| − η)+ with η = αiλ known as the element-wise Soft-Thresholding

function. At each iteration the cost function is linearized around the current point. Since the weight

function in (4.23) yields values between 0 and 1, if it is used in the `1 weighted-norm λ‖wθ‖1 then we

can admit a new regularization parameter equal to γ = λw, and h(θ) = γ‖θ‖1. The proximal operator

of h(θ) is the element-wise Soft-Thresholding function now with τ = γα = λwα for the `1 weighted

recursive LASSO.

Still it is somewhat more complex than the R-LASSO since at each time instant k, an RLS estimate

must be computed to update the weights which will be used at the same instant. With a forgetting

factor β = 1, a penalty parameter
√
k < λ(k) < k and a parameter µk =

λ(k)

k
, the RW-LASSO fulfill

the oracle properties [25]. Choosing β < 1 enables both R-LASSO and RW-LASSO with tracking

capabilities for time-varying parameter vectors, yet the oracle properties are not met in this scenario.

The algorithm outlined above is summarized in Algorithm 3.

Algorithm 3 RLS-Weighted LASSO

β, ε, ϕ(k), y(k), a, α, imax . inputs

r(0) = 0, R(0) = 0, λ(0), θ̂(0) = 0, P (0) = δI, δ = constant . initialization

1: for k = 1, 2, . . . do . time recursion

2: r(k + 1) = βr(k) + ϕT (i)y(i)

3: R(k + 1) = βR(k) + ϕT (i)ϕ(i)

4: ε(k) = y(k)− ϕT (k)θ̂(k − 1)

5: K(k) =
P (k − 1)ϕ(k)

β + ϕT (k)P (k − 1)ϕ(k)

6: P (k) = β−1
[
P (k − 1)−K(k)ϕT (k)P (k − 1)

]
7: θ̂(k) = θ̂(k − 1) + P (k)ϕ(k)ε(k)

8: wµ(k)(|θ|) =
(aµ(k)− |θ|)+

µ(k)(a− 1)
u(|θ| − µ(k)) + u(µ(k)− |θ|)

9: for i = 1, . . . , imax do . iterative method

10: Proxαi‖·‖1(θi − αi∇g(θi)) = Sη(θi − αi∇g(θi))

11: end for . end of iterative method
12: end for . end of recursion

35

4.4 Results

The performance of the algorithms adopted in this chapter is now evaluated against both time

invariant and time varying systems. Since no control strategy is being considered yet, the algorithms

are analyzed per se. Consequently, all simulations are performed using stable systems. To generate

this type of systems, the MATLAB command drss is used.

The input signals applied to the systems may vary between Gaussian, binary, and uniformly dis-

tributed pseudo random signals. Gaussian signals are generated using the MATLAB command randn,

while the command idinput generates the others.

To simulate Gaussian white noise with zero mean the command randn is used. The noise se-

quence is then added to the noiseless output signal as discussed in Chapter 3.

Unless stated otherwise, the models used to validate the sparsity enforced feature of the algo-

rithms in this section will be of order 8, that is, their transfer function has 17 parameters:

H(q−1) =
b0 + b1q

−1 + b2q
−2 + b3q

−3 + b4q
−4 + b5q

−5 + b6q
−6 + b7q

−7 + b8q
−8

1 + a1q−1 + a2q−2 + a3q−3 + a4q−4 + a5q−5 + a6q−6 + a7q−7 + a8q−8
. (4.27)

4.4.1 Case I: Time Invariant Scenario

The first system has the following transfer function

H(q−1) =
−0.7336− 0.3455q−1 − 0.0605q−2

1 + 0.5171q−1 + 0.0966q−2
, (4.28)

and it is therefore a second order system. The sparse system to be identified has a total of 17

parameters and 5 of them are nonzero. The input signal is assumed to be white, and Gaussian

white observation noise with variance σ2
e = 0.01 is added to the system output. The algorithms are

simulated over 1000 data points.

The parameters for the different algorithm are chosen as below:

• RZA-NLMS: µ = 1.7, ρ = 1.2× 10−3

• `1-RLS : β = 0.9995, γ = 0.3, ε = 0.1

• RW-LASSO: β = 0.999

• RLS: β = 1

The estimation results are depicted in Table 4.1.

The first comment about the final estimated parameters is related to the algorithms that do not

show zero valued estimates. For the RLS it was already expected a no zero value to parameters

that actually vanish, opposed to the RZA-NLMS algorithm. Based on the LMS filter, they both have

similar convergence speed, and since the number of data points is not high enough for it to reach

the convergence values, a truly sparse solution is not achieved. The `1-RLS and the RW-LASSO

both have sparse solutions. As it can be seen, RW-LASSO not only shrinks the parameters that

were supposed to be zero, but also a few of those that have insignificant values. In this regard,

36

True
Values

RZA-NLMS
Estimated Values

`1-RLS
Estimated Values

RW-LASSO
Estimated Values

RLS
Estimated Values

Numerator
Parameters

(bi)

-0.7336
-0.3455
-0.0605

0
0
0
0
0
0

-0.7042
-0.1322
0.0615
-0.0406
0.0384
0.0249
0.0732
-0.0666
0.0238

-0.7324
-0.2562
0.0042

0
0
0
0
0
0

-0.7319
-0.2497

0
0
0
0
0
0
0

-0.7334
-0.3124
-0.0104
0.0383
-0.0101
-0.0329
0.0011
0.0259
0.0196

Denominator
Parameters

(ai)

0.5171
0.0966

0
0
0
0
0
0

0.3764
0.0094
0.0036
0.0229

0
0.0241
-0.0346
0.0113

0.3960
0.0047

0
0
0
0
0

0.0023

0.3876
0
0
0
0
0
0
0

0.4720
0.0317
-0.0519
0.0117
0.0448
0.0019
-0.0372
0.0089

Table 4.1: Estimation results of a second order system after 1000 data points.

the shrinkage of these low valued parameters or not, depends critically on the choice of the tuning

parameters, as a more fine tuning can lead to different outcomes.

Figure 4.3 displays the impulse response of the system from equation (4.28) and the impulse

response of the system estimated by the RW-LASSO algorithm.

Figure 4.3: Impulse response of the system. The blue color represent the system of equation (4.28) and the
orange color represent the estimated system using the RW-LASSO algorithm.

The analysis of the impulse responses should take into account two considerations: the first is the

order of the system, and second the similarity between the real and the estimated coefficients. Figure

4.3 shows that the two impulse responses match one another. Therefore the systems highly match

due to correct order estimation and correct transfer function parameters.

To also analyze the performance of the algorithms for different levels of sparsity, a new system of

37

order 4 is generated. The system admits the following transfer function

H(q−1) =
0.1630− 0.1051q−1 + 0.0938q−2 − 0.1762q−3 + 0.0595q−4

1− 0.8674q−1 − 0.5737q−2 + 0.6447q−3 − 0.1360q−4
. (4.29)

In this simulation the input signal is a Pseudo Random Binary Signal the other inputs remain equal.

The values of the parameters of each algorithm were obtained via repeated simulations. The

parameters for the different algorithm are as follows:

• RZA-NLMS: µ = 0.8, ρ = 5× 10−4

• `1-RLS : β = 0.9995, γ = 0.3, ε = 0.05

• RW-LASSO: β = 0.999

• RLS: β = 1

The estimation results are depicted in Table 4.2. They corroborate the poor ability of RZA-NLMS

to shrink the parameters exactly to zero.

True
Values

RZA-NLMS
Estimated Values

`1-RLS
Estimated Values

RW-LASSO
Estimated Values

RLS
Estimated Values

Numerator
Parameters

(bi)

0.1630
-0.1051
0.0938
-0.1762
0.0595

0
0
0
0

0.1409
-0.1251
0.0738
-0.1387
0.0326
0.0277
-0.0321
0.0198
-0.0227

0.1634
-0.1005
0.0896
-0.1737
0.0505

0
0.0013
0.0045

0

0.1651
-0.0840
0.0794
-0.1728
0.0376

0
0
0
0

0.1648
-0.1109
0.0997
-0.1854
0.0666
-0.0064
0.0054
0.0032
-0.0120

Denominator
Parameters

(ai)

-0.8674
-0.5737
0.6447
-0.1360

0
0
0
0

-0.8463
-0.5244
0.6092
-0.1149
0.0402
0.0103
-0.0202
-0.0187

-0.8168
-0.6302
0.6026
-0.0920

0
0
0
0

-0.7674
-0.6499
0.5573
-0.0746

0
0
0
0

-0.8790
-0.5540
0.6116
-0.1279
0.0152
-0.0026
0.0155
-0.0152

Table 4.2: Estimation results of a fourth order system after 1000 data points.

Figure 4.4 displays the impulse response of the system from equation (4.29) and the impulse

response of the system estimated by the RW-LASSO algorithm. In this case, they do not perfectly

match. A logical explanation is the underestimation of the system parameters. Taking into account

the values observed in Table 4.2, it is clear that the order of the system match the true order but there

is a difference between the real and the estimated coefficients values, that results in a difference of

impulse responses. If the two impulse responses match one another then the systems match either

due to correct order estimation and correct transfer function parameters.

Consistent with the results of Table 4.1, the `1-RLS yields the best performance among all al-

gorithms followed by the RW-LASSO. These results confirm that the sparse inducing algorithms

outperform regular RLS, with the LMS based one being an exception.

38

Figure 4.4: Impulse response of the system. The blue color represent the system of equation (4.29) and the
orange color represent the estimated system using the RW-LASSO algorithm.

Usually, the bias of an estimator is a decreasing function of model complexity, while the variance

is an increasing function of the model complexity. Figure 4.5 shows values of bias and variance

according to different model complexities, in particular different sizes of the parameter vector.

10 20 30 40 50 60

Number of elements in θ

0

0.1

0.2

0.3

0.4

B
ia

s

0

0.1

0.2

0.3

0.4

V
a

ri
a

n
c
e

a) RZA-NLMS: Bias-Variance Tradeoff

10 20 30 40 50 60

Number of elements in θ

0

0.1

0.2

0.3

0.4

B
ia

s

0

0.1

0.2

0.3

0.4

V
a

ri
a

n
c
e

b) l1-RLS: Bias-Variance Tradeoff

10 20 30 40 50 60

Number of elements in θ

0

0.1

0.2

0.3

0.4

B
ia

s

0

0.1

0.2

0.3

0.4

V
a

ri
a

n
c
e

c) RW-LASSO: Bias-Variance Tradeoff

Figure 4.5: Estimators bias and variance as function of θ size.

Even though vectors of higher dimensions are considered, both bias and variance do not change

considerably when sparse aware estimators are employed. The explanation lies in the zero attractor

terms that reduce the estimates degrees of freedom. In that end, it is possible to assert that for sparse

aware algorithms, the use of a large model or a small one, does not have a significant impact on the

bias and variance tradeoff.

39

The same system is estimated with observations affected by different noise levels. Figure 4.6 de-

picts the MSE and the `1 error of θ for different values of noise variance σ2
e . Figure 4.6 a) corresponds

0 1000 2000 3000 4000 5000

k

10
-4

10
-3

10
-2

10
-1

M
S

E

a) Low Noise Level: SNR = 30 dB

RZA-NLMS

L1-RLS

RLS

RW-LASSO

0 1000 2000 3000 4000 5000

k

10
-4

10
-3

10
-2

10
-1

M
S

E

b) Moderate Noise Level: SNR = 7.5 dB

0 1000 2000 3000 4000 5000

k

10
-4

10
-3

10
-2

10
-1

M
S

E

c) High Noise Level: SNR = 0 dB

Figure 4.6: MSE values of the algorithms for different levels of noise.

to high noise level of SNR = 0 dB while Figures 4.6 b) and c) correspond to moderate and low noise

levels, respectively, SNR = 7.5 dB and SNR = 30 dB. In all scenarios, the RZA-NLMS has the highest

MSE values. Followed by RLS, only in the low noise case, it becomes near the other two algorithms.

The percentage of correctly identified zero elements, as a function of the number of parameters of

θ is given in Figure 4.7. Figure 4.7 also portrays the `1 parameter estimation error (‖θ̂− θ0‖1) for each

of the three SNR values mentioned previously.

In regards to complexity, the RZA-NLMS shows the least burden computationally (O(P) opera-

tions). The `1-RLS has similar complexity to RLS (O(P 2)). The most expensive is the RW-LASSO with

complexity proportional to O(rP 2), where r is the number of iterations used in the iterative method.

In summary, the results obtained in the previous simulations demonstrated that, even though it

outperforms LMS, the RZA-NLMS algorithm acts poorly in comparison to RLS based methods.

When comparing `1-RLS and RW-LASSO, it seems that the former is better in respect to track-

ing performance and complexity. However the latter is better regarding the subset selection, mainly

because of the soft-thresholding rule introduced by the proximity operator.

4.4.2 Case II: Time varying Scenario

The tracking capability and the convergence speed of an algorithm do not relate, at all, to each

other. An algorithm with good converging properties can have terrible tracking capabilities in time

varying scenarios, or the contrary. Thereby the performance of the adopted algorithms to track

time varying sparse systems needs to be analyzed. The analysis includes the systems withstand-

ing changes in their parameters. These variations can be slow varying, or either sudden changes of

40

200 400 600 800 1000

k

0

50

100

[%
]

a) RZA-NLMS: % of correct zeros

200 400 600 800 1000

k

-10

0

10

[d
B

]

ℓ1 error of θ

200 400 600 800 1000

k

0

50

100

[%
]

b) L1-RLS: % of correct zeros

200 400 600 800 1000

k

-10

0

10

[d
B

]

ℓ1 error of θ

200 400 600 800 1000

k

0

50

100

[%
]

c) RLS: % of correct zeros

200 400 600 800 1000

k

-10

0

10

[d
B

]

ℓ1 error of θ

200 400 600 800 1000

k

0

50

100

[%
]

d) RW-LASSO: % of correct zeros

200 400 600 800 1000

k

-10

0

10

[d
B

]

ℓ1 error of θ

Figure 4.7: Percentage of correctly estimated zero elements of θ and `1 parameter estimation error.

the parameters values or changes of the support of the sparse system.

The following two simulations intend to illustrate the effect of variable forgetting, mentioned in

Chapter 3. In this case, the generated system admits the following transfer function

H(q−1) =
1.6131q−1 − 1.0263q−2 + 0.1140q−3

1− 0.8103q−1 + 0.1746q−2 − 0.0114q−3
. (4.30)

Here the parameter a1 is time-varying. Even though the transfer function is constantly changing,

the system is always stable. The blue line in Figure 4.8 is the real value of the parameter throughout

the simulation. The red and yellow lines are the estimated coefficient values when using a variable

forgetting factor and a fixed one (equal to 0.9995), respectively. Figure 4.8 also displays the variation

of β according to equation (3.22). As expected, when the variable forgetting factor is applied, the

estimate has a small drift. Notwithstanding, it follows the real value whereas using a fixed forgetting

factor takes too long to make the estimate change. The downside of this approach is that the esti-

mated parameter vector loses its sparsity feature. The variations of β lead also to small fluctuations

in the estimated values of the supposedly zero valued parameters.

Again, estimators respond much more quickly to model variations when a variable forgetting factor

is used. The response can be faster or slower, depending on the parameter used in equation (3.22),

although with faster response (and more alertness to variations) comes a greater steady state error.

Figure 4.9 shows the variance of the estimate as function of the rising time, in terms of the number

of iterations it takes for the algorithm to react to a change. For a fixed forgetting factor, as its value

41

0 100 200 300 400 500 600 700 800 900 1000

k

-1.5

-1

-0.5

0

0.5

a
1
(k

)

True Value

Variable β

Fixed β = 0.9995

0 100 200 300 400 500 600 700 800 900 1000

k

0

0.5

1

β
(k

)

Figure 4.8: Time evolution of the system parameter a1 during Simulation III (upper plot) and time evolution of
the variable forgetting factor, using the sparsity-aware algorithm.

20 40 60 80 100 120 140

Rising time [number of iterations]

10-4

10-2

100

102

V
a

ri
a

n
c
e

Variable Forgetting Factor

Fixed Forgetting Factor

Figure 4.9: Variance as a function of the rising time.

becomes closer to one, the rising time increases and the variance decreases. As depicted in Figure

4.9, a variable forgetting factor can be more useful to the estimation as it exhibits a compromise

between the rising time and the variance.

Hybrid systems concern dynamical systems governed by differential or difference equations that

exhibit both continuous and discontinuous behavior [56]. In many cases, the discontinuous behavior

comes from switches or interactions between distinct physical systems or parts of them.

Consider the following hybrid system identification example corresponding to the RC series circuit

depicted in Fig. 4.10.

The system has one switch that allows shifting between one of two distinct states. The switch is

either open and the output, Vout, is measured at point A, or the switch is closed and Vout is measured

at point B. The two states correspond to a first and a second order system, respectively.

The aim is to identify at each time instant which of the operating states is active, and it is ex-

pected that, using a sparse representation, the time instants of these transitions become evident.

The knowledge of the first order system having less coefficients than the second order system aids

42

Figure 4.10: Second order RC series circuit.

the identification of the active state of the hybrid system at each time instant.

Let the measurements of Vin and Vout consist of samples at time instants k = nT, n = 1, 2, ...,

where T is the sampling time. The parameter estimation is updated for each time k. The regression

vector ϕ(t) is of the form [Vout(k − 1) Vout(k − 2) ... Vin(k) Vin(k − 1) Vin(k − 2) ...].

The data was acquired for values of R1 = 100 kΩ, R2 = 500 kΩ, C1 = 100mF, and C2 = 5µF, with

a sampling rate lesser than the time constant of the system.

0 100 200 300 400 500 600 700 800 900 1000

k

-0.5

0

0.5

1

a
2
(k

)

True

RZA-NLMS

L1-RLS

RWLASSO

Figure 4.11: Time evolution of the system parameter a2.

Figure 4.11 shows the parameter a2 and the algorithms estimates θ2(t) of a2, that is the parameter

associated to Vout(k − 2). The true value of this parameter, represented by the blue line, is zero in

state A and 0.6 in state B.

Analyzing Figure 4.11, the initial system corresponds to state B and around k = 400 a sudden

change is registered, where a drop in the absolute value of a2, and thus the operating system no

longer corresponds to the second order series RC circuit, as the order of the system decreases.

This decrement of order is reflected in the number of nonzero coefficients of the regression vector.

Thereby, as soon as the switch opens, the dependency on the measurement of Vout(k− 2) vanishes,

and thus a2 becomes zero.

In respect to the algorithms, RW-LASSO is faster to react to the change and it has the most

accurate estimate. It also has lower variance comparing to the other algorithms. Besides being the

slowest, the RZA-NLMS algorithm does not even converge to the exact value of zero after the sudden

parameter variation.

43

4.4.3 Case III: Using Sparse Estimators to avoid instability

The aim of the last simulation is to demonstrate that sparse estimation can be used not only to

reveal the true order of the system. In fact, whether the order is known or not, this example illustrates

that sparse estimation may be used to estimate systems parameters that by standard means are not

possible to estimate.

The system with the following transfer function

H(q−1) =
−1.4 + 1.3q−1 − 0.6q−2

1− 0.7q−1 + 068q−3
, (4.31)

is unstable. Besides a pair of complex conjugate zeros at z1, z2 = 0.4643 ± 0.4615j, the system has

poles located at p1, p2 = 0.6988 ± 0.6975j and p3 = −0.6975. The pair of complex conjugate poles

have an absolute value equal to 0.9873, and they are therefore inside the unit circle. The Z plane with

the location of zeros and poles of the system can be observed in Figure 4.12 a). In Figure 4.12 b) is

depicted the impulse response of the system.

-1 -0.5 0 0.5 1

Real Part

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a

g
in

a
ry

 P
a

rt

a) Zero/Pole Map

Zero

Zero

Zero

Pole

Pole

Pole

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

b) Impulse Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 4.12: System from equation (4.31) a) impulse response , and b) Z plane with the pole/zero locations.

Be aware of equation (4.31), the coefficient a2 is equal to zero. The estimated â2, using RLS, is

expected to be different from zero. As some of the poles are located near the unit circle boundary,

slightly different estimates can shift the poles to outside the unit circle. Consequently, the system

becomes unstable, the output grows without bound, and sooner or later the estimation procedure is

compromised.

Using sparsity-aware estimators, it is possible to reduce the value of â2 towards zero, thereby

having no effect on the system stability. Figure 4.13 has the map of poles and zeros of the systems

resulting from a) RLS estimation and b) sparse-based estimation. The algorithms were simulated also

considering a model of eighth order. That is the reason for the high number of poles and zeros. The

sparsity-aware estimator reduced the irrelevant coefficients to zero, hence the number of poles and

zeros in the figure match the number of poles and zeros of the system from equation (4.31). Observe

the two poles that were slightly moved over the boundary of the unit circle in the first case.

Figure 4.14 has the impulse responses of the systems resulting from a) RLS estimation and b)

44

sparse-based estimation. In the first case, the response grows unlimited while the response displayed

in the second case is similar to that of the system given by equation (4.31).

-1 -0.5 0 0.5 1

Real Part

-1

-0.5

0

0.5

1

Im
a

g
in

a
ry

 P
a

rt

a) RLS Estimated System Zero/Pole Map

Zero

Zero

Zero

Zero

Zero

Zero

Zero

Zero

Pole

Pole

Pole

Pole

Pole

Pole

Pole

Pole

-1 -0.5 0 0.5 1

Real Part

-1

-0.5

0

0.5

1

Im
a

g
in

a
ry

 P
a

rt

b) Sparse Estimated System Zero/Pole Map

Zero

Zero

Zero

Pole

Pole

Pole

Figure 4.13: Z plane with the pole/zero locations of a) the system from equation (4.31), and b) the system
resulting from sparse estimation.

Figure 4.14: Impulse responses of a) the system from equation (4.31), and b) the system resulting from sparse
estimation.

Even though this example might seem of no relevance, since unstable systems might be controlled

with no problems, in the following chapter a similar example is illustrated, where for a given system,

the controller only works if a sparse estimator is used.

Besides ARX models, ARMAX models were also used to test the algorithms in a setup similar

to the Extended-RLS, however the estimation results were not good. A possible explanation for this

is related to the estimation of the ci parameters. These parameters are estimated using regression

vectors that contain samples of the prediction errors. The effect of zero attractor terms and shrinkage

induced by regularization also affects the ci parameters, for instance, if these parameters are shrunk

to zero then the model reduces to ARX and the remaining parameters estimates will be polarized.

45

5
Adaptive control with sparse

estimation

Contents
5.1 Minimum Variance Control . 48
5.2 Generalized Predictive Control . 50
5.3 Target following as a control problem . 52
5.4 Results . 54

46

MPC comprises a wide range of control methods designed around common ideas. These ideas

involve the use of a model to predict the process output along future time instants, the minimization

of a cost function in order to calculate a control sequence, and a receding strategy stating that only

the first element of the calculated control sequence is applied to the process at each time instant.

The MPC advantages over other control methods are related to the ability to control a large number

of process types, including non-minimum phase, unstable, or those with significant dead-time. Fur-

thermore, the resulting control laws are easy to implement and embed in a natural way constraints.

One of the main advantages of predictive control is the system reaction before an effective change

happens if the future evolution of the reference signal is known. In fact, many applications have a priori

knowledge of the reference signal which can be used to neglect the effects of the system dead time.

The main drawbacks are the the number of parameters to choose and the need for an appropriate

model, following a high dependency on the model prediction.

The expression for the general cost function is

J(N1, N2, Nu) = E

N2∑
j=N1

δ(j) [y(k + j|k)− yref (k + j)]
2

+

Nu∑
j=1

ρ(j) [∆u(k + j − 1)]
2

 , (5.1)

where E {·} is the expectation operator, y(k+ j|k) is the j-step ahead prediction of the system output,

and yref (k + j) is a future reference.

A few methods do not consider the second term (control effort), as is the case of the MVC pre-

sented in Section 5.1, while other methods consider values of the control signal (u(k)) instead of its

increments (∆u(k)) such as in the detuned MVC. The weighting sequences δ(j), ρ(j) can also as-

sume different values based on the approach used. The GPC, detailed in Section 5.2, regards the

exact equation (5.1) as the cost function (with δ(j) = 1 and ρ(j) constant for j = 1, . . . , Nu). This large

set of available choices lead to a larger number of different methods.

The parameters N1 and N2 are the minimum and maximum output horizons. These values corre-

spond to the limits of the time instants for which the output y needs to follow the reference yref . The

first output to be affected by the input u(k) is y(k+ d0), so that if the dead time d0 is known then there

is no reason for N1 < d0. If the dead time is not known, N1 = 1 is a proper choice. In this case, the

degree of B(q−1) should be increased as to include all possible values of d0, resulting in a controller

more robust to changes in the dead time. N2 should be larger than the degree of B(q−1) so that the

maximum output horizon is longer than a possible negative-going non minimum phase transient.

The parameter Nu is the control horizon and its value depends on the type of process. For simpler

processes Nu = 1 may be enough to achieve great results. For more complex processes such as

unstable systems, Nu should be, at least, equal to the number of unstable poles.

The parameter ρ can be tuned to cover a large scope of processes and its value must be chosen

according to the the particular process. For example, for an unstable open loop process, a large value

of ρ will lead to an unstable closed loop process.

Fig. 5.1 shows how MPC is applied. For simplicity N2 = Nu = N is assumed. The objective

is to make the process output (yellow signal) follow the reference (blue signal). Applying the first

element of the predicted input signal (orange signal), and introducing the analyzed output in the

47

feedback provides the controller with robustness to errors. At each time instant k, the process input is

calculated based on a prediction horizon N . According to a receding horizon strategy, this operation

can be performed at each time instant.

Figure 5.1: MPC application scheme (adapted from [57]).

5.1 Minimum Variance Control

In this section the design of Minimum Variance Control is described. Recalling equation (5.1),

MVC adopts a similar cost function, apart from ρ(j) = ρ = 0.

The control target includes system noise, observation noise, and other unmodeled dynamics that

cannot be represented in mathematical expressions. For that reason, the Controlled AutoRegressive

Moving Average (CARMA) model represents the process dynamics

A(q−1)y(k) = B(q−1)u(k − d0) + C(q−1)e(k), (5.2)

where polynomials A(q−1), B(q−1), and C(q−1) are defined as in equation (3.1), and d0 is the dead

time of the system. To implement the controller some assumptions are to be made: the process is

required to have a single-input single-output, to have a minimum phase property (B(q−1) has all zeros

inside the unit circle). Furthermore, no common factors can appear in (A(q−1), B(q−1)), all the zeros

of C(q−1)) have to be inside the unit circle, and {e(k)} is a sequence of independent random variables

(white noise) with zero mean and variance σ2
e .

If both sides of equation (5.2) are multiplied by F (q−1), a monic polynomial of degree d0 − 1, such

that

F (q−1) = 1 + f1q
−1 + . . .+ fd0−1q

−d0+1, (5.3)

then, according to the following Diophantine equation

C(q−1) = F (q−1)A(q−1) + q−d0G(q−1), (5.4)

48

where G(q−1) is given by

G(q−1) = 1 + g1q
−1 + . . .+ gna−1q

−na+1, (5.5)

equation (5.2) becomes

A(q−1)F (q−1)y(k + d0) = B(q−1)F (q−1)u(k) + C(q−1)F (q−1)e(k + d0)⇔

⇔
{
C(q−1)− q−d0G(q−1)

}
y(k + d0) = B(q−1)F (q−1)u(k) + C(q−1)F (q−1)e(k + d0).

(5.6)

The polynomials F (q−1) and G(q−1) can be determined by polynomial division. An explicit formula

for the coefficients of these polynomials is detailed in Appendix A. Furthermore equation (5.6) can be

rearranged as follows

y(k + d0) = ŷ(k + d0|k) + ỹ(k + d0|k), (5.7)

where

ŷ(k + d0|k) =
G(q−1)y(k) +B(q−1)F (q−1)u(k)

C(q−1)
, (5.8)

is the d0-step ahead predictor based on data up to time k, and

ỹ(k + d0|k) = F (q−1)e(k + d0), (5.9)

is the d0-step prediction error.

The control law is determined in such a way that the cost function

J = E
{

[y(k + d0)− yref (k + d0)]
2
}

= E
{

[ŷ(k + d0|k) + ỹ(k + d0|k)− yref (k + d0)]
2
}

= E
{
ŷ2(k + d0|k)

}
+ E

{
ỹ2(k + d0|k)

}
+ 2E

{
ŷ(k + d0|k)× F (q−1)e(k + d0)

}
+

+ E
{
y2
ref (k + d0)

}
− 2E {ŷ(k + d0|k)yref (k + d0)} − 2E

{
yref (k + d0)× F (q−1)e(k + d0)

}
,

(5.10)

is as small as possible. The assumption that e(k) is an i.i.d. sequence is of real importance as it

makes the cross terms of F (q−1)e(k + d0) vanish

J = E
{
ŷ2(k + d0|k)

}
+ E

{
ỹ2(k + d0|k)

}
+ E

{
y2
ref (k + d0)

}
− 2E {ŷ(k + d0|k)yref (k + d0)}

= E
{
ŷ2(k + d0|k)

}
+ σ2

e(1 + f2
1 + . . .+ f2

d0−1) + E
{
y2
ref (k + d0)

}
− 2E {ŷ(k + d0|k)yref (k + d0)} .

(5.11)

Since the second and third terms are independent of u(k), minimizing J amounts to choose the

input u(k) so that
∂

∂u

(
ŷ2(k + d0|k)

)
− 2

∂

∂u
(ŷ(k + d0|k)yref (k + d0)) = 0. (5.12)

Finally, the MVC law is

u(k) =
C(q−1)yref (k + d0)−G(q−1)y(k)

B(q−1)F (q−1)
. (5.13)

Recall that if no reference signal yref is considered, the MVC law is

u(k) = − G(q−1)

B(q−1)F (q−1)
y(k). (5.14)

This controller cancels the zeros of the plant transfer function. As C(q−1) is assumed to be stable,

the requirement for stability is that B(q−1) cannot have zeros outside the unit circle. The closed loop

49

characteristic equation is qd0−1B(q−1)C(q−1) = 0, which implies d0 − 1 poles at the origin, na poles

at the zeros of C(q−1), and na − d0 poles at the zeros of B(q−1). If B(q−1) is minimum phase, then

these poles are inside the unit circle. Hence the importance of the assumption made earlier.

If B(q−1) is not stable, then y(k) will still be bounded and have minimum variance, but u(k) will

generally be unstable, growing with no bound.

To deal with non minimum phase systems, the cost in equation (5.10) can be modified to weigh

the loss due to the control action

J = E
{

[y(k + d0)− yref (k + d0)]
2

+ ρu2(k)
}
, (5.15)

so that ρ is positive, and balances the importance assigned to the control variable. However, this

setup, known as detuned MVC, does not solve the problem of instability when the system is non

minimum phase and open loop unstable.

5.2 Generalized Predictive Control

GPC is one of the simplest and most popular MPC techniques. Proposed by Clarke et al. [58],

the main idea of GPC is to calculate a sequence of future control signals such that it minimizes a

multi step quadratic cost defined over a prediction horizon as in equation (5.1). It incorporates a

control horizon with weighted control increments, and it is capable of controlling an ample variety of

processes, including non minimum phase.

The processes are described by a CARIMA model

A(q−1)y(k) = B(q−1)u(k − d0) + C(q−1)
e(k)

∆
, (5.16)

where ∆ = 1 − q−1, d0 is the system dead time, and A(q−1), B(q−1), and C(q−1) are polynomials in

the backward shift operator q−1. Again and for simplicity, C(q−1) is considered to be equal to 1.The

controller automatically has an integrator, necessary to compensate for the drifting noise term.

The objective of the controller is to compute the future control sequence such that the future

output is driven close to the reference. Defining defining the horizons N1 and N2 = Nu = N , a set

of predicted outputs ŷ(k + j|k) for N1 ≤ j ≤ N are computed from past values of inputs and outputs,

as well as future control signals. These predictors are then, according to the model, used in the cost

function to obtain an expression whose minimization leads to the desired control sequence.

Consider the following Diophantine equation

1 = Fj(q
−1)∆A(q−1) + q−jGj(q

−1), (5.17)

where Fj(q−1) and Gj(q−1) of degrees j − 1 and na, respectively, are uniquely defined polynomials.

The subscript j denotes the polynomial associated with the prediction of the output at time k + j. An

explicit formula for computing the coefficients of these polynomials is detailed in Appendix A.

The output at j steps ahead is

y(k + j) = Fj(q
−1)B(q−1)∆u(k + j − d0) +Gj(q

−1)y(k) + Fj(q
−1)e(k + j), (5.18)

50

and the predictor at j steps ahead, orthogonal to the output, is

ŷ(k + j|k) = Fj(q
−1)B(q−1)∆u(k + j − d0) +Gj(q

−1)y(k). (5.19)

Furthermore, upon defining the following equality

Fj(q
−1)B(q−1) = Wj(q

−1) + q−(j−d0+1)W̄j(q
−1), (5.20)

the predictor can be equivalently written as

ŷ(k + j|k) = Wj(q
−1)∆u(k + j − d0)︸ ︷︷ ︸

free response

+ W̄j(q
−1)∆u(t− 1) +Gj(q

−1)y(k)︸ ︷︷ ︸
forced response

. (5.21)

The first term is called free response, as it represents the prediction of the output y(k + j) when no

future control action is applied to the system. The second term is the forced response, since it relates

to the output prediction taking the future control actions u(k + j − d0), for j > 1.

Let the forced response be expressed as ȳj , and W be a matrix formed with the terms wji of

polynomials Wj(q
−1) (in fact wji = wi). Accordingly,

y =

 ŷ(k + 1|k)
...

ŷ(k +N |k)

 , ∆u =

 ∆u(k)
...

∆u(k +N − d0)

 , e =

 F1(q−1)e(k + 1)
...

FN (q−1)e(k +N)

 ,

yref =

 yref (k + 1)
...

yref (k +N)

 , W =

w1 0 0 . . . 0
w2 w1 0 . . . 0
...

...
...

. . .
...

wN wN−1 wN−2 . . . w1

 , ȳ =

 ȳ1(k)
...

ȳN (k)

 .
(5.22)

The cost function can be recast as

J(1, N,N) = E
{

(y − yref)
T

(y − yref) + ρ∆uT∆u
}

= (W∆u + ȳ − yref)
T

(W∆u + ȳ − yref) + ρ∆uTu.
(5.23)

The minimum of J is found by equating its gradient to zero, which leads to

∆u =
(
WTW + ρI

)−1
WT (yref − ȳ) . (5.24)

If no reference signal yref is considered, the GPC law is just

∆u = −
(
WTW + ρI

)−1
WT ȳ. (5.25)

Notice that this action involves inverting an N ×N matrix, which for a large value of N requires a

lot of computation time, prohibitive for a real time application. This shortcoming is addressed in [58]

by reducing the control horizon to Nu < N and assuming that the control increments are constant

and equal to zero after Nu. In this case, matrix W becomes

W =

w1 0 . . . 0
w2 w1 . . . 0
...

...
...

...
. w1

...
...

...
...

wN wN−1 . . . wN−Nu+1

(5.26)

51

Thereby, the computations are reduced since the matrix being inverted is only of size Nu ×Nu.

Equation (5.24) yields the future control sequence for k+ j− d0 for j = 1, . . . , N , and according to

the receding horizon strategy, only the first element of the sequence is applied to the process. As is,

the control law amounts to

∆u(k) =
[

1 0 . . . 0
] (

WTW + ρI
)−1

WT (yref − ȳ) . (5.27)

Since ∆u(k) = u(k)− u(k − 1) the control input is then

u(k) = u(k − 1) + ∆u(k). (5.28)

In summary, at each time-instant the working principle of the adaptive controller consists of com-

puting the steps described in Algorithm 4.

Algorithm 4 GPC method

1: set time instant k ← 1

2: obtain input and output measurements

3: estimate the parameters of the model from the measurements using algorithm 1, 2, 3, or similar

4: compute the controller parameters using the design control using equations (5.17)-(5.22)

5: obtain an optimal control sequence by minimizing the GPC cost function over a defined prediction
horizon using equation (5.24)

6: apply the first element of the optimal control sequence using equations (5.27) and (5.28)

7: observe and analyze the controlled operation of the process

8: do k ← k + 1 and go to 2: until the simulation is finished

Additionally, an alternative to the classic GPC setup is derived in Appendix C. That approach, as

demonstrated in [59], has better results when the parameters of the system are constantly varying.

5.3 Target following as a control problem

The problem of target following can be formulated as a control problem. The target is described

by an ARMA model.

y(k + d) =
C(q−1)

A(q−1)
e(k + d), (5.29)

where d ≥ 1. The aim is to estimate and predict, at each time instant, the observations of the target

y(k). Let the prediction of y(k + d) be ŷ(k + d|k), then the prediction error is

ỹ(k + d|k) = y(k + d)− ŷ(k + d|k). (5.30)

Define a cost function as to minimize the power of ỹ(k + 1|k)

J = E
{
ỹ2(k + d|k)|Ok

}
. (5.31)

Here, Ok denotes the observations up to time instant k, and E {·} is the expected value.

Let, by definition,

u(k) , ŷ(k + d|k), (5.32)

52

be the control sequence. A control system can now be developed around this problem. Fig. 5.2

represents the block diagram used in this setup.

Controller

(predictor)

+

C()q−1

A()q−1

(k|k − d)y~

q−d
u(k) ≜ (k + d|k)ŷ (k|k − d)ŷ

−

+

e(k)

y(k|k − d)

Figure 5.2: Block diagram of the target following problem.

If MVC is applied to the controller then, the Diophantine equation can be used to manipulate the

polynomials

C(q−1)

A(q−1)
= Fd(q

−1) + q−d
Gd(q

−1)

A(q−1)
⇔ C(q−1) = Fd(q

−1)A(q−1) + q−dGd(q
−1)

⇔ Fd(q
−1)A(q−1) = C(q−1)− q−dGd(q−1)

⇔ Gd(q
−1) = qd

[
C(q−1)− Fd(q−1)A(q−1)

]
.

(5.33)

Again the polynomial Fd(q−1) of order d− 1 is monic

Fm(q−1) = 1 + f1q
−1 + . . .+ fd−1q

−d+1. (5.34)

The difference between the observed value and the predicted value can be expanded

ỹ(k + d) = y(k + d)− ŷ(k + d)

=
C(q−1)

A(q−1)
e(k + d)− ŷ(k + d|k)

= Fd(q
−1)e(k + d) +

Gd(q
−1)

A(q−1)
e(k)− ŷ(k + d|k)

= Fd(q
−1)e(k + d) +

Gd(q
−1)

A(q−1)

A(q−1)

C(q−1)
y(k)− ŷ(k + d|k)

= Fd(q
−1)e(k + d) +

Gd(q
−1)

C(q−1)
y(k)︸ ︷︷ ︸

y(k+d)

−ŷ(k + d|k).

(5.35)

Now y(k + d) is a sum of two distinct terms where the first one correspond to future values of e(k),

and the second one depends only on past and present observations. Applying the new expression for

ỹ(k+ d) to equation (5.31) and assuming the process e(k) to be a sequence of uncorrelated samples

of white noise, with zero mean and variance σ2
e , gives

J = E

{[
G(q−1)

C(q−1)
y(k)− ŷ(k + d|k)

]2
}

+ E
{[
Fd(q

−1)e(k + d)
]2}

, (5.36)

53

which means that the minimum value of J can be attained when

ŷ(k + d|k) =
G(q−1)

C(q−1)
y(k). (5.37)

The minimum value of J is then

Jmin = E
{[
Fd(q

−1)e(k + d)
]2}

=
(
1 + f2

1 + . . .+ f2
d−1

)
σ2
e , (5.38)

which is the variance of the prediction error, considering the optimal predictor.

5.4 Results

All the estimated models of this section admit the same order, equal to 5, even though the true

systems to be estimated are of lower orders. The choice of fifth order is made since all the systems

under simulation exhibit lower orders and, at the same, the number of plots regarding the parameters

is not too large. Consequently the estimated vectors will always have 11 parameters, and part of them

should be automatically estimated as zero. The models are then of the type

y(k) =
b0 + b1q

−1 + b2q
−2 + b3q

−3 + b4q
−4 + b5q

−5

1 + a1q−1 + a2q−2 + a3q−3 + a4q−4 + a5q−5
u(k − d0) + e(k). (5.39)

5.4.1 MVC results

To illustrate the functioning of the MVC based Self-Tuning controller, the following model is con-

sidered

y(k) =
1 + 0.5q−1

1− 1.099q−1 + 0.1778q−2
u(k − 1) + e(k). (5.40)

For the first simulation, a fixed forgetting factor is used and the generated Gaussian white noise

has variance equal to 0.01. The system was simulated during 1000 samples, the first 500 samples

being open loop. After that the self-tuning adaptive controller was switched on. Figure 5.3 shows the

output signal and the control signal, using the MVC law. Notice how, after the first 500 samples, the

0 100 200 300 400 500 600 700 800 900 1000

k

-1

-0.5

0

0.5

1

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

0 100 200 300 400 500 600 700 800 900 1000

k

-1

-0.5

0

0.5

1

In
p

u
t

S
ig

n
a

l

Figure 5.3: Plant output signal y(k) and reference signal (upper plot), and control signal u(k) (lower plot).

54

controller reduces the variance of the output. For k < 500, the estimated variance of the output is

equal to 0.1054. The dead time of the system is d0 = 1, and thus F (q−1) = 1. Therefore the minimum

variance achievable for the output signal y is σ2
y = σ2

e = 0.01. Calculating the variance over the last

500 output samples gives a value of σ2
y = 0.0119, which amounts to 11.3% of the value before the

controller had been switched on.

All the estimated parameters of the model are displayed in Figure 5.4. Notice that only a1, a2, ,b0,

and b1 should have a value different from zero. In open loop, with u = 0, the sparse estimator estimate

all the parameters bi as zero, and not the correct values. After switching on the controller their values

start approaching the true ones.

0 200 400 600 800 1000

k

-2

0

2

a
1

True Value

Estimated Value

0 200 400 600 800 1000

k

-2

0

2

a
2

0 200 400 600 800 1000

k

-2

0

2

a
3

0 200 400 600 800 1000

k

-2

0

2

a
4

0 200 400 600 800 1000

k

-2

0

2

a
5

0 200 400 600 800 1000

k

-2

0

2

b
0

0 200 400 600 800 1000

k

-2

0

2

b
1

0 200 400 600 800 1000

k

-2

0

2

b
2

0 200 400 600 800 1000

k

-2

0

2

b
3

0 200 400 600 800 1000

k

-2

0

2

b
4

0 200 400 600 800 1000

k

-2

0

2

b
5

Figure 5.4: Estimated model parameters.

Consider now the following non minimum phase process

y(k) =
0.25 + 0.3q−1

1− 1.58q−1 + 0.67q−2
u(k − 1) + e(k). (5.41)

This system has one zero at −1.2 (outside the unit circle) that originates an unstable mode. If

MVC is used to control the system, a dangerous behavior is expected due to this unstable mode.

Figure 5.5 depicts two different scenarios of the plant output and the control input for 100 samples,

with Gaussian white noise with variance equal to 0.01.

The far left plots of Figure 5.5 confirm the statements made in section 5.1 about the input signal.

Even though the output seems unaffected, the unstable mode makes the control signal grow without

55

0 20 40 60 80 100

k

-5

0

5

In
p
u
t
S

ig
n
a
l

0 20 40 60 80 100

k

-5

0

5
O

u
tp

u
t
S

ig
n
a
l

a) No weights

Reference

Output

0 20 40 60 80 100

k

-5

0

5

O
u
tp

u
t
S

ig
n
a
l

b) ρ=0.01

Reference

Output

0 20 40 60 80 100

k

-5

0

5

In
p
u
t
S

ig
n
a
l

Figure 5.5: Plant output signal y(k) and reference signal (upper plots), and control signal u(k) (lower plots) when
ρ is not used and when ρ = 0.01, a) and b) respectively.

bound. After a few samples the value of the manipulated variable is already extremely large, which in

a real application it is either impossible to attain, or it may damage the equipment if no mechanisms

such as saturation of the control signal are accounted for.

As stated in section 5.1, adding a weighting parameter ρ to the manipulated variable in the cost

function avoids this shortcoming. The extra penalty introduced by the detuned MVC allows the manip-

ulation of the closed-loop response obtained, where the value of ρ can be seen as a tuning knob. The

far right plots of Figure 5.5 show, under the same conditions, a distinct output and input of the same

plant. The addition of ρ = 0.01 to the control law leads to a bounded control signal and the system is

controlled without further problems. Again, this control law is still unable to control open loop unstable

and non minimum phase systems.

In certain cases, the use of a sparsity-aware estimator can be greatly advantageous. Consider the

following process

y(k) =
−0.65 + 0.64q−2

1− 1.2q−1 + 0.5q−2
u(k − 1) + e(k). (5.42)

Recovering now the MVC law version without ρ, a problem may arise when using it together with

RLS to control this process. The polynomial B(q−1) includes a parameter b1 = 0, and as seen be-

fore, neither of the estimates of RLS will be equal to zero. The model resulting from the estimation

procedure can therefore be non minimum phase, that is, it may lead to the problem of the unbound

control signal. The B(q−1) polynomial from equation (5.42) has zeros at z1, z2 = ±0.9923. A value of

b1 not too large can easily move one of this zeros outside the unit circle. If sparsity-aware algorithms

are used instead, then the coefficient b1 is reduced to zero, and thus the resulting model is minimum

phase. Figure 5.6 a) depicts the the output and control signals considering RLS as estimator and

Figure 5.6 b) depicts the output and control signals considering the sparsity-aware algorithm as esti-

mator. The first case, although the output is following the reference trajectory, shows that the control

variable grows in absolute value, which does not happen in the second case.

56

0 200 400 600 800 1000

k

-5

0

5

10

O
u
tp

u
t
S

ig
n
a
l

a) RLS Estimated

Reference

Output

0 200 400 600 800 1000

k

-1500

-1000

-500

0

500

In
p
u
t
S

ig
n
a
l

0 200 400 600 800 1000

k

-5

0

5

10

O
u
tp

u
t
S

ig
n
a
l

b) Sparsity-aware Estimated

Reference

Output

0 200 400 600 800 1000

k

-300

-200

-100

0

100

In
p
u
t
S

ig
n
a
l

Figure 5.6: Plant output signal y(k) and reference signal (upper plots), and control signal u(k) (lower plots) using
RLS and a sparsity-aware algorithm, a) and b) respectively.

5.4.2 GPC results

The self-tuning adaptive controller based on GPC is now analyzed considering the following model

y(k) =
0.37

1− 0.5q−1 − 0.1q−2
u(k − 1) +

e(k)

∆
. (5.43)

The system was first tested in noise absence conditions. Figure 5.7 shows the output signal and

the control signal using a prediction horizon of 10 steps ahead (N2 = Nu = 10).

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

In
p

u
t

S
ig

n
a

l

Figure 5.7: Plant output and reference in noise absence conditions, using a prediction horizon equal to 10.

To check how the prediction horizon affects the control law, the system was simulated a second

time with a prediction horizon of 1 step ahead only.

This simulation is illustrated in Figure 5.8, where the output signal overshooting is visibly more

accentuated, as the predictors do not take into account further reference values. Here, the controller

57

acts similarly to the MVC based self-tuner since, at each time instant, the control law only considers

the prediction of the output at one step ahead. Comparing the two cases, it is conclusive that a large

prediction horizon allows for better tracking of reference trajectories. A small prediction horizon leads

to a later reaction to reference changes causing the overshooting in the output.

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

In
p

u
t

S
ig

n
a

l

Figure 5.8: Plant output and reference, and control signal in noise absence conditions, using a prediction horizon
equal to 1, as in MVC.

More relevant than the noiseless case is to study the functioning of the GPC based self-tuning

adaptive controller under noisy conditions. In that regard, Figure 5.9 shows the plant output and input

when Gaussian white noise with variance equal to 1 is added to the observations. The prediction

horizon is set equal to 10 steps (N2 = Nu = 10).

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

In
p

u
t

S
ig

n
a

l

Figure 5.9: Plant output and reference affected by Gaussian white noise with variance equal to 1, using a
prediction horizon equal to 10.

In addition, Figure 5.10 shows the plant output and input when not only Gaussian white noise

58

with variance equal to 1 is added to the observations, but also a step disturbance of 10% affects

the output. These random steps occurring at random times represent unmeasured disturbances,

for instance, changes in the quality of the material. The CARIMA model was designed to account

for these disturbances therefore the results do not differ much from one case to the other. These

100 200 300 400 500 600 700 800 900 1000

k

-100

0

100

200

300

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-200

0

200

400

In
p

u
t

S
ig

n
a

l

Figure 5.10: Plant output and reference affected by a step disturbance and Gaussian white noise with variance
equal to 1, using a prediction horizon equal to 10.

simulations prove that, under significant variations of the plant output, the controller keeps its good

performance, either in terms of robustness to disturbances and tracking.

To show the ability of GPC to control non minimum phase systems, the following model is consid-

ered

y(k) =
−0.007803− 0.01846q−1 − 0.01333q−2

1− 2.729q−1 + 2.515q−2 − 0.7834q−3
u(k − 1) + e(k). (5.44)

This model is used in [60] to simulate the operation of a small hydro power plant. The objective

of the hydro power plant control is to track a reference. An advantage of MPC schemes is that if the

future evolution of the reference is known beforehand, the system can react before the change has

effectively taken place therefore avoiding the effects of the process dead time. In many applications

(robotics for example) the future values of the reference are available at each time instant. In this case,

the difference between having access to the reference signal up the present instant and having access

also to the future reference trajectory is demonstrated in Figure 5.11 and Figure 5.12, respectively. In

both simulations, ρ = 0.98 and the horizons are set to N1 = 1, N2 = 7, and Nu = 3.

If the controller is aware of the future reference trajectory, at a given time instant k, and a change

happens in the prediction horizon k + N2, the control signal applied at k already accounts for that

change. This behavior can be observed in Figure 5.12, for example by the time in which the reference

moves from 500 to −500, the output is already much lower than 500. The longer the prediction horizon,

the sooner the controller actuates to compensate the change.

In contrast, Figure 5.11 reveals that if the reference is considered constant (and equal to the

current set point reference) along the prediction interval, then the controller actuates to compensate

59

100 200 300 400 500 600 700 800 900 1000

k

-1000

0

1000

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-1000

0

1000

In
p

u
t

S
ig

n
a

l

Figure 5.11: Plant output affected by Gaussian white noise with variance equal to 1, using N1 = 1, N2 = 7,
Nu = 3, and assuming no knowledge of future reference values.

100 200 300 400 500 600 700 800 900 1000

k

-1000

0

1000

O
u

tp
u

t
S

ig
n

a
l

Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-1000

0

1000

In
p

u
t

S
ig

n
a

l

Figure 5.12: Plant output affected by Gaussian white noise with variance equal to 1, using N1 = 1, N2 = 7,
Nu = 3, and knowing the future reference values.

60

the variation only when the change takes place.

A simulation is performed to assess the behavior of the controller when sudden changes happen.

For that two different models are considered. The first one given by

y(k) =
0.37− 0.23q−1

1− 0.95q−1 + 0.45q−2
u(k − 1) + e(k). (5.45)

The first 200 samples of the simulation correspond to the control of the previous model. After that

the A(q−1) polynomial suffers a change such that the model becomes

y(k) =
0.37− 0.23q−1

1 + 0.8q−1 − 0.5q−2
u(k − 1) + e(k). (5.46)

Figure 5.13 depicts the output and the input of the plant during the simulation. The output is

affected by Gaussian white noise with variance equal to 0.1, ρ = 0.98, and the horizons are N1 =

1, N2 = 17, and Nu = 7. The change happens at k = 200 and the controller takes a couple of

100 200 300 400 500 600 700 800 900 1000

k

-5

0

5

O
u

tp
u

t
S

ig
n

a
l Reference

Output

100 200 300 400 500 600 700 800 900 1000

k

-20

-10

0

10

20

In
p

u
t

S
ig

n
a

l

Figure 5.13: Plant output affected by Gaussian white noise with variance equal to 0.1, using N1 = 1, N2 = 17,
Nu = 7.

samples to readjust the model parameters to the new values. The estimated parameters are shown

in Figure 5.14. Even when the estimates do not exactly converge to the true values, the controller

maintains good performance regarding variance reduction and reference tracking. After the change

takes place, the convergence to the new values could be accelerated by setting a smaller forgetting

factor. However, as seen before, the forgetting factor value also influences the sparsity enforced by

the estimator. It is then necessary to find a good compromise between convergence and sparsity.

61

0 200 400 600 800 1000

k

-2

0

2

a
1

True Value

Estimated Value

0 200 400 600 800 1000

k

-2

0

2

a
2

0 200 400 600 800 1000

k

-2

0

2

a
3

0 200 400 600 800 1000

k

-2

0

2

a
4

0 200 400 600 800 1000

k

-2

0

2

a
5

0 200 400 600 800 1000

k

-2

0

2

b
0

0 200 400 600 800 1000

k

-2

0

2

b
1

0 200 400 600 800 1000

k

-2

0

2

b
2

0 200 400 600 800 1000

k

-2

0

2

b
3

0 200 400 600 800 1000

k

-2

0

2

b
4

0 200 400 600 800 1000

k

-2

0

2

b
5

Figure 5.14: Estimated model parameters.

62

5.4.3 Prediction of electrical energy consumption

Examples of the problem of section 5.3 are the prediction of water and electrical energy consump-

tion of a system, or set of systems in a certain location. Given a sequence of observations of a time

series, the goal is to predict the terms associated to future observations of that time series.

The electrical energy consumption E(k) can be modeled by an ARMA model of the form
C(q−1)

A(q−1)
,

a filter that reflects the seasonality, and a constant Ē that reflects the mean value of consumption.

The model is as follows

E(k) =
C(q−1)

A(q−1)

1

1− q−T
e(k) + Ē. (5.47)

Over the course of the day, the electrical energy consumption goes through some peak hours, and

this behavior is similar every single day. Subsequently, these consumptions are almost periodic. This

periodicity of 24 hours is the reason for the presence of a daily seasonal filter.

In a real scenario, such as the prediction of the electrical energy consumption at IST, data are

collected at time intervals. The available data correspond to electrical energy consumption measure-

ments from Pavilhão de Civil, a building of IST, from January 2014 to June 2015. Also, the data is

provided in Ah.

The measurements are a combination of HVAC (Heating, Ventilation and Air Conditioning) and

other electric systems, such as illumination and electronic systems from classrooms. It would be

advantageous to store the consumption measurement values by each of the systems so that the

prediction of the HVAC system consumption alone would be possible. However, the available data

correspond to the systems consumption in the building altogether.

The measurements are collected at a sampling interval of a quarter of an hour (15 min). Thereby,

in each hour there are 4 data acquisitions, and consequently in each day there are 96 different data

acquisitions.

The transfer function of the daily seasonal filter is then

1

1− q−96
, (5.48)

which requires 96 initial conditions. Recall that, depending on the application, multiple seasonality

filters may be added and applied to account for weekends, holidays, or each station of the year.

For simplification, the dataset was narrowed to the time interval from October 1, 2014 to November

30, 2014.

Figure 5.15 illustrates the original electrical energy consumption from October 1, 2014 to Novem-

ber 30, 2014 while Figure 5.16 corresponds to the week from October 27, 2014 to November 2, 2014.

The peaks and valleys corresponding to day time and night time are shown in Figure 5.16, and

also a respectable drop in consumption on Saturday and Sunday.

Furthermore, the measurements corresponding to weekends (Saturdays and Sundays) were re-

moved. As there are no classes in these days, both the number of persons at IST during these periods

and the number of HVAC systems turned on, are far less compared to weekdays, which reflects an

63

Oct 1 Oct 8 Oct 15 Oct 22 Oct 29 Nov 5 Nov 12 Nov 19 Nov 26

Time [week]

100

200

300

400

500

600

700

C
o

n
s
u

m
p

ti
o

n
 [

A
h

]

Figure 5.15: Electrical energy consumption data from October 1, 2014 to November 30, 2014.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Time [day]

100

200

300

400

500

600

C
o

n
s
u

m
p

ti
o

n
 [

A
h

]

Figure 5.16: Electrical energy consumption data from October 27, 2014 to November 2, 2014.

electrical energy consumption also inferior. Therefore, the end of a Friday is succeeded by the be-

ginning of the following week Monday. These dataset segmentations avoid the application of further

seasonal filters.

Figure 5.18 depicts the same time period of Figure 5.15 after removing the weekends.

A random weekday is illustrated in Figure 5.17. The whole consumption of Pavilhão de Civil

throughout the day is visible, with the peak starting at around 7 a.m. and ending at 9 p.m., when there

is almost no one at IST, and thus a lot less electrical energy is consumed.

According to the section 5.3, the aim is to estimate and predict the process

y(k) =
C(q−1)

A(q−1)
e(k), (5.49)

which cannot be accessed directly, as only E(k) is available. Therefore, to predict its future values it

is first necessary to remove the seasonality and the mean consumption value, such that

y(k) =
(
1− q−96

) (
E(k)− Ē

)
. (5.50)

The inverse of the seasonal filter previously mentioned is applied. It has zeros placed on the

unit circle, which cancel the poles responsible for the periodicity nature of the electrical energy

consumption time series. The mean of e(k) is equal to zero and so it is the mean of y(k). The

trend component is removed calculating the expected value of the electrical energy consumption,

64

1 AM 3 AM 5 AM 7 AM 9 AM 11 AM 1 PM 3 PM 5 PM 7 PM 9 PM 11 PM

Time [hour]

100

200

300

400

500

600

C
o

n
s
u

m
p

ti
o

n
 [

A
h

]

Figure 5.17: Electrical energy consumption data over one weekday.

Oct 1 Oct 8 Oct 15 Oct 22 Oct 29 Nov 5 Nov 12 Nov 19 Nov 26

Time [week]

100

200

300

400

500

600

700

C
o

n
s
u

m
p

ti
o

n
 [

A
h

]

Figure 5.18: Electrical energy consumption data from October 27, 2014 to November 2, 2014, after removing
the weekends consumption.

E {E(k)} =
{
y(k) + Ē

}
= Ē. The value of Ē can therefore be calculated using the estimator

ˆ̄E(N) =
1

N

N∑
i=1

E(i), (5.51)

where N is the number of observations. MATLAB also has functions such as detrend to remove the

mean value or linear trend from vectors.

Figure 5.19 corresponds to the remaining process y(k), after the filter has been applied and the

trend component removed. In addition, when using acquired data, the datasets have to be analyzed

as they may have outliers, that is, unusual observations caused by some anomalous conditions, which

may need to be removed. Since no outliers were registered during the period of time from October 1,

2014 to November 30, 2014, the measurements did not need further processing.

The remaining process y(k) corresponds to an ARMA model, whose parameters can be identified

using the aforementioned algorithms. The estimated parameters are then used to predict future values

as demonstrated in section 5.3.

Figure 5.20 shows the comparison between 200 samples of the original process y(k) and the one

step-ahead predictions ŷ(k + 1) after re-adding the seasonal and the mean components.

The value of the variance of e(k) can be estimated from the observations using
A(q−1)

C(q−1
, the inverse

65

500 1000 1500 2000 2500 3000 3500 4000

Time [quarter of hour]

-300

-200

-100

0

100

200

300

C
o

n
s
u

m
p

ti
o

n
 [

A
h

]

Figure 5.19: Electrical energy consumption data without seasonal part.

3400 3450 3500 3550 3600

Time [quarter of hour]

100

200

300

400

500

600

C
o

n
s
u

m
p

ti
o

n
 [

A
h

] Original Process

Predicted Process

Figure 5.20: Comparison between 200 samples of the original and one step-ahead predicted electrical energy
consumption processes.

of the filter
C(q−1)

A(q−1
. As is, the estimates ε(k) of e(k) are obtained and the variance is computed using

a variance estimator of the form

σ̂2
e =

1

N

N∑
i=1

ε2(i), (5.52)

where N is the number of samples of the process. If the prediction is well performed, then the

prediction error, ỹ(k) = y(k)− ŷ(k), has a variance given by

σ2
ỹ = E

{
ỹ(k + d)|Ok

}
=
(
1 + f2

1 + . . .+ f2
d−1

)
σ2
e . (5.53)

When d = 1, the variance of the prediction error is expected to be similar to that of the process

e(k). The variance of the prediction error is σ2
ỹ = 52.4624. Comparing this value to σ2

e = 52.4502, a

low deviance is achieved (0.12%). Furthermore, since e(k) is Gaussian white noise with variance σ2
e ,

then ỹ(k) should also have the same properties. In this respect, one possibility is to look at the power

spectral density of ỹ, the Fourier transform of its autocorrelation R(m) = E {ỹ(k)}E {ỹ(k −m)}. The

Fourier transform of a constant is known to be a Dirac delta function δ. For example, the power

spectral density of Gaussian white noise with variance σ2 is flat over the whole range of frequencies

66

and equal to σ2, and its autocorrelation is given by

R(m) = σ2δ(m) =

σ2, if m = 0

0, otherwise

. (5.54)

Fig. 5.21 depicts the calculated autocorrelation of ỹ(k). As expected it approaches a Dirac delta

function with amplitude equal to the variance of the process.

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

Delay

-10

0

10

20

30

40

50

60

A
u

to
c
o

rr
e

la
ti
o

n

Figure 5.21: Autocorrelation of ỹ(k).

To analyze the effect of the prediction horizon, larger prediction horizons are considered. Fig-

ure 5.22 depicts the original electrical energy consumption process and the predicted one for d =

1, . . . , 100. The estimated process in the figure corresponds to the model response for 100 samples

beyond the already measured 200 samples. As the prediction horizon d increases, the predicted val-

ues tend to zero. At the same time, the variance of the prediction error also increases. It can be seen

that after a value of d near 40, increasing the prediction horizon becomes absolutely meaningless.

200 220 240 260 280 300

Time [quarter of hour]

-100

-50

0

50

100

C
o

n
s
u

m
p

ti
o

n
 [

A
h

] Original Process

Predicted Process

Figure 5.22: Comparison between the original process and the predicted process with horizon m = 1, . . . , 100.

67

6
Conclusions and Future Work

68

The aim of this thesis is to implement adaptive control strategies in order to estimate sparse

models. One of the problems of many adaptive control schemes is that they require exact knowledge

of the order of the model. An ARX model could be easily estimated, for example using the MATLAB

arx command, if the true order of the system is known. However, not knowing in advance the true

order of the system will hinder the results of arx. If wrong orders of the polynomials are initially used,

the estimated parameters will not correspond to those of the true system.

On the other hand, LASSO reveals the true order information of the system without prior knowl-

edge. This allows guessing an arbitrary system order without compromising the parameter estimation

and tracking performance.

This thesis demonstrated how LASSO can be explored in order to perform recursive identification

of sparse models. The identification of these systems amounts to estimate the coefficients of the

system transfer function.

Chapter 2 and Chapter 3 conferred the necessary knowledge and basic ideas on sparse measures

and system identification, respectively.

In Chapter 4, the algorithms adapted for the sparse model identification problem were addressed.

Regularization terms containing the `1 norm were added to the cost function of well-known algorithms

such as LMS and RLS. Given the non differentiable characteristic of the `1 norm, subgradients and

proximity operators were applied to derive the sparsity-aware solutions. Since the `1 norm penalizes

uniformly the vector of estimated parameters, weighted versions of the algorithms were also intro-

duced.

The RZA-NLMS algorithm has a constant gain µ and its estimates approach values close to the

correct ones relatively quickly, but they do not converge, as its gain does not decrease. This behav-

ior was already expected since the disadvantages of LMS compared to RLS are well known in the

literature. At least RZA-NLMS improves uppon LMS performance when estimating sparse systems.

The `1-RLS algorithm is very similar to the RLS in complexity. Numerical simulations demonstrate

that this algorithm has better convergence and performance than its regular counterpart when the

system to be identified is sparse.

The RW-LASSO is also based on RLS but it is relatively more complex than the `1-RLS.

MVC and GPC control laws were then coupled with a sparsity-aware algorithm to demonstrate how

self-tuning adaptive controllers are capable of estimating sparse models and controlling the respec-

tive plants. One step ahead and multi step ahead predictors were used to keep tracking reference

trajectories.

One of the main problems is tracking time-varying parameters and the enforced tradeoff between

sparsity and tracking capability, which requires fine tuning of parameters. In this regard, variable

forgetting factors provide major help, especially in abrupt changes scenarios, but at the same time the

sparsity of the solution is affected.

Finally, in the future and since this work were restricted to synthetic data and generated systems, it

would be far more impressive to apply these sparse identification methods to existing sparse systems,

using acquired data measurements.

69

It would also be interesting to aim for efficient ways of extending this work to systems in which

noise has a particular structure, for example, when the systems are described by ARMAX models.

One possible future work could be further research on self-adaptive parameters to control the

zero-attracting terms. Or at least, categorizing values based on different classes such as SNR, noise

variance or ratio between zero and nonzero parameters. This work would avoid manual calibration of

said parameters for all distinct simulations.

As this work was narrowed to SISO systems, and since it can be formulated similarly, one possi-

bility could be the extension to multi-variable (MIMO) systems.

In these past years the growing area of Artificial Intelligence led to a vast number of recent meth-

ods. An interesting extension to this work would be the use of Neural Networks to aid the identification

of processes (Neural Network System Identification). For instance, the ability of GPC to make predic-

tions depends largely on the quality of the plant model and a nonlinear plant is more difficult to model.

Whether linearizing around a set of operation points, or developing a nonlinear model dependent on

assumptions about the plant dynamics, incorrect assumptions will affect the accuracy of the model.

As a result of their natural ability to learn and to approximate nonlinear functions, models developed

using neural networks capture nonlinear dynamics. Subsequently the use of neural networks to learn

plants dynamics can enhance the ability of GPC to make accurate predictions.

70

Bibliography

[1] M. A. Lelić and M. B. Zarrop, “Generalized pole-placement self-tuning controller part 1, basic

algorithm,” International Journal of Control, vol. 46, no. 2, pp. 547–568, 1987. [Online]. Available:

http://dx.doi.org/10.1080/00207178708933916

[2] T. Mendonca, J. M. Lemos, H. Magalhaes, P. Rocha, and S. Esteves, “Drug delivery for neuro-

muscular blockade with supervised multimodel adaptive control,” IEEE Transactions on Control

Systems Technology, vol. 17, no. 6, pp. 1237–1244, November 2009.

[3] P. Gregory, Proceedings of the Self Adaptive Flight Control Systems Symposium. Wright Air

Development Center, January 1959.

[4] K. J. Ȧström and B. Wittenmark, “On self tuning regulators,” Automatica, vol. 9, no. 2, pp. 185–

199, March 1973.

[5] K. J. Ȧström, “Self-tuning regulators - design principles and applications,” in International work-

shop on applications of adaptive control. Academic Press, 1980.

[6] R. E. Bellman, Adaptive Control Processes: A Guided Tour, R. E. Bellman, Ed. MIT Press,

1961.

[7] L. Ljung, “Recursive identification algorithms,” Circuits, Systems and Signal Processing, vol. 21,

no. 1, pp. 57–68, January 2002.

[8] T. Hastie and R. Tibshirani, Statistical Learning With Sparsity The Lasso And Generalizations.

CRC Press, 2015.

[9] I. Rish and G. Grabarnik, Sparse Modeling: Theory, Algorithms, and Applications, 1st ed. CRC

Press, 2014.

[10] B. Sanandaji, T. Vincent, M. Wakin, R. Tóth, and K. Poolla, “Compressive system identification

of LTI and LTV ARX models,” in 50th IEEE Conference on Decision and Control and European

Control Conference, December 2011, pp. 791–798.

[11] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, pp. 1289–

1306, April 2006.

[12] E. Candès, “Compressive sampling,” in Proceedings of the International Congress of Mathemati-

cians, vol. 3, 2006, pp. 1433–1452.

71

http://dx.doi.org/10.1080/00207178708933916

[13] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Appli-

cation to compressed sensing and other inverse problems,” IEEE Journal of Selected Topics in

Signal Processing, vol. 1, no. 4, pp. 586–597, December 2007.

[14] L. Ljung and T. Söderström, Theory and practice of recursive identification. MIT press Cam-

bridge, MA, 1983.

[15] H. Ohlsson and L. Ljung, “Identification of switched linear regression models using sum-of-norms

regularization,” Automatica, vol. 49, no. 4, pp. 1045–1050, April 2013. [Online]. Available:

http://dx.doi.org/10.1016/j.automatica.2013.01.031

[16] L. Bako, “Identification of switched linear systems via sparse optimization,” Automatica, vol. 47,

no. 4, pp. 668–677, April 2011. [Online]. Available: http://dx.doi.org/10.1016/j.automatica.2011.

01.036

[17] H. Ohlsson, L. Ljung, and S. Boyd, “Segmentation of ARX-models using sum-of-norms

regularization,” Automatica, vol. 46, no. 6, pp. 1107–1111, 2010. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0005109810001330

[18] S. Chen and D. Donoho, “Basis pursuit,” in Proceedings of the 28th Asilomar Conference on

Signals, Systems and Computers, vol. 1, Oct 1994, pp. 41–44.

[19] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM Journal

on Scientific Computing, vol. 20, pp. 33–61, 1995.

[20] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of Statistics,

vol. 32, pp. 407–499, 2004.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society, Series B, vol. 58, pp. 267–288, 1996.

[22] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: Algorithms

and applications,” IEEE Access, vol. 3, pp. 490–530, May 2015.

[23] Y. Gu, J. Jin, and S. Mei, “`0 norm constraint LMS algorithm for sparse system identification,”

IEEE Signal Processing Letters, vol. 16, no. 9, pp. 774–777, September 2009.

[24] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,” in IEEE International

Conference on Acoustics, Speech and Signal Processing, April 2009, pp. 3125–3128.

[25] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adaptive estimation of sparse

signals: Where RLS meets the `1-norm,” IEEE Transactions on Signal Processing, vol. 58, no. 7,

pp. 3436–3447, July 2010.

[26] D. Angelosante and G. B. Giannakis, “RLS-weighted lasso for adaptive estimation of sparse

signals,” in IEEE International Conference on Acoustics, Speech and Signal Processing, April

2009, pp. 3245–3248.

72

http://dx.doi.org/10.1016/j.automatica.2013.01.031
http://dx.doi.org/10.1016/j.automatica.2011.01.036
http://dx.doi.org/10.1016/j.automatica.2011.01.036
http://www.sciencedirect.com/science/article/pii/S0005109810001330

[27] E. M. Eksioglu and A. K. Tanc, “RLS algorithm with convex regularization,” IEEE Signal Process-

ing Letters, vol. 18, no. 8, pp. 470–473, August 2011.

[28] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SpaRLS: The sparse RLS algorithm,” IEEE Transac-

tions on Signal Processing, vol. 58, no. 8, pp. 4013–4025, August 2010.

[29] N. Kalouptsidis, G. Mileounis, B. Babadi, and V. Tarokh, “Adaptive algorithms for sparse system

identification,” Signal Processing, vol. 91, no. 8, pp. 1910–1919, 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0165168411000697

[30] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online sparse system identification and signal

reconstruction using projections onto weighted `1 balls,” IEEE Transactions on Signal Processing,

vol. 59, no. 3, pp. 936–952, March 2011.

[31] M. S. Asif and J. Romberg, “Dynamic updating for sparse time varying signals,” in 2009 43rd

Annual Conference on Information Sciences and Systems, March 2009, pp. 3–8.

[32] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction: Compressed sensing for ana-

log signals,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 993–1009, March 2009.

[33] W. F. Schreiber, “Advanced television systems for terrestrial broadcasting: Some problems and

some proposed solutions,” Proceedings of the IEEE, vol. 83, no. 6, pp. 958–981, June 1995.

[34] Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Block-sparse signals: Uncertainty relations and

efficient recovery,” Trans. Sig. Proc., vol. 58, no. 6, pp. 3042–3054, June 2010.

[35] Y. Chen and A. O. Hero, “Recursive `1,∞ group lasso,” IEEE Transactions on Signal Processing,

vol. 60, no. 8, pp. 3978–3987, August 2012.

[36] M. Gallieri and J. M. Maciejowski, “Stabilising terminal cost and terminal controller for `asso-

MPC: enhanced optimality and region of attraction,” in 2013 European Control Conference

(ECC), July 2013, pp. 524–529.

[37] S. K. Pakazad, H. Ohlsson, and L. Ljung, “Sparse control using sum-of-norms regularized model

predictive control,” in 52nd IEEE Conference on Decision and Control, December 2013, pp.

5758–5763.

[38] M. Athans, “Minimum-fuel feedback control systems: Second-order case,” IEEE Transactions on

Applications and Industry, vol. 82, no. 65, pp. 8–17, March 1963.

[39] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proceedings of the

IEEE, vol. 95, no. 4, pp. 704–718, April 2007.

[40] M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and

Image Processing, 1st ed. Springer Publishing Company, Incorporated, 2010.

73

http://www.sciencedirect.com/science/article/pii/S0165168411000697

[41] E. Candès and T. Tao, “Near-optimal signal recovery from random projections: Universal en-

coding strategies?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5406–5425,

December 2006.

[42] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA: Cambridge University

Press, 2004.

[43] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal on Computing,

vol. 24, pp. 227–234, April 1995.

[44] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Birkhäuser

Basel, 2013.

[45] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the American Statistical Asso-

ciation, vol. 101, no. 476, pp. 1418–1429, 2006.

[46] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle proper-

ties,” pp. 1348–1360, 2001.

[47] Y.-L. Yu, “The proximity operator,” http://www.cs.cmu.edu/∼suvrit/teach/, Pittsburgh, PA, 15213,

USA, March 2014, ”Accessed 12/08/17”.

[48] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim., vol. 1, no. 3, pp. 127–239,

January 2014. [Online]. Available: http://dx.doi.org/10.1561/2400000003

[49] J. Picado, “On semicontinuity of real functions: an algebraic description,” http://www.mat.uc.pt/

∼picado/publicat/, 2008, ”Accessed 23/09/17”.

[50] G. Wanka, “Convex analysis,” https://www.tu-chemnitz.de/mathematik/fsrmathe/studium/

skripte/, 2003, ”Accessed 23/09/17”.

[51] T. R. Fortescue, L. S. Kershenbaum, and B. E. Ydstie, “Brief paper: Implementation of

self-tuning regulators with variable forgetting factors,” Automatica, vol. 17, no. 6, pp. 831–835,

November 1981. [Online]. Available: http://dx.doi.org/10.1016/0005-1098(81)90070-4

[52] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1985.

[53] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted `1 minimization,”

Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877–905, 2008. [Online].

Available: http://dx.doi.org/10.1007/s00041-008-9045-x

[54] B. D. Rao and K. Kreutz-Delgado, “An affine scaling methodology for best basis selection,” IEEE

Transactions on Signal Processing, vol. 47, no. 1, pp. 187–200, January 1999.

[55] P. Zhao and B. Yu, “On model selection consistency of lasso,” Journal of Machine Learning

Research, vol. 7, pp. 2541–2563, December 2006.

74

http://www.cs.cmu.edu/~suvrit/teach/
http://dx.doi.org/10.1561/2400000003
http://www.mat.uc.pt/~picado/publicat/
http://www.mat.uc.pt/~picado/publicat/
https://www.tu-chemnitz.de/mathematik/fsrmathe/studium/skripte/
https://www.tu-chemnitz.de/mathematik/fsrmathe/studium/skripte/
http://dx.doi.org/10.1016/0005-1098(81)90070-4
http://dx.doi.org/10.1007/s00041-008-9045-x

[56] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,” IEEE Control Systems,

vol. 29, no. 2, pp. 28–93, April 2009.

[57] Wikipedia. https://en.wikipedia.org/wiki/Model predictive control. Accessed: 2017-05-20.

[58] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control: Part i. the

basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, March 1987. [Online]. Available:

http://dx.doi.org/10.1016/0005-1098(87)90087-2

[59] O. P. Palsson, H. Madsen, and H. T. Søgaard, “Generalized predictive control for non-stationary

systems,” Automatica, vol. 30, no. 12, pp. 1991–1997, December 1994. [Online]. Available:

http://dx.doi.org/10.1016/0005-1098(94)90061-2

[60] Z. Zidane, M. A. Lafkih, and M. Ramzi, “Simulation studies of adaptive predictive control for

small hydro power plant,” Journal of Mechanical Engineering and Automation, vol. 2, no. 6, pp.

2163–2413, 2012. [Online]. Available: http://article.sapub.org/10.5923.j.jmea.20120206.07.html

75

https://en.wikipedia.org/wiki/Model_predictive_control
http://dx.doi.org/10.1016/0005-1098(87)90087-2
http://dx.doi.org/10.1016/0005-1098(94)90061-2
http://article.sapub.org/10.5923.j.jmea.20120206.07.html

76

A
Matrix Inversion Lemma

A-1

This appendix provides the proof of the Matrix Inversion Lemma.

Lemma: Let A, D and
[
D−1 + CA−1B

]
be invertible matrices. Then A+BDC is invertible and

(A+BDC)−1 = A−1 −A−1B(D−1 + CA−1B)−1CA−1 (A.1)

Proof. If the equality holds, multiplying each side of the equation by A + BDC must result in the

identity matrix I.

As A+BDC is invertible the result of the left-hand side is

(A+BDC)(A+BDC)−1 = (A+BDC)−1(A+BDC) = I

Multiplying the right-hand side by (A+BDC) on the left yields

(A+BDC)(A−1 −A−1B(D−1 + CA−1B)−1CA−1) =

AA−1 +BDCA−1 −AA−1B(D−1 + CA−1B)−1CA−1 −BDCA−1B(D−1 + CA−1B)CA−1 =

I +BDCA−1 −BD(D−1 + CA−1B)(D−1 + CA−1B)−1CA−1 =

I +BDCA−1 −BDCA−1 =

I

Multiplying the right-hand side by (A+BDC) on the right yields

(A−1 −A−1B(D−1 + CA−1B)−1CA−1)(A+BDC) =

A−1A−A−1B
[
DA−1B + C−1

]
DA−1A+A−1BCD −A−1B

[
DA−1B + C−1

]−1
DA−1BCD =

I −A−1B
[
DA−1B + C−1

]−1 {D −
[
DA−1B + C−1

]
CD +DA−1BCD} =

I −A−1B
[
DA−1B + C−1

]−1 [
D −DA−1BCD −D +DA−1BCD

]
=

I

which proves (A.1).

A-2

B
Diophantine Equation Solution

B-1

The purpose of this appendix is to provide a quick review of the solution of linear Diophantine

equations. Diophantus of Alexandria studied in the third century A.D. the problem of finding integers

(x, y) solving the equation ax+ by = c with a, b, and c given integers.

Consider the polynomial Diophantine equation

C(q−1) = F (q−1)A(q−1) + q−dG(q−1) (B.1)

and the following polynomials

A(q−1) = 1 + a1q
−1 + . . .+ ana

q−na ,

C(q−1) = 1 + c1q
−1 + . . .+ cnc

q−nc ,

F (q−1) = 1 + f1q
−1 + . . .+ fd−1q

−d+1,

G(q−1) = g0 + g1q
−1 + . . .+ gng

q−ng , ng = max {na − 1, nc − 1} .

IfA(q−1) and C(q−1) are arbitrary polynomials in q−1, then there exists two unique polynomials F (q−1)

and G(q−1) which satisfy equation (B.1). The polynomial F (q−1) is the quotient when dividing C(q−1)

by A(q−1), while q−dG(q−1) is the remainder. These two polynomials can also be determined by

equating the coefficients of different powers of q−1. Thus

c1 = a1 + f1,

c2 = a2 + a1f1 + f2,

...

cd−1 = ad−1 + ad−2f1 + . . .+ a1fd−2 + fd−1

cd = ad + ad−1f1 + . . .+ a1fd−1 + g0

cd+1 = ad+1 + adf1 + . . .+ a2fd−1 + g1

...

cng
= ang

+ ang−1f1 + . . .+ ang−d+1fd−1 + gng−d

0 = angf1 + ang−1f2 + . . .+ a2fng−1 + gng−d+1

...

0 = ang+1fd−1 + gng

B-2

C
GPC for time-varying systems with

no Diophantine equations

C-1

The GPC is based on the assumption that the output predictions can be expressed as a linear

combination of present and future controls and most of the times it is performed by solving Diophantine

equations. However, in scenarios with constantly varying parameters, the Diophantine equation is not

the best option [59]. Additionally, an alternative method using predictors may be used.

hi(k) =

bi(k), if i = 1

bi(k)− ai,khi−1(k − 1), if i = 2

−ai(k)hi−1(k − 1), if i ≥ 3

, (C.1)

and

vi(k) =

{
−a1(k + i)y(k) + b2(k + i)u(k − 1), if i = 1

−a1(k + i)vi−1(k), if i ≥ 2
, (C.2)

v(k) =

 v1(k)
...

vN (k)

 . (C.3)

The matrix W(k) is filled with values as follows

W(k) =

h1(k + 1) 0 . . . 0 0
h2(k + 2) h2(k + 2) . . . 0 0

...
...

. . .
...

...
hN−1(k +N − 1) hN−2(k +N − 1) . . . h1(k +N − 1) 0

hN (k +N) hN−1(k +N) . . . h2(k +N) h1(k +N)

 (C.4)

y(k) = W(k)∆u(k) + v(k)

This setup maintains the features and advantages of the classical approach detailed previously

and allows for better tracking of time varying parameters.

C-2

	Title
	Acknowledgments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 State Of The Art
	1.3 Thesis Contributions
	1.4 Thesis Outline
	1.5 Notation

	2 Sparsity
	2.1 Sparsity and the 1 norm
	2.2 LASSO
	2.3 Proximity operator of the 1 norm

	3 System Identification
	3.1 Model Selection
	3.2 Parameter Estimation
	3.2.1 Recursive Least Squares
	3.2.2 Variable Forgetting Factor
	3.2.3 Least Mean Square

	4 Sparsity Aware Recursive Algorithms
	4.1 RZA-NLMS
	4.2 1-RLS
	4.3 RLS-Weighted LASSO
	4.4 Results
	4.4.1 Case I: Time Invariant Scenario
	4.4.2 Case II: Time varying Scenario
	4.4.3 Case III: Using Sparse Estimators to avoid instability

	5 Adaptive control with sparse estimation
	5.1 Minimum Variance Control
	5.2 Generalized Predictive Control
	5.3 Target following as a control problem
	5.4 Results
	5.4.1 MVC results
	5.4.2 GPC results
	5.4.3 Prediction of electrical energy consumption

	6 Conclusions and Future Work
	Bibliography
	Appendix A Matrix Inversion Lemma
	Appendix B Diophantine Equation Solution
	Appendix C GPC for time-varying systems with no Diophantine equations

