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Abstract

We propose a new combination of deep belief networks and sparse manifold learning strategies for

the 2D segmentation of non-rigid visual objects. With this novel combination, we aim to reduce the

training and inference complexities while maintaining the accuracy of machine learning based non-rigid

segmentation methodologies. Typical non-rigid object segmentation methodologies divide the problem

into a rigid detection followed by a non-rigid segmentation, where the low dimensionality of the rigid

detection allows for a robust training (i.e., a training that does not require a vast amount of annotated

images to estimate robust appearance and shape models) and a fast search process during inference.

Therefore, it is desirable that the dimensionality of this rigid transformation space is as small as possible

in order to enhance the advantages brought by the aforementioned division of the problem. In this

paper, we propose the use of sparse manifolds to reduce the dimensionality of the rigid detection space.

Furthermore, we propose the use of deep belief networks to allow for a training process that can produce

robust appearance models without the need of large annotated training sets. We test our approach in the

segmentation of the left ventricle of the heart from ultrasound images and lips from frontal face images.

Our experiments show that the use of sparse manifolds and deep belief networks for the rigid detection

stage leads to segmentation results that are as accurate as the current state of the art, but with lower

search complexity and training processes that require a small amount of annotated training data.

I. INTRODUCTION

Current methodologies for top-down segmentation of deformable objects using machine learning tech-

niques address the learning and inference tasks with a coarse-to-fine strategy based on the following two

consecutive stages [1]–[6]: (i) rigid detection and (ii) non-rigid segmentation. The rigid detection (i.e.,

coarse step) produces the rotation, scale and translation of the visual object, which are used to initialize

and constrain the non-rigid segmentation stage (i.e., fine step). Assuming that the contour of the visual

object is represented by S keypoints (or S 2-D points) and the rigid detection is performed in a space

with R << 2S dimensions, then the introduction of this coarse step allows for a more efficient inference

and less complex training processes.

The improvement in the inference process efficiency stems from the following two facts: 1) faster search

in the R-dimensional rigid space (compared to the original S-dimensional non-rigid space) because of

the much smaller dimensionality of R; and 2) efficient fine step in the 2S-dimensional non-rigid space

given the initial guess and constraint produced by the rigid detection step (see Fig. 1). The smaller

training complexity is achieved because the R-dimensional rigid problem requires smaller training sets

and the training for the non-rigid segmentation in the 2S-dimensional space is also simplified because
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of the constraints produced by the rigid detection stage. Note however, that this strategy imposes strong

requirements on the rigid detector, in the sense that it has to be efficient and robust to the appearance

and shape variations of the visual object of interest and the size of the training set. The efficiency of

this detector depends mainly on the dimensionality of the rigid search space (i.e., lower dimensionality

leads to more efficient rigid detectors) and robustness also depends on this dimensionality (for effectively

modeling the shape variations), but also depends on the ability of the classifier to model the appearance

of the object using a limited number of annotated images. It is important to note that the usual solution

to increase the robustness of the classifier when the number of annotated images is small is to increase

the training set by artificially perturbing these training images and annotations (e.g., by adding image

noise or applying small rigid transformations) in order to generate new images to be added to the training

set. However, given the random nature of this perturbation, it is not possible to guarantee whether the

generated image can actually exist in practice, which ultimately can lead to ineffective classification

problems.

This paper introduces a rigid search space of very low dimensionality with the use of sparse manifolds,

where the problem of classifier robustness is dealt with the use of deep learning mechanisms, which

has shown unique robustness particularly with respect to the size of training set. More specifically,

we propose the use of sparse manifolds with low intrinsic dimensionality for the rigid detection stage

[1,2,5]–[7], which allows for a faster inference process that produces competitive segmentation results.

Another aspect of our framework, is that by restricting the positive and negative samples to lie in the

learned low-dimensional sparse manifold, it is possible to reduce significantly the need for additional

artificial positive and negative samples during the training process, and at the same time guarantee that

the additional samples are more likely to exist in practice. Consequently, this produces a less complex

and faster training process that is as robust to shape and appearance variations as the current state of the

art.

We illustrate the performance of the proposed low-dimensional rigid search space using sparse mani-

folds approach in two different segmentation problems: the left ventricle (LV) endocardium segmentation

from ultrasound (US) imagery and lip segmentation using the extended Cohn-Kanade dataset (CK+) [8]

consisting of several facial expressions from frontal views. Note that all datasets presented in the paper

share the conditions where the object of interest undergoes a rigid transformation followed by a non-rigid

deformation. Also note that we are interested in segmenting the object using an explicit representation,

where neighboring keypoints in the segmentation are strongly correlated.

We demonstrate that our framework reduces the search complexity without a negative impact on the
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(a) State-of-the-art coarse-to-fine search strategy

(b) Proposed coarse search using sparse manifolds in the rigid detection

Fig. 1. (a) Illustration of the two-stage strategy for the non-rigid segmentation used in the state-of-the-art methodologies. (b)

Proposed methodology, where the sparse manifold is used in the rigid detection step.

segmentation accuracy, when compared to the state of the art. Moreover, we also show that the our

proposed low-dimensional sparse manifolds allows for the use of smaller training sets than the current

state-of-the-art methods.

II. LITERATURE REVIEW

The segmentation of non-rigid visual objects is perhaps one of the most studied problems in the

field of computer vision. In this literature review, we classify the proposed methodologies as follows:

bottom-up approaches [9,10], active contour methods [11]–[23], deformable templates [24]–[29], and data-

driven segmentation [6,30]–[48]. The vast majority of the these methodologies breaks down the non-rigid

segmentation into two sub-problems, comprising a first stage that selects the location (and usually the scale
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and orientation too) of the sought visual object, followed by a second stage that searches for the boundary

of the object given the information produced in the first stage. We call such methodologies coarse-to-fine,

where the coarse step consists of the rigid detector and the fine stage comprises the constrained non-

rigid segmentation, as explained in Section I. Recently, the non-rigid segmentation problem has avoided

the coarse stage altogether by addressing the task either as a structured learning and inference problem

[49,50] or as a convex active contour method [13]. In the structured inference problem the input image is

represented with a graph combining multiple bottom-up and top-down functions; while in convex active

contour methods, the main idea is to convexify the level set energy function, which means that it no

longer depends on the initial guess provided by the coarse stage.

Classic bottom-up methods [9,10] are based on a coarse-to-fine methodology, where the coarse step

is usually represented with a manual initialization, which is followed by a series of standard image

processing techniques to detect the border of the sought object. In general, these image processing

techniques only take into account low-level image information, such as edges, texture and colour, and use

simple prior information, such as boundary smoothness and continuity. The simplicity of the techniques

make these approaches attractive from a computational complexity point of view, but the lack of high-level

information about the visual object and the dependence on a good initialization (from the coarse step)

make these approaches too sensitive to imaging conditions and to the appearance and shape variations

of the sought visual object.

Active contour methods [17] improved the robustness of segmentation algorithms to imaging conditions

and to the variations of the visual object by formulating the problem with a unified energy function that

could be minimized with standard optimization methods. The development of level-set methods [20]

improved the performance of active contours with respect to imaging conditions and visual object

topology. We refer to such methods as coarse-to-fine non-convex active contours, since their energy

function is not convex, and depends strongly on good initial conditions that are usually provided manually

during the coarse step. The latest developments of these approaches have been focused on increasing the

robustness of the method with the integration of region and boundary segmentation, reduction of the search

dimensionality, modeling of the implicit segmentation function with a continuous parametric function,

and the introduction of shape and texture priors [11,12,14]–[16,18,19,21]–[23]. The convexification of the

energy function used in active contour methods has been a central topic of research in the field [13], which

allows for more efficient optimization methods in addition to the lack of need of manual initialization

(i.e., the coarse step is no longer needed). Nevertheless, these convex active contour methods can only

avoid the coarse search step when the visual object of interest has strong priors in terms of texture, shape
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and rigid transform, which may not be the case for some examples (see Fig. 2-a) and the search process

will not be able to extend much from these priors. Deformable templates [24]–[29] introduce the use of

more specific prior models about the shape and appearance of the visual object of interest with the goal

of deforming this prior model to match the test image. Similarly to the case of non-convex level sets, this

approach also needs a coarse step comprising a good initialization for the optimization process. Level-sets

and deformable templates are among the most successful techniques applied in non-rigid segmentation

problems, but their main weakness is the strong prior knowledge defined in the optimization function,

such as the definition of the object border, the prior shape, the prior distribution of the texture or gray

values, or the shape variation. This prior knowledge can be either designed by hand or learned using a

(usually) small training set. As a result, the effectiveness of such approaches is limited by the validity

of these prior models, which are unlikely to capture all possible shape variations and nuances present in

the imaging of the visual object [37].

These issues are the main motivation of data-driven binary segmentation methods, where the shape

and appearance of the LV is fully learned from a manually annotated training set. Active shape and

appearance models [31]–[33,39] are usually based on optimization methods of an energy functional

composed of shape and appearance terms, represented by generative classifiers learned using a manually

annotated training set. The use of discriminative classifiers has also been explored in data-driven binary

segmentation methods [6,37]. The commonality between these two approaches is the use of a coarse-to-

fine search, with the coarse stage represented by a search for the rigid transform of the mean shape of the

sought visual object, which is followed by a fine stage that transforms the mean shape in a non-rigid way

to match visual object in the test image. In general, the coarse stage must efficiently provide a precise

rigid transformation, so there has been a large number of papers about effective coarse search strategies.

Exploring the whole rigid transform space is in general intractable, so the main idea is to progressively

constrain this search space. The cascade classifier [51] does that by firstly exploring the entire search

space with highly robust low-complexity classifiers, and then further testing the regions that survived

that previous steps with increasingly more complex classifiers. A similar approach is followed in [52],

that imposes a prior distribution on the initial search space, which is used to sample the initial search

locations that are refined based on a gradient-based search. Another related approach is the marginal space

learning [41], which partitions the search space into sub-spaces of increasing dimension and complexity.

The branch and bound approach for the coarse search step [53] is another way to progressively reducing

the complexity of the search space.

The recent development of structured learning and inference methods [49,50] allowed the design of
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convex data-driven binary [30,38] and multi-class [42]–[48] segmentation methods. The main potential

advantage of such approaches lies in their ability to avoid the coarse search step because the structured

inference is designed as a convex problem independent of the initial guess. However, as explained above

for convex level set methods, this advantage can be realized only if the visual object of interest can be

reasonably characterized by strong priors in terms of appearance, shape, rigid transformation, etc. An

alternative usually followed by state-of-the-art structured inference and learning methods is the integration

of the result of coarse visual object detectors into the framework, which effectively means that most of

the methods above run a coarse search step.

Another relevant point of our proposal, is the gradient based search in manifolds, which have also been

studied in other works. For instance, Helmke et al. [54] have introduced a new optimization approach for

the essential matrix computation with the use of Gauss-Newton iterations. Hüper et al. [55] also propose

a numerical optimization of a cost function defined on a manifold. Similarly, the use of Newton’s method

along the geodesics and variants of projections have also been proposed by other authors [56]–[58]. Our

approach represents an application of such gradient-based search methods in the problem of top-down

non-rigid segmentation with the specific goals of reducing the search running time and the training

complexity.

Finally, sparse manifold learning is another topic visited by our proposal. This basically involves the

estimation of a low-dimensional representation of a data set using a small number of observations [59,60].

One popular technique for finding a sparse representation is the Matching Pursuit (MP), which is based

on a suboptimal forward sequential algorithms [61]–[64]. Other techniques are based on optimization

methodologies that maximize sparsity, such as the ℓ1 norm [65,66], or the more general ℓ(ρ≤1) explored

by FOCal Underdetermined System Solver (FOCUSS). Techniques tailored to be applied in the context of

noisy data have also been proposed, such as a robust version of the FOCUSS algorithm, called Regularized

FOCUSS, that can also be used as an efficient representation for compression [67]. Other important

variation of the sparse linear inverse problem is the multiple-measurement vector (MMV) that achieves

sparse representations from single-measurement vectors (SMVs) [68]. Recent theoretical studies focus on

the convex relaxation of the MMV such as the approach based on the (ℓ2,ℓ1) norm minimization [60,69]–

[71]. A similar relaxation technique (via the ℓ1 norm minimization) is employed in the SMV model, but

efficient MMV methods for sparse representation have been proposed, in which some known results

of SMV are generalized to MMV. The sparse manifold learning proposed in this paper is inspired on

our previous work [72], which introduces a manifold learning method that requires a large number of

samples that leads to an inference lacking efficiency because each sample would need to be used as an
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(a) Left ventricle segmentation (b) Lip segmentation

Fig. 2. Application of the transformation At to the window enclosing the mean segmentation contour for the case of (a)

left ventricle segmentation, and (b) lip segmentation. Both figures depict the explicit segmentation contour with the rectangular

window (left panel) and zoomed in image of the visual information within the window (right panel). Note that the images on

the right panels are the ones used by the rigid classifier p(t|x,D) in (2).

initial guess to a gradient-based search in the manifold. In this paper, we introduce a learning approach

that requires a small number of observations, leading to our efficient search mechanism [73]. In fact,

this paper represents an extension of [73], where in this submission we provide a more comprehensive

literature review and more detailed explanations of the methodology. More specifically, we present a

proposal, where patch members are obtained from the manifold - this forms the “baseline” version of

the proposal. Then, we describe how sparsity is promoted in the manifold. Both versions (baseline and

sparsity solutions) are theoretically described and a systematic comparison between them is conducted

for several datasets.

III. NON-RIGID TOP-DOWN SEGMENTATION PROBLEM DEFINITION

We start by considering an image that contains the sought object to be segmented. The goal is to produce

a non-rigid segmentation y ∈ R2S containing S 2-D points, that constitutes the explicit representation

of the segmentation contour. Let us represent the training set by D = {(x,y)j}|D|j=1, where xj : Ω → R

denotes the training images, yj denotes the corresponding manual annotations and Ω stands for the image

domain. The segmentation is achieved using the following function:

y∗ = Ep(y|x,D)[y] =

∫
y
yp(y|x,D)dy. (1)

The high dimensionality of y makes the computation of (1) difficult, and the usual solution to alleviate the

problem is the introduction of preliminary coarse search steps that can be solved in lower dimensionality,

where the solutions are used to constrain and initialize an optimization process that can produce samples
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y, which are then used in a Monte Carlo approximation of (1). This coarse step involves the use of a

hidden variable t ∈ RR, with R << (2S), as follows [1,2,5,6]:

p(y|x,D) =

∫
t
p(t|x,D)p(y|t,x,D)dt. (2)

In practice, the variable t is used to transform linearly the coordinates of a window that encloses the

mean segmentation contour (see Fig. 2). This linear transform is obtained from the variable t that forms

At ∈ R3×3 [1,2,5,6]. For example, suppose t = [x, y, ϑ, νx, νy] denotes a transformation comprising a

translation x and y, rotation ϑ, and non-uniform scaling νx and νy; then

At =


1 0 x

0 1 y

0 0 1




cos(ϑ) − sin(ϑ) 0

sin(ϑ) cos(ϑ) 0

0 0 1




νx 0 0

0 νy 0

0 0 1

 . (3)

Hence the term p(t|x,D) in (2) represents the rigid detection classifier that outputs the probability

of having the sought visual object within the boundaries of the window transformed by t. The term

p(y|t,x,D) in (2) is the non-rigid segmentation classifier denoted by the probability of finding the

contour y in image x given the value of t. That is, t denotes an initial guess for y and at the same time

it constrains the search space of y to be around the mean segmentation contour transformed by t.

Assuming that the original rigid search space represented by the variable t has dimension r = R, one

of the objectives of this paper is the introduction of a new space for t with dimension r = M < R, based

on a sparse manifold, where this rigid search will take place with gradient descent search mechanisms.

Before discussing this search mechanisms, we describe the sparse manifolds developed for this paper in

Section IV.

IV. SPARSE MANIFOLDS

This section describes the learning of the sparse manifold representation, and the inference used in the

coarse search mechanism (i.e., the rigid detection described in (2)). The manifold learning strategy takes

as input the training annotations {yj}|D|j=1 that belong to the training set D, and produces the manifold

M ∈ RM with intrinsic dimension M (with M < R << 2S) divided into patches {Pi}|P|i=1 (with

Pi ⊂ M), each one containing its respective chart ζi : Pi → Ui, and parametrization ξi : Ui → Pi, where

Ui ⊂ RM denotes the parametric domain. Our learning method also produces the tangent hyperplanes

TPi
for each patch, which is formally defined as T (Pi) = {(y,v) : y ∈ Pi,v ∈ Ty(Pi)} where Ty(Pi)

is the tangent space of Pi at observation y. According to this algorithm, each patch Pi is represented by
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Fig. 3. Partition of the manifold into patches (top) and the corresponding tangent hyperplanes (bottom). The arrows illustrate

the mappings back and forth between the patches and the hyperplanes. The black dots are the annotations on the manifold and

their respective low dimensional representation.

|Pi| samples drawn from the training set D, where the |Pi| points belonging to patch Pi are known as

the patch member points, and in general |Pi| ̸= |Pj | for i ̸= j.

One of the innovations of this paper is the execution of the rigid detection in (2) directly on the

manifold M. This is accomplished by performing the optimization process in each of the low dimensional

patches Pi with initial guesses (for the segmentation process in (2)) taken from the patch member points

ti,j = ζi(yi,j), for i ∈ {1, ..., |P|} and j ∈ {1, ..., |Pi|}. Consequently, the efficiency of the segmentation

depends on a low number of patch member points in each patch. For completeness of the exposition, we

provide details of the manifold learning algorithm in the Appendix.

A. Subset Selection - Problem Statement1

In order to reduce the number of patch member points in each patch Pi, let us first arrange the training

annotations in the following matrix Yi ∈ R2S×|Pi| (each column containing a contour), with

Yi = [yi,1, ...,yi,|Pi|], (4)

where the charting process generates the matrix Ti = [ti,1, ..., ti,|Pi|] with Ti ∈ RM×|Pi|, i.e. the low

dimensional representations of the annotations. The reduction in the number of patch member points

involves the selection of a small number of columns in Yi (and thus a subset of columns in Ti) to

be used as landmarks. These columns are selected by minimizing the amount of information lost with

1All the exposition formulated in this Sections IV-A, IV-B, IV-C, are in terms of the ith patch, being the same strategy

applied to other patches in the manifold.
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respect to ζi, but note that preserving the chart ζi is equivalent to preserve its inverse mapping, i.e. the

parameterization ξi, which is more practical to use since we can use the following generative model

ŷi,j = ξi(ti,j) + ω, (5)

where ŷi,j is an approximation of yi,j and ω is a Gaussian random variable representing noise. Our main

goal in this context is to design a method that estimates the fewest number of landmarks so that yi,j is

reliably approximated by ŷi,j in (5).

B. Linear regression

To accomplish the goal formulated above in Sec. IV-A, we start by building the radial basis function

(RBF) kernel matrix K, with each of its elements represented by k(ti,l, ti,q) = exp(−∥ti,l−ti,q∥2/2σK)

and reformulate (5) as a single measurement vector problem (SMV) [73,74], as follows2

θ = Kβ + η, (6)

where θ ∈ R|Pi| represents the vector containing the maximum principal angle between the tangent

bundles Tyi,j
and TPi

[75] 3, β ∈ R|Pi| denotes the vector of coefficients for reconstructing the input

data θ, and η ∈ R|Pi| is a random variable representing the additive Gaussian noise process.

An interpretation of the regression in (6) is that β preserves angular information within a patch, using

a small number of points, and K preserves information regarding the distance between points. Thus,

points with similar angular or distance information are included in the regression.

C. Sparsity with Least Angle Regression

In order to select a small subset of the patch member points of Pi given θ, we estimate β in (6),

denoted by β̂, constraining it to be sparse via a regularization term. More specifically, the estimate β̂

can be found by minimizing the following expected generalization error

E(β̂) =
∥∥θ −Kβ̂

∥∥2, (7)

defining the absolute norm of β̂ as T (β̂) =
∑|Pi|

j=1 |β̂j |, the minimization of E(β̂) subject to a bound t

on T (β̂) can be solved as follows

minimize E(β̂) subject to T (β̂) ≤ t, (8)

2In the following equations (6),(7), (9), and (10) we have omitted the subscript i for simplifying the notation.
3See the Appendix for additional details regarding the computation of principal angle. Also, note that Tyi,j is the tangent

subspace of yi,j (the jth column of Y in (4)) and TPi is the tangent subspace computed in the seed point of the ith patch.
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which is solved with least angle regression (LARS) [76]. Basically, the algorithm starts with the zero

vector, β̂ = 0, and adds covariates (i.e., the columns of K) to the model in accordance to their correlation

with the prediction error vector, ∥θ −Kβ̂∥2 in (7), setting the corresponding jth entry, β̂j , to a value

such that another covariate becomes equally correlated with the error and is, itself, added to the model.

The LARS algorithm then proceeds in a direction equiangular to all the added β̂j and the process is

repeated until all covariates have been added. This strategy of adding a new β̂j (making it non-zero),

requires an amount of m steps (each step adding a new β̂j and making it non-zero). It has been shown

[76] that the risk (i.e. the structural risk equivalent to the expected error in (7)) can be estimated as

R(β̂p) = ∥θ −Kβ̂
∥∥2/σ2

θ −m+ 2p. (9)

where σθ can be computed from the unconstrained least squares solution of (6), m is the number of steps

(i.e. dimension of θ) and p is the number of non-zero entries of β̂j .

The landmarks are the columns ti,j of Ti (or equivalently of Yi) with the same indexes j as the

non-zero elements of β̂p such that

p∗ = argmin
p

(R(β̂p)). (10)

The estimated Li = p∗ landmarks correspond to p∗ non-zero elements in β̂p. This strategy ensures that

the landmarks are the kernel centers that minimize the risk of the regression formulated in (6).

V. TRAINING AND INFERENCE ON THE SPARSE MANIFOLD USING DEEP BELIEF NETWORKS

The rigid detection classifier in (2) is modeled by the parameter vector γMAP (learned with a maximum

a posteriori learning algorithm), which means that p(t|x,D) is hereafter represented by p(t|x, γMAP).

The parameter vector γMAP is estimated using a set of training samples taken from the patch member

points ti,j = ζi(yi,j) (for j ∈ {1, ..., |Pi|}) of each learned patch Pi (for i ∈ {1, ..., |P|}) produced by the

manifold learning algorithm. Specifically, the generation of positive and negative samples involves the

following steps: 1) estimate the contour in the original image space from the landmark, ŷi,j = ζ−1i (ti,j);

and 2) find the transformation matrix Ati,j of the image window enclosing the segmentation contour ŷi,j

produced in step (1).

For training the classifier, the sets of positives and negatives are formed by sampling a distribution of

the patch members ti,j . The distribution in patch Pi is defined by

Dist(Pi) = U(Ti), (11)

where U(Ti) denotes an uniform distribution in the interval [maxrow(Ti)−minrow(Ti)] ∈ RM with Ti

being a matrix whose columns contain the patch members ti,j ∈ Pi; the functions maxrow(Ti) ∈ RM
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and minrow(Ti) ∈ RM representing the maximum and minimum row elements of the matrix Ti. The

positive and negative sets are generated as follows:

T+(i, j) = {t|t ∼ Dist(Pi), d(t, ti,j) ≺ mi}

T−(i) = {t|t ∼ Dist(Pi), d(t, ti,j) ≻ 2×mi

∀j ∈ {1, ..., |Pi|}

, (12)

where

mi =
[
max
row

(Ti)−min
row

(Ti)
]
× κ (13)

represents the margin between positive and negative cases with κ ∈ (0, 1) defined as a constant, ≺ and

≻ are the element wise “less than” or “greater than” operators between two vectors, and d(t, ti,j) =

|t−ti,j | ∈ RM is the dissimilarity function in (12), with |.| denoting an operator that returns the absolute

value of the vector t − ti,j . Note that the randomly generated parameter t in (12) is projected to the

patch Pi in order to guarantee that it belongs to the manifold. Basically, (12) generates positive samples

that are relatively close to patch member points and negative samples that are sufficiently far to all patch

members, and that both the positive and negative samples belong to the learned sparse manifold described

in Section IV.

Finally, the discriminative learning of the rigid classifier is achieved with the maximization of the

following objective function [77]:

γMAP = argmax
γ

|P|∏
i=1

|Pi|∏
j=1

 ∏
t∈T+(i,j)

p(t|xi,j , γ)

×

 ∏
t∈T−(i)

(1− p(t|xi,j , γ))

 , (14)

where p(t|x,D) in (2) is represented with p(t|x, γMAP) [52] hereafter. Fig.4(a) displays the training

process explained in this section, where the positive samples are extracted from the green region in the

center, and the negative samples are drawn from the yellow region. The parameters λ of the non-rigid

classifier in (2) are learned in a similar way with the following optimization:

λMAP = argmax
λ

|P|∏
i=1

|Pi|∏
j=1

p(yi,j |ti,j ,xi,j , λ), (15)

where p(y|t,x,D) in (2) is represented with p(y|t,x, λMAP) [52] hereafter.

The estimation of the segmentation contour follows an inference procedure that takes a test image

x as the input, and outputs the contour y∗ ∈ R2S using (1). Recall that, this inference strategy uses

each landmark ti,j (for j ∈ {1, ..., Li}) from each learned patch Pi as initial guesses for a gradient

ascent (GA) procedure [78] on the output of the classifier p(t|x, γMAP) over the search parameter space
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(a) Training (b) Inference

Fig. 4. The proposed training (a) and inference (b) procedures using sparse manifolds (please see text for details).

on the manifold M. Given that the initial guesses of the GA procedure come from the landmarks, we

have t
(0)
i,j = ti,j , and after N GA iterations, the final value for the search parameter is t

(N)
i,j , where the

superscript (n) for n ∈ {0, ..., N} represents the GA iteration index. Assuming that p(t) = p(t|x, γMAP ),

the GA algorithm uses the Jacobian ∇p(t) =
[

∂p(t)
∂t(1) ... ∂p(t)

∂t(M)

]⊤
, which is computed numerically

using central difference, with step size mi (13), as follows:

∂p(t)

∂t(1)
=

p(t+ [mi(1)/2, ..., 0]
⊤)− p(t− [mi(1)/2, ..., 0]

⊤)

mi(1)
(16)

where the parameter for t(.) stands for the dimensionality index and t(1) denotes the first dimension of

t, and similarly for mi(.). In (16), the parameter t± [mi(1)/2, ..., 0]
⊤ is projected to the patch Pi (i.e.,

y = ξi(t)) in order to guarantee that it belongs to the manifold M. Once the GA process is over and

the parameter t(N)
i,j is reached for each landmark ti,j of each patch Pi, the contour y∗ is estimated with

a Monte-Carlo approximation of (1) as follows:

y∗ =
1

Z

|P|∑
i=1

Li∑
j=1

y × p(t
(N)
i,j |x, γMAP)× p(y|t(N)

i,j ,x, λMAP), (17)

where Z is a normalization constant. Figure 4(b) shows the setting of the segmentation procedure, with

the level sets representing the results of the rigid classifier p(ti,j |x, γMAP). Notice that the rigid search

procedure is performed only in the low dimensional space of t.

VI. SEARCH COMPLEXITY REDUCTION

One of the bottlenecks of current top-down non-rigid segmentation methods lies in the number of

executions of the rigid classifier p(t|x, γMAP) that runs in the intermediate space represented by the
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variable t ∈ Rr, where r = R indicates the original rigid search space and r = M denotes the reduced

dimensionality search space. For the complexity analysis below, assume that K = O(103) denotes the

number of samples used in each dimension of this intermediate space. An exhaustive search in this r-

dimensional space represents a running time complexity of O(Kr), which is in general intractable for

relatively small values of r = R (note that R ∈ {4, 5} in state-of-the-art approaches). The reduction of

this running time complexity has been studied by Lampert et al. [79], who proposed a branch-and-bound

approach that can find a global optimum in this rigid search space in O(Kr/2). Zheng et al. [5] proposed

the marginal space learning that finds local optima using a coarse-to-fine approach, where the search

space is recursively broken into spaces of increasing dimensionality (i.e., the search begins with one

of the r dimensions, whose result is used to constrain the search in the space of two dimensions, until

arriving at the space of r dimensions). Carneiro et al. [1] also proposed a local optima approach based on

a coarse-to-fine derivative-based search that uses a gradient ascent approach in the space of r dimensions.

In general, these last two methods provide a search complexity of O(K + ♯ σ×Kfine × r), where ♯ σ is

the number of scales (for the methods above, ♯ σ = 3), with σ ∈ {4, 8, 16}, and Kfine << K (commonly,

Kfine = O(101)).

In the proposed approach, we are able to reduce the complexity of the rigid segmentation, that is, reduce

r from R to M , and in this way, increase the efficiency of this segmentation stage. Therefore, in methods

that only have one coarse step [1,80], represented by the rigid detector, this smaller dimensionality allows

for a faster search process; and for methods that rely on multiple coarse steps [5], our approach can reduce

the number of coarse steps to run (e.g., from R to M steps). Thus, if we are using the patch member

points (without manifold sparsity) the complexity is given by O((
∑

i Pi) × ♯ σ × r), meaning that we

have to perform the segmentation in every patch of the manifold. When using sparsity, we use of Li

landmarks per patch Pi, we avoid the expensive initial search of K points in the coarsest scale. Taking all

this together, we have a final complexity of O((
∑

i Li)× ♯ σ × r). Typically, we have
∑

i Li = O(101),

so our approach leads to a complexity of O(3×10×r), which compares favorably to O(103+3×10×r)

[1,5] and O((103)r/2) [79]. One possible drawback of our proposal resides in the frequent use of the

parametrization to map t to annotation y, but we show in the experiments that the cost associated with

that procedure is not significant compared to the running time of the rigid classifier.

VII. EXPERIMENTAL SETUP

This section presents the experimental setup used for testing the proposed framework for object

segmentation. Recall that the objectives of the proposed methodology are: 1) achieve superior efficiency
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with competitive accuracy, when compared to the state of the art, and 2) reach high robustness to small

training sets given that training samples are constrained to lie in the learned low-dimensional manifold.

It is important to emphasize that the inference efficiency depends not only on the dimensionality of the

manifold (that is the tangent space), but also on the number of landmarks. Therefore, in order to test the

robustness of the inference process to a limited number of landmark points, we run two experiments. In

one of the experiments, we only use the landmarks during the inference process, making the whole process

quite efficient. In the other experiment, we use all patch member points, which decrease significantly the

search efficiency, but can potentially improve the segmentation accuracy. In order to assess the robustness

of the learning process to training sets of different sizes, we train the rigid detector using augmented

training sets of different sizes. The segmentation results of our methodology are then compared related

approaches in terms of accuracy and running time figures.

A. Material

Two different problems are considered in order to empirically demonstrate our claims. The first problem

is the segmentation of the left ventricle (LV) of the heart from ultrasound sequences [28], and the second

problem is the segmentation of lips from sequences containing the faces of several people showing

different types of emotions [8].

For the LV segmentation problem, 14 sequences taken from 14 different subjects are considered, where

12 sequences present some kind of cardiopathy (e.g., mild to severe dilation of the LV, hypertrophy of the

LV, wall motion abnormalities, dysfunction of the LV, and valvular heart disease) and are used for training;

2 sequences are normal and used for testing (i.e., there is no overlap between subjects in training and test

sets). All these sequences display the left ventricle of the heart using the apical two and four-chamber

views (note that we refer to the test sets as T1 and T2). We worked with a cardiologist, who annotated

400 images in the training set (an average of 34 images per sequence) and 80 images in (average of 40

images per sequence) in the test set. It is important to mention that the annotations in the training set

contain the same number of keypoints, and that the base and apical points are explicitly identified in

order for us to determine the rigid transformation between each annotation and the canonical location of

such points in the reference patch.

For the lip segmentation problem, we use the Cohn-Kanade (CK+) database [8] of emotion sequences

taken from frontal view, where the manual lip annotation is available. Among several emotion sequences

we take the “happy” and “surprise” sequences, since they contain more challenging lip boundary defor-

mations in comparison with the remaining emotion sequences. The training sets contain 12 sequences
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with 7 subjects where we use 5 “happy” sequences and 5 “surprise” sequences, with 3 subjects being

used in both sequences, but exhibiting different lip motions. This training set consists of 209 frames for

training , with 91 and 118 frames of the “happy” and “surprise” sequences, respectively. The test set also

contains 12 sequences with 24 subjects where none of the subjects in the test sequences are present in

the training sequences. This test set comprises 444 images, with 250 frames for “happy” and 194 frames

for “surprise”.

B. Methods

The dimensionality of the explicit representation for the LV contour is S = 21 (i.e., 21 2− dimensional

points), and for the lip contour is S = 40 (i.e., 40 2−dimensional points). For the LV segmentation

problem, the manifold learning algorithm produces: (i) |P| = 14 patches, with a total of 1158 patch

member points and 63 landmark points, and (ii) M = 2 for the dimensionality of the rigid search space

(i.e., this represents the intrinsic dimensionality of the manifold). For the lip segmentation, the manifold

learning produces: (i) |P| = 4 patches with 395 patch-member points and 46 landmark points, and

(ii) M = 2 for the dimensionality of the rigid search space. It is worth mentioning that the original

dimensionality of the rigid search space is R = 5 (representing two translation, one rotation and two

scale parameters), which is the dimensionality usually found in current state-of-the-art methods [1,2,6].

Fig. 5 illustrates the result of our manifold learning algorithm on the LV and lip segmentation problems

(see Section VIII), where each patch Pi contains a set of the patch-member and landmark points. In this

figure, the blue dots are the annotations after PCA reduction (the first three components are shown), and

the red circles indicate the estimated landmarks.

The training and inference methods used in this paper are adapted from a methodology that we have

proposed recently [1], consisting of a coarse-to-fine rigid detector p(t|x, γMAP) and a non-rigid classifier

p(y|t,x, λMAP) based on deep belief networks (DBN) [77]. The main difference lies in the use of sparse

low-dimensional manifolds to represent the rigid detection space, which means that we re-trained the

coarse-to-fine rigid detector to run on the learned manifold. Moreover, our rigid classifier is estimated

using training sets of different sizes, where we show that the number of additional (artificial) training

samples can be reduced with the use of our low-dimensionality manifold. Specifically, we vary the size

of the set of positive samples by varying the number of additional positive and negative samples per

training image, as follows |T+(i, j)| ∈ {1, 5, 10, 15, 20}, and the size of negative samples as |T−(i)| ∈
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Fig. 5. Manifold learning algorithm for the LV (left) and lip (right) segmentation problems. The graphs show the annotation

points in blue and landmarks in red after a PCA reduction. From our experiments, a total of 1158 patch member points (blue

dots) and 63 landmark points (circle red) are estimated for the LV case. The right graph (lip case) depicts the manifold estimation

with 395 patch-member points (in blue dots) and with the 46 landmarks (in red circles). Notice that larger number of patch

member points (and landmarks) are obtained for the LV case, which is due to larger LV shape deformation obtained across

different patients.

{10, 50, 100, 150, 200}, as explained in (12)4. We added more additional negative samples due to the

larger area occupied by the negative region.

The performance of our approach is assessed with a quantitative comparison over the test sets using the

following state-of-the-art methods based on machine learning techniques proposed in the literature for the

LV segmentation problem: COM [2,6], CAR [1]. For the lip segmentation, we compare the performance

of our approach only with CAR [1] because that was the only one available for comparison in this

problem. For both segmentation problems, we also compare the running times between our approach and

CAR [1].

C. Accuracy Measurements

The performance is evaluated in terms of contour accuracy using several metrics commonly adopted

in the literature and running time spent to perform the object segmentation. The segmentation accuracy

is assessed using the following error measures proposed in the literature: (i) Hausdorff (MAX) [81],

(ii) Mean Sum of Squared Distance (MSSD) [6], (iii) Jaccard distance (JCD), (iv) average distance

(AV) [28], (v) F-measure, and (vi) the Intersection over Union (IoU), which are commonly used metrics

for contour evaluation.

4Note that for both databases, the training of the original algorithm in [1] used |T+| = 10, and |T−| = 100 per image in

the training set.
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VIII. EXPERIMENTAL RESULTS

This section presents segmentation results of the proposed approach for the LV segmentation in

ultrasound (US) and in magnetic resonance imaging (MRI) sequences, and also for the lip segmentation

in video sequences. For the LV in US problem we conduct two distinct experiments. In Sec. VIII-A.1

we evaluate the accuracy of rigid detection separately, as this is the focus of the paper. In Sec. VIII-A.2

we compare the proposed framework with other related approaches tailored for the same problem and

mentioning the run time figures obtained, as well as the the quantitative contour assessment. Similarly, for

the lip segmentation (see Sec. VIII-B) we also perform comparisons concerning both quantitative and run

time figures experiments. Finally, we provide a comparison between the proposed method and the semantic

segmentation model based on the Convolutional Neural Network (CNN) [82] for the segmentation of the

endocardium of the LV in MRI in short axis (see Section VIII-D).

A. LV Segmentation in US

This section is divided into two parts. First, we evaluate the accuracy of rigid detection, which is

accomplished by presenting the results of the LV segmentation using an 14-fold cross validation (leave

one sequence out). Then, we perform a comparison with the state-of-the-art methodologies applied in

the same context (i.e., LV segmentation).

1) Comparison between rigid and improvement obtained with the non-rigid procedure in the problem

of the LV Segmentation: To obtain the results of the rigid segmentations we performed a 14-fold cross

validation, where the final result produced by the rigid detector is assessed based on the mean shape

placed at the center of the detected window. The 14-fold cross validation is accomplished as follows:

(a) Generate 14 versions of the manifold as described in Section IV. Each version of the manifold is

obtained using 13 sequences for training, leaving one sequence out for testing. This allows us to

obtain the set of landmark points (Section IV-C) for each of the 14 manifolds.

(b) For each manifold, several DBN classifiers are trained, as follows: for a given configuration of data

augmentation (recall from Sec. VII-B that there are five possible configurations), three classifiers

are learned (one for each scale σ ∈ {4, 8, 16}). This amounts a total of 15 classifiers.

(c) The two above steps are repeated 14 times, and produce a total of 210 DBN classifiers.

The testing stage comprises the following main steps:

(a) For each frame of each held-out test sequence, 5 segmentations are produced (from the five data

augmentation versions).
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(b) Each sequence is tested in 17 images comprising the systolic and diastolic phase in the cardiac cycle

(note that these 17 images represent a subset of the annotated images per sequence). This means

that 14× 17 = 238 segmentations are produced for all 14 sequences for a given data augmentation

configuration.

(c) Considering the five data augmentation possibilities, this amounts a total of 1190 segmentations.

Figure 6 (top) shows the quantitative performance of the shape produced by the rigid detector (i.e., using

Jaccard, average distance and Hausdorff metrics). Figure 6 (bottom) shows the improvement brought by

the non-rigid segmentation compared to the rigid detection. From Fig. 6, we can observe that the non-rigid

segmentation always improves the result from the rigid detector, which already produces a reasonably

competitive result.
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Fig. 6. The performance of the rigid detector in the 14-fold cross validation on the LV data is shown on the top graphs,

while the bottom shows the improvements produced by the non-rigid detector, compared to the initial segmentation by the rigid

detector, represented by the mean shape placed at the center of the detection window. From left to right, the graphs show the

Jaccard, average and Hausdorff measures. Furthermore, all measures are shown with respect to varying sizes of positive and

negative additional training samples in the ranges {(1, 10), (5, 50), (10, 100), (15, 150), (20, 200)}.

We also provide another experiment concerning the scatter-plots of the rigid and non-rigid stages

using the 14-fold validation for all of the positive-negative configurations. This is illustrated in Fig. 7,

where each dot represents one of the images in the left-out sequence. In this experiment we compare the

gold standard LV volume using manual annotations and the computer-generated LV volume. To estimate

the LV volume from 2D contour annotations we use the area-length equation [83] with V = 8A2

3πL ,

where A denotes the projected surface area and L is the distance from upper aortic valve point to apex,
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Fig. 7. Scatter plots with linear regression (top) and Bland-Altman bias plots (bottom). Rigid detection (top) non-rigid

segmentation (bottom) for five data augmentation configurations {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}.

V is the resulting volume. In this scatter plot, we see that the non-rigid segmentation provides better

results compared with the rigid segmentation. More specifically, the following correlation coefficients

r are obtained: (i) rigid detector: r = {0.76, 0.79, 0.78, 0.73, 0.75} (see Fig. 7 top) and (ii) non-rigid

segmentation: r = {0.84, 0.84, 0.89, 0.86, 0.86} (see Fig. 7 bottom).

We also show the type of learned features for the rigid detector in the deep belief network. Figures

8 and 9 show the features learned for the configuration of 20-200 (i.e. positive-negative) for the patch

member and landmark points, respectively. Denoting Wi with i = 1, ..., nL (nL the number of layers),

as the matrices of weights of the DBN learned for σ = 4, where the number of nodes of the learned

architectures are the following:

• Patch member points: (196× 100), (100× 100), (100× 200), (200× 200), nodes, for layers 1, 2,

3 and 4, respectively;

• Landmark points: (196× 100), (100× 100), (100× 200), nodes, for layers 1, 2 and 3, respectively.

Hence, we have for the patch member points, W1 ∈ R196×100, W2 ∈ R100×100, W3 ∈ R100×200,

and W4 ∈ R200×200. For the landmark points the complexity of the architecture is lower providing the

following weights matrices, W1 ∈ R196×100, W2 ∈ R100×100, and W3 ∈ R100×200.

The features shown in Figs. 8, 9 depict the first 25 columns5 (a) and the first 100 columns ((b), (c)

and (d)). Each cell is a 14 × 14 matrix, that corresponds to a reshaped 196-dimensional vector. In Fig.

8 we have the matrices : W1 (a), W1W2 (b), W1W2W3 (c), W1W2W3W4 (d). In Fig. 9 we have

525 features are shown for the sake of better visualization
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(a) (b)

(c) (d)

Fig. 8. First 25 features (a) and 100 first features ((b),(c),(d)) for each layer of the rigid classifier at σ = 4 for the patch

member points. Layers (a) 1, (b) 2, (c) 3, and (d) 4.

the matrices: W1 (a), W1W2 (b) and W1W2W3 (c). Note that the features learned in higher layers

tend to be more global than features in lower layers. This fact demonstrates the abstraction capabilities

of the DBN, that was already noticed in previous studies (see [84] for other type of experiments).

Also note that the features defined by the landmark points (Fig. 9) are a bit less ”well formed” than

the the ones from the patch member points (Fig. 8),but they share some of the same high-level structures.

In addition, the model learned for the landmark points is less complex.

2) Comparison with other related approaches: Fig. 10 shows the segmentation accuracy results for

the LV test sequences T1 and T2 using the JCD and AV measures, which vary as a function of whether

the inference used patch member or landmark points and also of the training set size. Fig. 11 and Fig. 12

show a comparison with COM [2,6] and CAR [1] approaches using all measures described in Sec. VII-C

for the test sequences of the LV. For this comparison, we used the landmarks in the manifold and varying

training set sizes. Fig. 13 shows a qualitative comparison displaying the segmentation result from our

method and also from COM [2,6] and CAR [1] illustrating some snapshots of the LV test sequences.
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(a) (b) (c)

Fig. 9. First 25 features (a) and 100 first features ((b),(c)) for each layer of the rigid classifier at σ = 4 for the landmark

points. Layers (a) 1, (b) 2, and (c) 3.
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Fig. 10. Jaccard (columns 1 and 2) and average distance (columns 3 and 4) metrics for the test sequences T1 and

T2. The accuracy is shown by varying the sizes of positive and negatives additional training samples in the ranges

{{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. Results are shown using the patch member points (top row) and using

landmark points (bottom row) in the manifold.

We compare the running time figures of our approach with CAR [1]. The obtained results are shown

in Table III. These running time figures were obtained on a computer with the following configuration:

Intel Core i5, with 4GB of RAM.

In order to measure the statistical significance of the results shown in this section, we perform a t-test

in Table I, where we compare two-variable measures and compute their probabilities of being drawn from

independent samples (using the p-value). Our main objective is to show that our results are competitive,

which means that the difference between our and the state-of-the-art results are not statistically significant,
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Fig. 11. Comparison of the state of the art (CAR [1] and COM [2,6]) against our approach using the sparse manifold with

landmark selection and varying training set sizes on test sequences T1 (top row) and T2 (bottom row).
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Fig. 12. Comparison of the state of the art (CAR [1] and COM [2,6]) against our approach using the sparse manifold with

landmark selection and varying training set sizes on test sequences. It is shown the Intersection over union (two left images)

and F-measure (two right images) obtained for the two test sequences T1 (1st and 3rd images) and T2 (2nd and 4th images).

which is represented by a p-value of p > 0.01. Also note that the p-value is obtained using the LV volumes

computed from the 2D contours [83].

B. Lip Segmentation

Figures 14, 15 and 16 show a quantitative comparison between the proposed framework (using landmark

points and different training set sizes, using the surprise and happy sequences, respectively) and the

CAR [1] approach.

We also compare the running times of our approach with CAR [1]. See the obtained results for the

happy and surprise sequences in Table III.6

Figs. 17, 18 show examples of the final lip segmentation produced by our methodology on the happy

and surprise test sequences, along with the manual annotation.

6Notice that we compute the overall mean of the 12 happy sequences and 12 surprise sequences.
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Fig. 13. Qualitative comparison between the expert annotation (GT in blue) and the results of our approach (green), COM

(yellow), and CAR (purple). The results show the segmentations for the teste sequence T1 (top row) and for T2 (bottom row).

TABLE I

T-TEST BETWEEN THE VOLUMES ESTIMATED WITH THE PROPOSED APPROACH AND WITH THE CAR [1] AND COM [2,6]

APPROACHES ON THE LV TEST SEQUENCES.

Training set sizes (positive-negative)

1-10 5-50 10-100 15-150 20-200

COM [2,6] p-value 0.316 0.079 0.139 0.249 0.138

CAR [1] p-value 0.153 0.028 0.066 0.135 0.067

Finally, as in the previous LV sequences, we also perform a statistical significance of the results on

both test sequences. Table II shows the comparison of the two-variable measures and the computation of

their probabilities of being drawn from independent samples (using the p-value). The p-value is obtained

using the lip area computed from the 2D contours.
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Fig. 14. Comparison with (CAR) method for the surprise sequences. Error metrics (from left to right: HMD, AV, MAX,

MAD and MSSD) for the surprise sequences. The accuracy is shown varying the sizes of positive and negatives examples in

the range {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. Results are shown using the patch member points (top row) and

using landmark points (bottom row) in the manifold.

TABLE II

T-TEST BETWEEN THE AREAS ESTIMATED WITH THE PROPOSED APPROACH AND WITH THE CAR [1] ON THE SURPRISE AND

HAPPY SEQUENCES.

Training set sizes (positive-negative)

1-10 5-50 10-100 15-150 20-200

surprise p-value 0.140 0.085 0.163 0.067 0.271

happy p-value 0.047 0.063 0.039 0.030 0.060
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Fig. 15. Comparison with (CAR) method for the happy sequences. Error metrics (from left to right: HMD, AV, MAX, MAD

and MSSD) for the surprise sequences. The accuracy is shown varying the sizes of positive and negatives examples in the

range {{1, 10}, {5, 50}, {10, 100}, {15, 150}, {20, 200}}. Results are shown using the patch member points (top row) and

using landmark points (bottom row) in the manifold.
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Fig. 16. Comparison with (CAR) method for the surprise sequences (1st and 3rd images) and for happy sequences (2nd and

4th images) for IoU (two left images) and F measure (two right images). Results are shown using the landmark points in the

manifold.

Fig. 17. Test lip sequences displaying the “happy” expression. The ground truth (in green) is superimposed with the segmentation

results (in red).

Fig. 18. Test lip sequences displaying the “surprise” expression. The ground truth (in green) is superimposed with the

segmentation results (in red).
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TABLE III

RUNNING TIME FIGURES FOR THE LV AND LIPS EXPERIMENTS. THE RESULTS ARE SHOWN IN SEC. PER FRAME. IN THE

RIGID DETECTION STAGE THE TIME SPENT FOR THE PARAMETERIZATION IS SHOWN IN PARENTHESIS.

CAR Proposed

Total Rigid Non-Rigid Total

LV (T1, T2) 7.4 2.20 (1.26) 0.17 2.37

Lips
Happy 7.4 2.41 (1.29) 0.19 2.60

Surprise 7.4 2.44 (1.30) 0.19 2.63
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C. Comparison with Other Classification Methodologies

In this section we perform a comparison between the proposed approach and other shallow classification

methods, such as SVM and Random Forests (RF). The SVM and Random Forest (we use 100 decision

trees) training is based on the configuration of {20, 200} positives and negatives to generate the input

patches. This stage allows the estimation of soft confidences for the two-class (binary) classification task,

i.e. object segmentation. For the testing phase, we have to plug in the two methods in the framework. This

is done as described above, i.e. given the learned manifold, the landmarks are used as the initial guesses

for the gradient ascent procedure. The only difference is that, we replace the learned DBN classifiers, by

the confidences of the two methods in the segmentation procedure.
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Fig. 19. Performance of the SVM and RF for the happy (two left images) and surprise (two right images) sequences. Jaccard

distance (JCD) and average distance (AV) are used in this study.

In this experiment, we use the surprise and happy sequences for comparison purposes. Fig. 19 shows

the performance of the proposed method for all configurations of the positive and negative examples,

and the performance of the SVM and RF. It is clear that the performance of the shallow methods are

less accurate that the proposed methodology. This is somehow expected since it is well known that RF

does not train well on small datasets (similar performance is obtained for SVM). On the other hand, the

better accuracy presented by DBN works well with small training sets.

We also performed an additional study, that explains the gradient ascent procedure during segmentation.

Fig. 20 shows the evolution of the gradient magnitude of the SVM (left) and the DBN (right) in the 12

surprise sequences. In this experiment we use five iterations and we plot the evolution of the gradient

agnitude in one patch of the manifold using the configuration {20, 200} for positives and negatives, where

each line corresponds to the gradient magnitude evolution for each frame in the sequence. We see that,

for the SVM the gradient magnitude is more unstable, which can limit the accuracy of the segmentation.

For the DBN, we can observe that this procedure is more stable, where the classifier results are able

to provide a better guidance during the segmentation task. This happens since the classifier has an
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additional information about the features learned in the hidden layers and thus, they can provide more

reliable confidence concerning the object position.
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Fig. 20. Evolution of the gradient in the segmentation process (a) SVM and (b) DBN.

D. LV Segmentation in MRI

This section provides a comparison of the proposed methodology with the recently proposed semantic

segmentation model based on Convolutional Neural Networks (CNNs) [82]. For this comparison, we use

the publicly available dataset [85] containing 33 sequences acquired from 33 subjects (both healthy and

diseased), where each sequence comprises 20 volumes, covering one cardiac cycle. As in the LV US and

lip datasets, the object undergoes a rigid plus non-rigid deformation throughout time. In this dataset, the

number of slices in each volume ranged from 5 to 10, with a spacing of 6 - 13 mm, where each slice is

a 256 × 256 image, with a resolution in the range of [0.93 − 1.64] mm per pixel. The ground truth of

the LV segmentation in each slice is also provided.

The CNN architecture of the semantic segmentation model has 14 layers defined as follows (the size

of the input channels are represented in parenthesis):

• Layer 1: 50 input filters of size 5× 5, with stride=1, in the ’conv’ layer (97× 97)

• Layer 2: activation with ’ReLU’, (97× 97)

• Layer 3: max-pooling with size of 2× 2, and stride=2, (48× 48)

• Layer 4: 50-250 input/output filters of size 5× 5 in the ’conv’ layer, (44× 44)

• Layer 5: activation with ’ReLU’, (44× 44)

• Layer 6: max-pooling with size of 2× 2 and stride=2, (22× 22)

• Layer 7: 250-500 input/output filters of size 5× 5 in the ’conv’ layer, (18× 18)

• Layer 8: activation with ’ReLU’, (18× 18)

• Layer 9: 500-500 input/output filters of size 5× 5 in the ’conv’ layer, (14× 14)

• Layer 10: activation with ’ReLU’, (14× 14)
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• Layer 11: 500-500 input/output filters of size 5× 5 in the ’conv’ layer, (10× 10)

• Layer 12: activation with ’ReLU’, (10× 10)

• Layer 13: 2-500 input/output filters of size 10× 10 in the ’deconv’ layer, (28× 28)

• Layer 14: ’loss’, (28× 28)

The hyper paremeters of the network are as follows: (i) batchSize = 10, (ii) numEpochs = 100, (iii)

learningRate = 0.0001, (iv) weightDecay = 0.0005, (v) momentum = 0.9, and (vi) random Gaussian

initialisation with weightInit = 1/100.

Fig. 21. MRI slices during a cardiac cycle (top) and the corresponding CNN output (bottom).

The evaluation process of the CNN semantic segmentation model and the proposed framework is

the same as described in Sec. VIII-A, that is, performing a leave one sequence out (i.e. 33-fold cross

validation). Fig. 21 shows the original MRI images of the LV (top) and the semantic segmentation

produced by the CNN (bottom).

For comparison purposes, we compute the mean of IoU value per volume for the semantic segmentation

and the proposed model. Fig. 22 shows the volumetric IoU coefficient obtained with the two methodologies

for each of the 33 × 20 volumes in the dataset. It is possible to see that the proposed method is able

to achieve comparable results with the CNN semantic segmentation model. Also note that most of the

volumes are well segmented. The poorer segmentations can be identified in the regions of the red pixels

in the maps. This figure shows that both methods perform better in the diastolic phase (roughly at frames

1-5 and 11-20) than in the systolic phase (frames 6-10). This is somehow expected where the structure

to be segmented is small (see the rightmost image in Fig. 21, where the high probability map seems less

defined).

Fig. 23 shows the quantitative comparison comprising using the metrics described in Sec. VII-C. The
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quantitative performance of the FCN is comparable, it is shown that the proposed methodology exhibits

competitive results.
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Fig. 22. Discriminated evaluation of the segmentation of each volume in the dataset for the CNN (a) and the proposed approach

(b). Each map is a 33 (patients) × 20 (volumes) matrix. The colormap indicates the IoU, in which green correspond to good

segmentation and red to poor segmentation.
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Fig. 23. Comparison between the FCN and with the proposed method (“.prop” in the legends )using Jaccard distance, IoU, F

measure (left) and AV, MAX and MAD metrics (right).

IX. DISCUSSION

In this section, we first discuss the LV segmentation and then the lip segmentation results. We conclude

the section with a presentation of the limitations of our method.

A. LV segmentation

Concerning the LV segmentation results shown in Fig. 10, we see that the inference process achieves

similar accuracy with patch member and landmark points. This is relevant because it allows an improve-
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ment of 2 orders of magnitude in the inference process. Moreover, the number of additional positive and

negative samples in the training set also shows insignificant impact on the accuracy of the methodology,

as shown in Figures 10 and 11, which demonstrates that our methodology is robust to small training sets,

allowing a more efficient training process. The comparison with the state of the art in Fig. 11 and Table II

shows that our methodology produces competitive segmentation results that are comparable to the current

state of the art in this database. It is interesting to see that the training process with 1 additional positive

and 10 additional negatives achieves results that are comparable to COM [2,6] and CAR [1] (notice the

large p-value indicating statistically insignificant differences in the results). In terms of running time,

our method is about 3 times faster than CAR [1], but notice that the fact that the landmarks initialize

independent search processes could have been exploited to improve even more this running time.

B. Lip segmentation

For the lip segmentation results shown in Figures 15 and 14 we also notice similar accuracy with patch

member and landmark points. Similarly to the LV segmentation, the number of additional positive and

negative samples in the training set also shows insignificant impact on the accuracy of the methodology.

The comparison with CAR [1] shows that our proposed approach is mostly comparable (but actually

slightly better in the sequence ”happy”), as demonstrated by the results in Table II. As observed in the

LV segmentation results, the training process for the lip segmentation problem also produces competitive

results with only 1 additional positive and 10 additional negatives. Finally, the running time is also also

about 3 times faster than CAR [1].

C. Limitations of the Method

One of the main issues of the methodology is with respect to the number of estimated patches during

the manifold learning process. In practice, during the segmentation procedure, we observe that only

a small subset of the patches are important for the contour estimation in (17). The large number of

patches is important for the robustness of the methodology, but a more efficient search process could

have been designed to avoid the search in patches where the DBN produces a segmentation result with

low confidence. Another issue with the methodology is with respect to the distribution of landmarks

with respect to rigid deformation. In general, the training set must contain a good representation of this

distribution in order for our approach to work robustly, because the rigid detection search is limited to

the initial landmark locations.
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X. CONCLUSION

In this paper, we presented a novel methodology for non-rigid object segmentation. The methodology

proposed combines the deep learning architecture with the use of manifold learning. The main contribution

and focus of the article is the dimensionality reduction of the segmentation contour parametrization for

the rigid components. A manifold learning based approach has been proposed and allows to reduce the

dimension of the rigid space. Thus, the framework allows for a faster running time in both training and

segmentation stages. This is because, the training and parameters search are both reformulated directly

in terms of the sparse manifold parametrization.

Further work will be focused on other directions. For instance, we plan to incorporate a dynamical

model using the manifold, where the object dynamics is learned directly in the low dimensional manifold

parameter space. This will allow for a reduction of the computational cost in the prediction step. As

explained above we also plan to parallelize the segmentation process given that the landmarks represent

independent initial guesses for the search process. In fact, a fully parallel implementation can make the

whole process 10-times more efficient.

APPENDIX

In this appendix, we briefly review the main steps of the manifold learning algorithm [75], summarized

in Sec. IV (see [86] for supplementary information). Briefly, the algorithm takes the annotations {yj}|D|j=1

and produces: (i) the intrinsic manifold dimensionality, (ii) the partitioning of the manifold into patches,

and (iii) the charts and parameterizations.

1) Intrinsic Manifold Dimensionality: The estimation of the intrinsic dimensionality relies on a selec-

tion process over the significant eigenvalues of the following covariance matrix for each yj [87,88]:

Syj
=

1

|Byj ,ϵ| − 1

∑
yk∈Byj ,ϵ

(yk − µByj ,ϵ
)(yk − µByj ,ϵ

)⊤, (18)

where Byj ,ϵ represents a set containing the annotations in the neighborhood of yj within ϵ-radius, µByj ,ϵ

denotes the mean of all annotations in the set Byj ,ϵ, and |.| is the set cardinality operator. The intrinsic

dimension is found by first computing the eigendecomposition of (18) for all elements of {yj}|D|j=1. For

each neighborhood, the eigenvalue immediately before the greatest drop in value should correspond to

intrinsic dimension estimated by

M̂j ≡ argmax
i

|λi+1 − λi|, (19)

where λi are the sorted eigenvalues of (18). The global estimate of the intrinsic dimensionality M is the

median over the estimates M̂j , with j ∈ {1, ..., |D|} [75].
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2) Partitioning of the Manifold into Patches: The partioning of the manifold M into p patches

P1, ...,Pp is based on a clustering method that uses the concept of principal angles (e.g. [89,90]) and

point distance as clustering criteria. The q-principal angles between subspaces spanned by the columns

a and b of two matrices A, B are defined as ([89,90]):

cos θk =
|akA⊤Bbk|

||Aak|| ||Bbk||
(20)

with k ∈ {1, ..., q}, where q = dim(A) = dim(B). Assuming that the matrices A and B are in fact the

matrices Vi and Vj of column eigenvectors found by the eidendecomposition of (18) on elements i and

j of {yj}|D|j=1, the partitioning method clusters Vi and Vj that have a maximum principal angle smaller

than a threshold (in this work, this threshold is π/2) and the distance between respective yi and yj is

also smaller than a pre-specified threshold. This process produces a set of |P| patches that covers the

manifold M.

Given the |P| patches above, the next step of the learning process involves the estimation of the

hyperplane for each one of those patches, which form a local coordinate system for each patch. This

process involves the computation of the covariance matrix for each patch Pi, as follows:

SPi
=

1

|Pi| − 1

∑
yk∈Pi

(yk − µPi
)(yk − µPi

)⊤, (21)

where µPi
represents the average of the annotations yk ∈ Pi. Then, the eigendecomposition

SPi
= VPi

DPi
V⊤Pi

(22)

produces the matrix VPi
containing an orthonormal basis that forms the local coordinate system for Pi.

A description of the clustering algorithm, that allows for the parch formation is given in Algorithm 1.

3) Charts and Parameterizations: Given the partition of M into |P| patches and the local coordinate

system VPi
of each patch Pi, the chart is obtained by projecting the patch point yi,j according to

ti,j = ζi(yi,j) (23)

where ζi(yi,j) = [V⊤Pi
(yi,j − µPi

)]M , where the operator [.]M truncates the input vector at its first M

components. The inverse mappings (i.e., the parameterizations) is given by

yi,j = ξi(ti,j) = VPi

[
t
(1)
i,j , ..., t

(M)
i,j , ξ̃i(ti,j)

]⊤
+µPi

(24)

where the remaining 2S −M components of ξ̃i are obtained through Gaussian process [75].
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Algorithm 1 Soft clustering for patch formation
i← 0

while M not covered do

i← i+ 1

Start new patch Pi

y0 ← random seed chosen among points not attributed to any patch

V0 ← tangent subspace basis at y0 found by PCA in By,ϵ
while not all N points visited do

d← distances between all unattributed points and all points in Pi

y∗ ← choose unattributed point with minimum D

V∗ ← tangent subspace at y∗

θ1, . . . , θn ← principal angles between V0 and V∗

if maxk=1,...,n θk < τ and mind < ϵ then

append y∗ to Pi

end if

end while

end while
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