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a b s t r a c t 

Dermatologists have stated their preference for computer aided diagnosis (CAD) systems that provide 

medical justifications for the estimated diagnosis of a skin lesion. Such systems are considered to be 

clinically oriented in the sense that they try to detect clinical criteria and then perform a diagnosis based 

on that information. Unfortunately, the development of clinically inspired systems is hampered by several 

challenges: (i) the lack of datasets with detailed information regarding the presence and location of clin- 

ical criteria; (ii) the subtlety of some diagnostic criteria, which makes them difficult to detect; and (iii) 

the difficulty of using the detected criteria to predict a diagnosis. In this work, we propose a machine 

learning framework to address these issues. First, an image annotation approach is used to detect various 

medical criteria (color, texture and color structures). Information is, then, extracted from the detected cri- 

teria and a late fusion method is used to obtain a lesion diagnosis. A sensitivity of 84.6% and a specificity 

of 74.2% are obtained on a multi-source dataset of 804 images. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

1.1. Motivation 

Cancer is one of the leading causes of death worldwide, being

the second major cause of death and morbidity in Europe alone [1] .

Melanoma is the deadliest form of skin cancer, ranking in the ninth

position among the most common types of cancer in Europe, while

the American Cancer Society estimates that more than 73,0 0 0 new

cases are diagnosed each year [2] . The mortality rates of melanoma

are associated with its high potential to metastasize in later stages,

propagating to other sites in the body such as lungs, bones, or

brain. A common technique used by dermatologists to diagnose

this disease is dermoscopy, which allows the observation of struc-

tures and colors, otherwise invisible to the naked eye. Although

there are established medical procedures to analyze dermoscopy

images ( e.g. , ABCD rule [3] and 7-point checklist [4] ), this is still

a subjective process that heavily relies both on the experience and

visual acuity of the practitioner [5] . These limitations have fostered

the proposal of several computer aided diagnosis (CAD) systems,

for the analysis of dermoscopy images [6] . 

This paper describes a clinically oriented CAD system that is ca-

pable of identifying medical features in the lesions and diagnose

them, basing the decision on the detected features. Medical feed-
∗ Corresponding author. 

E-mail address: ana.c.fidalgo.barata@ist.utl.pt (C. Barata). 
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ack tells us that physicians prefer these kinds of systems, over

he ones ( e.g. , [7,8] ) that use abstract image features, such as color

istograms or the gray level co-occurrence matrix, to characterize

he lesions. Although the latter achieve promising experimental re-

ults, dermatologists feel they are not informative enough and lack

edical meaning [9] . 

The development of a clinically inspired system is a challenging

ask that is hampered by several factors: (i) the lack of datasets

ith detailed annotations of the medical features and their loca-

ions; (ii) the difficulty of distinguishing and detecting some of the

edical features; and (iii) the difficulty of using the detected cri-

eria to predict a diagnosis. In this paper we propose a machine

earning framework to tackle the aforementioned issues. 

.2. Related work 

The number of works that address the development of clinically

nspired CAD systems has been growing over the last decade [6,10] .

hese works can be divided into two categories, according to the

edical algorithms that they try to replicate: (i) methods that try

o detect global patterns and (ii) methods that try to detect local-

zed dermoscopic criteria. 

The first type of method aims at mimicking a medical approach

alled pattern analysis [11] . This technique consists of inspecting

he lesion for the presence of specific patterns associated with tex-

ure structures, such as pigment network, streaks, and globules.

 lesion is considered to be represented by one of patterns if its

haracteristic dermoscopic criterion is the predominant one (the

http://dx.doi.org/10.1016/j.patcog.2017.04.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.04.023&domain=pdf
mailto:ana.c.fidalgo.barata@ist.utl.pt
http://dx.doi.org/10.1016/j.patcog.2017.04.023
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Fig. 1. Desired output of a clinically inspired system. 
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ne which covers the largest area) [5] . Different strategies have

een proposed to automatically associate the lesion with a pattern.

ome methods characterize the whole lesion using a single feature

ector that comprises information about color, texture, and sym-

etry. This information is then used to either train a different clas-

ifier for each of the patterns (e.g. [12,13] ), or to train a multiclass

lgorithm, as proposed in [14] . Alternatively, other methods divide

he lesion into small regions and separately characterize each one

f them. Then, regions that belong to the same type of pattern are

rouped and used to train a classifier [15–17] . 

The majority of clinically inspired CAD systems try to detect

ermoscopic criteria. These methods are based on medical pro-

edures such as the ABCD rule and 7-point checklist. A biblio-

raphic search shows that it is possible to detect a multitude of

riteria. Pigment network is one of the most popular criteria due

o its medical relevance [18–27] . The remaining texture structures

re less popular. Nonetheless, some works can be found on liter-

ture regarding the detection of streaks [28–30] and dots/globules

18,31,32] . 

The detection of color criteria is also an active topic of research

see [33] for a review on this topic). Several works were inspired

y the ABCD rule [3] and proposed strategies to detect and/or

uantify clinically relevant colors [34–40] . Several of these works

tart by computing a color palette to represent the possible col-

rs. This palette is estimated using color segmentations provided

y experienced dermatologists. New images are divided in small

egions, and each region is compared with the templates and asso-

iated with the closest one. In order to estimate the color models,

 training set of images with segmented colors is required. More-

ver, since the assessment of colors is a subjective process that re-

ies on the visual perception of the practitioner, it is necessary to

ave more than one dermatologist providing the color segmenta-

ions for the same lesion. This is a tedious approach. Other meth-

ds try to avoid these limitations by applying a clustering algo-

ithm in order to count the number of colors that can be found

n the lesion [40,41] . However, these methods do not discriminate

hich are the colors that are detected. 

Other works focus on the detection of color structures that

re usually associated with melanoma. Two of the studied criteria

re associated with abnormal pigmentation, namely dark blotches

36,42–44] and regions of decreased pigmentation [45–47] . Other

elevant color based structures are the white regression areas

22,45,4 8,4 9] , which are lesion regions that have a scar like aspect,

nd blue-whitish veil [22,48,50,51] , which appears as a gray-blue

o whitish-blue diffuse pigmentation. Multiple strategies have been

roposed to detect these structures. A common step to most of the

pproaches is to request dermatologists to identify regions within

he lesions where the criterion is present and regions where it is

bsent. Then, features are extracted from both types of regions and

sed to train a classifier, namely decision trees [22,48,50] and neu-

al networks [45,49] . An alternative strategy consists of learning a

olor palette using the region examples, and then use a nearest
eighbor approach to label new regions according to the estimated

alette [51] . 

Several problems can be pointed out to the works found in lit-

rature. Few of them attempt to use the detected medical criteria

o diagnose the lesions [12,14,17,22,34,39,40,45,50] , and even fewer

ttempt to detect more than one structure [22,36,45,48] . Further-

ore, a significant number of the mentioned methods require re-

iable segmentations of the criteria in order to be able to learn

 classifier, which are hard to obtain. The lack of segmentations

ampers the application of several systems and, in some cases,

akes it impossible to detect the criteria ( e.g. , colors). Recently,

ifferent works have tried to deal with this problem and learn

rom weakly annotated data (the information available for training

onsists of text labels). One of the works proposed a model for the

etection of blue-whitish veil using a multiple-instance framework

52] , while another used a probabilistic method called correspon-

ence latent Dirichlet allocation (corr-LDA) to detect colors [53] .

espite their relevance, these focus on the detection of a single

riteria, which is clearly insufficient as the diagnostic performed

y an expert is based on more than one criterion. 

. Problem statement 

Based on the literature, a clinically inspired system must fulfill

wo requirements [9] . Both of them are exemplified in Fig. 1 : 

1. Provide relevant clinical information to the dermatologists,

i.e. , replicate their identification of relevant criteria. The sys-

tem should provide a set of text labels stating which are

the clinical criteria that are present in the lesion and asso-

ciate those labels with specific regions, such that they can

be checked by the physicians. 

2. Diagnose the lesions, basing that decision on the detected

clinical criteria. This ensures that the features used by the

system have a medical meaning, making it possible for the

dermatologist to understand and validate the automated di-

agnosis. 

These requirements raise a set of problems. First, the med-

ical criteria can be very subtle structures. Second, the de-

velopment of strategies to detect clinical criteria usually re-

quires large datasets of images with detailed information:

text annotations stating which are the criteria that can be

found in the lesion and corresponding region segmentations.

The segmentations are used in the training of several al-

gorithms, as mentioned in Section 1.2 . Unfortunately, most

datasets lack the segmentations and only provide text labels,

as exemplified in Fig. 2 , since performing the latter is seen

as a time consuming and subjective task by the experts. Fi-

nally, it is not easy for a computer to convert the detected

criteria into information that can be used to automatically

diagnose melanomas. 
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Fig. 2. Images and annotations provided by dermatologists [5] . 
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Each of the aforementioned problems is addressed in this work.

The lack of reliable segmentations associated to the clinical fea-

tures is tackled using an image annotation approach called corr-

LDA [54] , where the idea is to learn the joint probability distri-

bution of text labels provided by experts and image regions. An-

notation algorithms are trained using weakly annotated data (with

text labels only), so it is appropriate to formulate the detection of

medical criteria as an annotation problem. 

Since some medical criteria can be difficult to detect, it is im-

portant to select a subset that play an important role in the diag-

nosis. The selected criteria correspond to different characteristics

of the lesions and will be divided into three classes (as exempli-

fied in Fig. 2 ): (i) six colors (C) defined in the ABCD rule (dark and

light browns, blue-gray, black, white, and red) [3] ; (ii) two texture

structures (TS), called pigment network and dots/globules [3] ; and

(iii) two color structures (CS) assessed in the 7-point method [4] -

blue-whitish veil and white regression areas. All of these criteria

are then used to extract appropriate features for lesion diagnosis. 

3. Comparison with other works 

There are two main differences between the proposed system

and other clinically inspired methods: i) most of the methods fo-

cus only on the detection of one or two clinical criteria [6] , while

the proposed method detects a larger number of criteria that char-

acterize different aspects of the lesion; and ii) few methods try to

diagnose melanomas using the clinical features [6] , which is per-

formed in this work. 
Fig. 3. Proposed C
Recently, we applied to the problem of color detection in der-

oscopy images [53] . This paper proposes significant changes.

irst, it extends the detection framework to a wider set of clin-

cal criteria besides color, which is a necessary step, since med-

cal experts use more criteria besides color. The selected criteria

over different properties of the lesions and can be associated to

he same region, making them a challenge. The extension to other

riteria required several modifications, such as the inclusion of a

ore sophisticated lesion segmentation strategy and new types

f region descriptors. Moreover, this paper also explores different

ethodologies to combine their information, in order to diagnose

he lesion as melanoma or benign. Finally, the experiments were

arried on a larger dataset (804 against 482 images). 

. System overview 

This section succinctly describes the proposed clinically in-

pired CAD system. The sequential framework of the system is sim-

lar to the analysis performed by dermatologists, i.e., first the sys-

em tries to identify the presence or relevant dermoscopic criteria

nd then performs a diagnosis using this information. Fig. 3 exem-

lifies the pipeline of the system. 

The first step of the system consists of dividing the image

nto smaller regions (see Fig. 3 ), each characterized by a fea-

ure vector r n . An image is assumed to be characterized by a

et r = { r 1 , . . . , r N } , which comprises the feature vectors from all

f the N regions. The segmentation strategy will be discussed in

ection 5.1 . The features that characterized the regions are dis-

ussed in Section 5.2 . It is assumed that each of the images can

ave one or more text labels. 

The next step is the identification of the dermoscopic criteria

hat are present in the lesion. This is a two fold task, as exempli-

ed in Fig. 3 , where the criteria are associated with one or more

egions (local labels) and text labels are produced for the entire

mage (global labels). The detection of the criteria is achieved us-

ng a probabilistic model called corr-LDA [54] , which is estimated

sing a database of weakly annotated images. The probabilistic for-

ulation of corr-LDA as well as specific aspects of the annotation

rocess will be discussed in Section 5.3 . 

The final block of the system classifies the lesion as melanoma

r benign using information extracted from the detected medical

riteria. This task requires the use of a classification algorithm,

hich is learned using a dataset of dermoscopy images diagnosed

y experts. The learning process of the classifier works as follows.

irst, the estimated corr-LDA models are applied to the training im-

ges. Then, new features are extracted from their output. Finally,
AD System. 
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Fig. 4. Image segmentation: original image (left), segmentation using color features (mid), and segmentation using color and texture features (right). Each color label 

represents a different region. The number of regions obtained by the algorithm ( N ) is also shown. 
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hese features are used to train the classifier. In the case of new

mages, their corr-LDA outputs are used as features and then the

lassifier is applied to predict the diagnosis. Detailed information

bout the classification approach is provided in Section 5.4 . 

The main advantage of the proposed system is its ability to in-

eract with the dermatologist, since the automated diagnosis relies

n descriptors that are medically inspired and can be checked by

linicians. This allows them to understand and validate the sug-

ested lesion diagnosis. Furthermore, its sequential framework is

imilar to the analysis performed by an expert: first look for sev-

ral dermoscopic criteria and then diagnose the lesion . These two

haracteristics of the proposed system make it valuable for the

edical community and make it significantly different from other

ystems found in literature [9] . 

. Proposed system 

.1. Lesion segmentation 

The goal of the segmentation block is to divide the lesion into

ifferent regions. Previously, segmentation was performed using a

egular grid approach [53] . This method is not appropriate for this

etting, since a block can contain more than one color or struc-

ure. Such output is undesirable and might hamper the training

nd testing of the detection model. Thus, it is important to use

 different segmentation method. Assuming that each dermoscopic

riteria has specific color and texture properties, and that the le-

ion is segmented into regions with homogeneous color and tex-

ure, it is possible to ensure that each region will contain only

ne color or structure. It is also important to have in mind that

tructures like pigment network may appear with different sizes

scales). Hence, it is also important to ensure that the obtained re-

ions are invariant to scale. 

Lesion segmentation is performed using the method proposed

n [55] . This is a graph-based algorithm that assumes that each of

he pixels in the image is one vertice of a graph, and that neigh-

or pixels are linked through edges. The weight of each edge is

iven by the Euclidean distance between the feature vectors of the

wo neighbor pixels. Connected vertices/pixels are combined in the

ame region if they are similar, i.e., if their corresponding edge

eight is lower than a given threshold δ. The value of δ defines

he size of the obtained regions and is influenced by the resolution
f the images. It was experimentally found that setting δ = 

L d + B d 
130 ,

here L d × B d is the resolution of image d ( i.e. , respectively the

umber of columns and rows), led to a good trade-off between the

ize of the regions and the computation time. 

Each pixel in the image is characterized by a feature vector that

ontains color and texture information. A common strategy to ob-

ain scale invariance is to enforce it during the feature extraction

rocess. In this work, this task is performed using the method pro-

osed by Carson et al. [56] . The idea is to determine the optimal

cale for each pixel using a local image property called polarity

56] , and then extract its features at that scale. 

The color information of a pixel are its L ∗a ∗b ∗ components.

hese components are determined after performing spatial averag-

ng using a Gaussian with s 2 = s ∗(x, y ) 2 , where s ∗ is the ideal scale.

he texture information is characterized by the contrast, contrast ×
olarity, and anisotropy × contrast [56] . The second moment ma-

rix at each pixel is used to compute contrast and anisotropy 

 s (x, y ) = G s (x, y ) ∗ (∇ I)(∇ I) T , (1)

here s = s ∗(x, y ) is the pixel’s best scale. From this matrix,

nisotropy and contrast at each pixel ( x, y ) are respectively defined

s: 

 (x, y ) = 1 − λ2 

λ1 

c(x, y ) = 2 

√ 

λ1 + λ2 , (2)

here λ1 , λ2 are the eigenvalues of M s ( x, y ). 

Two segmentations are performed for each image, one using

nly color features and the other using color and texture features,

s exemplified in Fig. 4 . The first segmentation is used to train/test

he corr-LDA associated with the color criteria, while the other is

sed to train the models associated with color and texture struc-

ures. 

.2. Feature extraction - region representation 

After segmenting the lesions, as exemplified in Fig. 4 , each of

he 1 , 2 , . . . , N regions is characterized by a feature vector r n ∈ R 

f .

his feature vector comprises information about color, texture or

oth, depending on the type of dermoscopic criteria. An image d is

haracterized by a set r d = { r d 
1 
, . . . , r d 

N 
} ∈ R 

f×N d of N 

d vectors (recall

rom Fig. 4 that each lesion is segmented into a different number
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of regions). Since we do not know which is the best type of fea-

tures that can be used to describe the regions, combinations of the

following descriptors were tested for each type of criterion. 
• Colors: The mean color vector in the HSV space ( μHSV ). 
• Texture structures: The regions are described using texture

features. In this work the tested features are the mean contrast

( μc ) and mean contrast × anisotropy ( μca ), the mean ( μg ) and

standard deviation ( σ g ) of the gray level values in the region, and

statistics computed using the directional filters proposed in [25] .

These filters are computed at different orientations θ i ∈ [0, π ],

i = 0 , . . . , 9 , with the impulse response for direction θ i given by

h θi 
(x, y ) = G 1 (x, y ) − G 2 (x, y ), (3)

where G k is a Gaussian filter: 

G k (x, y ) = C k exp 

{
− x ′ 2 

2 σ 2 
x k 

− y ′ 2 

2 σ 2 
y k 

}
, k = 1 , 2 . (4)

In (4) C k is a normalization constant and the values of ( x ′ , y ′ ) are

related with ( x, y ) by a rotation of amplitude θ i . 

x ′ = x cos θi + y sin θi , 

y ′ = y cos θi − x sin θi . 
(5)

We compute the output of the directional filters (3) for all the di-

rections and keep the maximum and minimum. The regions are

described by the mean and standard deviation of these values ( μM 

,

σ M 

, μm 

, and σ m 

). 
• Color structures: These structures simultaneously exhibit

color and texture properties. The color of the regions is character-

ized using μHSV , while two texture descriptors are compared: ( μc ,

μca ) and ( μM 

, σ M 

, μm 

, σ m 

). 

5.3. Image annotation & detection of medical criteria 

5.3.1. Annotation methods - overview 

The goal of image annotation methods is to find a relationship

between text labels and image features, such that a computer can

replicate the annotation process in new images and, on some occa-

sions, associating those concepts with specific regions of the image

(semantic segmentation). One of the major challenges of image an-

notation is the lack of completely annotated data. This means that

most of the algorithms have to be trained using weakly labeled

data, i.e. , they have image labels but no indication of the image re-

gions that are connected to each of the labels [57,58] . This is very

similar to the problem discussed in this work: we want to be able

to assign dermoscopic criteria to new images and locate them in

the lesion, but the training data consists only of text labels. It is

possible to divide annotation algorithms into two groups. Those

that treat annotation as a multi-class classification problem, and

those that want to estimate a probabilistic model to characterize

the relationship between image or region features and the text la-

bels [58] . 

The common approach used by the classification methods is

learn a separate classifier for each of the labels, treating the multi-

class problem as a set of binary ones. This kind of approach can

have a high computational cost. Moreover, several of the classifica-

tion methods are only suitable to perform annotation at the image

level, which means that they do not allow the identification of the

regions that are associated with each of the labels (recall that the

localization of the dermoscopic criteria is a goal of this work). An

exception is the multiple-instance multi-label (MIML) framework

that divides the image into regions, being then able to model the

relationship between them and the text labels ( e.g. , [59–62] ). How-

ever, this methodology has a set of drawbacks. It lacks robustness

in the presence of outliers (a single outlier can bias the solution)

and it is highly sensitive to initialization. Moreover, these methods
re restrictive in the sense that they usually require the definition

f the number of instances, which can be accomplished by either

reaking the images into a fixed number of regions or by applying

he bag-of-features framework before the learning phase [62] . If

he latter is performed, the clustering step might introduce errors

nd create misleading prototypes. Finally, they still rely on decom-

osing the learning task into a series of single-class multi-instance

earning procedures. 

An alternative to classification methods are the ones that use a

robabilistic formulation to model the co-occurrence of image fea-

ures and labels. The general idea is to use a Bayesian framework

o estimate the posterior distribution of each of the admissible la-

els, given the observation of features from the image, defined as

 ( w m 

| r ), where w m 

is the m th possible annotation and r is the

et of image features. Some probabilistic methods are not suitable

or our work, since they work at the image level and do not al-

ow region labeling ( e.g. [63,64] ). Other methods divide the image

nto regions, characterize each of them by a feature vector, and fi-

ally try to translate them into text labels. This last step is accom-

lished by first clustering the region features into a set of centroids

nd then computing the co-occurrence between them and each of

he admissible text labels ( e.g. , [65–67] ). This allows the associa-

ion between text labels and regions. However, assuming that each

egion inherits all of the labels associated with the entire image

s not appropriate, and the clustering step may introduce errors

n the model. Another type of region-based probabilistic methods

re those that define the relationship between regions features and

ext labels through the use of hidden variables. An example is the

orr-LDA algorithm [54] , which belongs to the family of generative

ethods. This method assumes that there is a set of hidden vari-

bles called topics that are simultaneously associated with a dis-

ribution over region features and possible text labels. Under this

ssumption, it is possible to estimate a joint distribution of text

abels and features and, consequently, the desired labeling prob-

bilities p ( w m 

| r ). The downside of corr-LDA is the need to define

he number of topics, but it does not suffer from the limitations

f other aforementioned methods, making it an appropriate choice

or this work. 

.3.2. corr-LDA formulation 

corr-LDA assumes that an image can be described by a Dirich-

et distribution, θ , of parameter α. This distribution is defined over

 set of K latent variables, z , called topics. The topics are the core

f the corr-LDA model, since each topic z k is simultaneously asso-

iated with: (i) a distribution of region features p ( r | z k , �k ), with

arameters �k ; and (ii) a multinomial distribution of the possible

ext labels p ( w | z k , βk ), with parameter βk . This formulation makes

t possible to establish an indirect relationship between the region

eatures and the text labels using topics. 

Given the model parameters, the different components (topics,

eatures, and labels) are sequentially generated, as summarized be-

ow [54] : 

1. For an image d , sample a topic distribution θ ∼ Dirichlet( α). 

2. For each of the N 

d image regions: 

(a) Sample a topic z n ∼ Multinomial( θ ). 

(b) Sample a region descriptor r n ∼ p ( r | z n , �) from a distribu-

tion conditioned on z n . 

3. For each of the M 

d global labels w m 

: 

(a) Sample a region indexing variable y m 

∼ Unif (1 , . . . , N) . 

(b) Sample an annotation w m 

∼ p ( w | y m 

, z , β) from a multino-

mial distribution conditioned on the z y m topic. 

uring the training phase, all of the model parameters α, � =
 �1 , . . . , �k } , and β = { β1 , . . . , βk } have to be estimated, using a

raining set of D weakly annotated images. The traditional ap-

roach is to use a Maximum Likelihood formulation, which re-
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uires the computation of 

p(r , w | α, β, �) = 

∫ 
θ

∑ 

z 

∑ 

y 

p(r , w , θ, z , y | α, β, �), (6)

his expression does not have an analytic solution. Blei and Jor-

an [68] address this issue using a variational method to estimate

he parameters. This approach starts by introducing a new set of

ndependent variational parameters, each associated with a distri-

ution over a specific hidden variable of the original model. The

ariational parameters, here identified as ( γ , φ, λ), allow the defi-

ition of a factorized distribution of the hidden variables 

 (θ, z , y ) = q (θ | γ ) . 

( 

N ∏ 

n =1 

q (z n | φn ) 

) 

. 

( 

M ∏ 

m =1 

q (y m 

| λm 

) 

) 

. (7)

he factorized distribution can be introduced in the original log-

ikelihood using Jensen’s inequality: 

og p(r , w | α, β, �) 

= log 

∫ 
θ

∑ 

z 

∑ 

y 

p(r , w , θ, z , y | α, β, �)d θ

= log 

∫ 
θ

∑ 

z 

∑ 

y 

p(r , w , θ, z , y | α, β, �) q (θ, z , y ) 

q (θ, z , y ) 
d θ

≥ E q [ log p(r , w , θ, z , y | α, β, �)] − E q [ log q (θ, z , y )] , (8) 

here E q is the expected value according to the variational dis-

ribution q ( θ , z, y ). The right side of the equation gives the lower

ound L (γ , φ, λ;α, β, �) of the log-likelihood, and can be decom-

osed as follows 

 (γ , φ, λ;α, β, �) = E q [ log p(θ | α)] + E q [ log p(z | θ )] 

+ E q [ log p(r | z , �)] + E q [ log p(y | N)] 

+ E q [ log p(w | y , z , β)] − E q [ log q (θ | γ )] 

− E q [ log q (z | φ)] − E q [ log q (y | λ)] . (9) 

ach of the terms in (9) can be expanded into explicit functions

f the model ( α, β , �) and variational ( γ , φ, λ) parameters. For

he expanded form of L (γ , φ, λ;α, β, �) , the reader is referred to

54] . 

In the end, the problem is transformed into one of finding the

est set of parameters that maximizes L , and can be solved using

 variational Expectation-Maximization (EM) algorithm: 

• E-step: Estimate the variational parameters for each image d

in the training set. The update equations of the parameters are

obtained by taking derivatives of L with respect to each of the

parameters and setting them to zero. 
• M-Step: Estimate the model parameters by maximizing the

overall lower bound L (D ) , with respect to ( α, β , �) 

L (D ) = 

D ∑ 

d=1 

L 

d (γ d , φd , λd ;α, β, �), (10)

where D is the training set of D images and L 

d is the lower

bound computed for training image d . 

These two steps are performed until L (D ) converges. The up-

ate equations of the variational ( γ , φ, λ) and model ( α, β) param-

ters are the same as those proposed in [54,68] . The update equa-

ions for � depend on the distributions p ( r n | z k , �k ). In [54] these

istributions are defined as multivariate Gaussian. However, this

ind of distribution is not suitable to model all types of features.

n example are features that comprise periodic angular informa-

ion, such as the Hue channel of the HSV color space. Therefore,

wo distributions are applied in this work, according to the fea-

ures r n used to describe the regions. If μ is included in the
HSV 
eature vector, then p ( r n | z k , �k ) is a von-Mises multivariate Gaus-

ian distribution [69] 

p(r n | z k , �k ) = ν( H n | τk , ε k ) . G (r ′ n | μk , �k ), (11)

here G is a multivariate Gaussian, and r ′ n defined the feature vec-

or of region n without the feature corresponding to the H channel.

is a von-Mises distribution 

( H n | z n , τ, ε ) = 

1 

2 π I 0 (ε ) 
e ε cos ( H n −τ ) , (12)

here the normalization factor I 0 is the modified zero-order Bessel

unction of the first kind and ε ≥ 0 denotes the concentration of

he distribution around the mean τ . In this case, �k comprises

our parameters ( μk , �k , τ k , εk ) that must be estimated. Other-

ise, p ( r n | z n , �k ) is a Gaussian distribution. All update equations

an be found in Appendix A.1 . 

.3.3. Region and image labeling 

corr-LDA has a greedy formulation, where all the labels com-

ete to annotate a region and only one is selected. In dermoscopy,

ore than one label can be associated with the same region (e.g.,

ig. 1 , the color labels dark brown and black share regions with the

exture label pigment network ). To tackle this issue we propose two

trategies: (i) train three corr-LDA models, one for each class of la-

els; and (ii) train a corr-LDA model for color and combine all the

tructures into a single model. 

To annotate the regions of a new image it is necessary to com-

ute the following probability for each of the possible labels w 

p(w | r n ) ∝ 

∑ 

z k 

q (z k | φn ) p(w | z k , β), (13)

here φn is the topic-related variational parameter of region n and

 ( z k | φn ) is a multinomial distribution. The label w with the highest

robability is then selected. 

The image labeling process is based on classification. In the case

f the color model, the image is annotated with a color label if

ollowing area ratio is above an estimated threshold 

c = 

A 

c 
regions 

A lesion 

, (14) 

here A 

c 
regions 

is the total area of the regions annotated with color

 and A lesion is the area of the lesion. 

In the case of texture and color structures, the idea is to use

 set of binary classifiers to predict the label. Each of the classi-

ers is trained to predict one of the possible labels. The features

sed by the classifiers are the outputs of corr-LDA: the image label

robability 

p(w | r ) ∝ 

N ∑ 

n =1 

∑ 

z k 

q (z k | φn ) p(w | z k , β) , (15)

hich is computed for all the labels, and the average number of

egions per topic η ∈ R 

K , where each position k is given by 

k = αk − γk . (16) 

he latter descriptor is based on the assumption that the k-th po-

ition of variational parameter γ corresponds approximately to the

 th position of model parameter α plus the expected number of

atch features that were generated by the k th topic [68] . Two clas-

ification algorithms are tested in this work: random forests and

VM. 

.4. Lesion diagnosis 

The previous sections described the strategy used to obtain a

edical description of the lesions associated to specific regions.

his section will address the question of how to use the detected
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medical information to diagnose the lesions as melanoma or be-

nign. Two main problems have to be solved at this stage: (i) How

to convert the annotations into an appropriate descriptor that can

be used by machine learning algorithms? (ii) How to combine the

information of the different corr-LDA models in order to obtain a

final diagnosis? 

The first problem can be tackled using the outputs of corr-LDA,

since these convey medical information. Three descriptors are se-

lected: 

• Present/Absent criteria (i): Binary vectors f C ∈ R 

6 , f T S ∈ R 

2 ,

and f CS ∈ R 

2 . The i th position of each of these vectors is

equal to 1 if the image was annotated with the i th label,

and 0 otherwise. 
• Label distribution (ii): Computation of the conditional prob-

abilities p ( w | r ) (15) , which provide an approximation of the

distribution of each label in a given lesion. 
• Average number of regions per topics (iii): Computation of

η ∈ R 

K for each of the trained corr-LDA models. 

The easiest strategy to combine all of these features would be

to concatenate all of them into a single feature vector (early fu-

sion). However, it has been shown that this kind of approach is not

appropriate to deal with features associated with different proper-

ties of an image [70] . Therefore, a late fusion approach is used to

tackle this problem. This framework combines the outputs of dif-

ferent classifiers, each one trained using the information of one of

the corr-LDA models, and uses it as input for the last classifier that

predicts the final diagnosis [70] . 

Three classification algorithms are tested as candidates for the

first line of classifiers: SVM with RBF kernel (SVM-RBF), random

forests, and k-nearest neighbor (kNN).Both SVM-RBF and kNN have

been widely used in dermoscopy image analysis, as reported in

[6,71] . The choice of the RBF kernel for SVM is also based on the

results reported in the literature, where according to [71] , more

than a half of the CAD systems use this kernel. Moreover, other

well-known kernels have some limitations: the linear kernel can-

not deal with nonlinearly separable tasks, while the polynomial

kernel is less stable and requires the tuning of more hyperpa-

rameters. Decision trees are also a popular classification algorithm,

mainly because they are interpretable [6] . However, they have a

tendency to overfit the training data, which motivated us to use

random forests, instead of another tree classifier. All of the afore-

mentioned classifiers provide a score for the lesion in the inter-

val [0, 1] and the lesion is classified as melanoma if the score is

greater than 0.5. The scores of the different classifiers are com-

bined using two different strategies: logistic regression (LR) and

median rule (MR) [72] . 

6. Experimental results 

6.1. Dataset and evaluation metrics 

The experiments were performed using a dataset of 804 images

selected from the EDRA atlas [5] . This is a multi-source database

acquired at different hospitals. The experimental dataset contains

241 examples of melanoma and 563 examples of benign lesions

belonging to the following classes: blue nevi, Clark nevi, Spitz nevi,

combined nevi, congenital nevi, and dermal nevi. All of the images

were analyzed by several experts during a consensus meeting. Each

image is associated with a set of text labels stating which are the

observed criteria. The total number of medical annotations is 10 (6

colors, 2 texture structures, and 2 color structures). For computa-

tional purposes, an additional label defined as other structures/no

structures was added to the systems to deal with lesions that: (i)

did not exhibit any of the assessed texture and color structures: or

(ii) exhibited more clinical criteria besides the ones considered in
his work. Labels associated with texture and color structures are

vailable for all the images. However, color labels are only avail-

ble for a subset of 344 images. Tables 1 and 2 show the number

f lesions that are labeled with each criterion. 

All of the images were pre-processed in order to remove acqui-

ition artifacts and skin hair as described in [25] and their colors

ere normalized as proposed in [73] . Manual segmentations were

sed to separate the lesions from healthy skin. The algorithms used

n this work have all been implemented in MATLAB 2015b ®. 

The detection of the medical criteria was evaluated using two

etrics: precision ( Pre ), recall ( Re ), and F 1 score. These metrics are

sed to compare the global labels provided by the automatic sys-

em against those of the experts. Lesion diagnosis is evaluated us-

ng sensitivity ( SE ), specificity ( SP ) and the area under the curve

 AUC ) value. All of the aforementioned metrics were computed us-

ng stratified 10-fold nested cross validation, where the images

ere separated into 10 folds, each with approximately the same

umber of nevi and melanomas. It was also ensured that each fold

ontained approximately the same number of each type of dermo-

copic criteria. From these folds, 9 are kept for training and vali-

ation (selection of hyperparameters of both the corr-LDA model

nd the different classifiers) and the 10th fold is used for testing.

he testing process is repeated ten times, each time with a dif-

erent fold, while the training-validation processes are performed

ine times for each testing fold. Each time a different fold is kept

ut for validation. This process ensures that the choice of the best

yperparameters is independent of the test set. 

.2. Detection of medical criteria - results 

Different experiments were conducted to optimize this block.

he goal of the experiments was: (i) assess which is the best sub-

et of region features (recall Section 5.2 ); (ii) select the best clas-

ifier to obtain the global labels (SVM or random forests); and (iii)

ompare the performance of training a corr-LDA model for texture

tructures and another for color structures against training a model

hat comprises all the structures. 

In each of the experiments the number of topics of the corr-

DA models was tuned K ∈ { 50 , 70 , . . . , 300 } , as well as the specific

yperparameters of the classifiers. In the case of random forests we

pecified the number of trees T ∈ { 1 , 2 , . . . , 75 } , while in SVM we

uned the width of the RBF kernel ρ ∈ { 2 −12 , 2 −5 , . . . , 2 12 } and the

enalization cost C ∈ { 2 −6 , 2 −4 , . . . , 2 12 } given to the soft margin. 

Table 3 shows the performance of the best annotation models,

s well as the best configurations. The first three rows show the re-

ults obtained after training a model for each type of criteria. Most

f the colors were detected with good scores. However, the perfor-

ance scores for the red and white colors are lower than for the

est. Unfortunately, few examples of these colors are available on

he dataset, which justifies the worst results for these two colors.

egarding the texture structures’ model (2nd row), it is possible

o see that the best results were obtained when all of the features

re used ( μg , σ g , μc , μca , μM 

, σ M 

, μm 

, σ m 

). This leads to RE scores

bove 80% for both of the criteria using random forests. The color

tructures’ model (3rd row) is the one that achieved the worse

cores. This was expected as the number of examples of each of

he color structures is smaller than those of the other criteria. In-

erestingly, the best overall results are obtained when we combine

ll of the structures in a single model (4th row), leading to signif-

cant improvements in the detection of blue-whitish veil and re-

ression areas. Although it is not possible to state which are the

ptimal number of topics K and trees T that led to these results

recall that we are using nested-cross validation), it is possible to

how their tendency across the different test sets using box plots.

his information is provided in Fig. 5 . Notice that the box plot of

orr-LDA (2nd row) includes the results for the color model. The
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Table 1 

Number of color labels per class of lesion. 

Type of Lesion Color 

Dark Brown Light Brown Blue-Gray Black Red White 

Melanoma ( # 142) 134 115 103 100 17 10 

Blue Nevi ( # 24) 6 11 24 0 0 0 

Combined Nevi ( # 11) 9 9 11 2 1 0 

Congenital Nevi ( # 6) 6 6 2 1 0 0 

Dermal Nevi ( # 28) 24 19 15 3 3 3 

Spitz Nevi ( # 74) 64 33 55 52 6 0 

Clark Nevi ( # 59) 292 273 84 104 12 11 

Total ( # 344) 303 247 226 179 31 15 

Table 2 

Number of texture and color structures labels per class of lesion. 

Type of Lesion Structure 

Pigment Network Dots/Globules Blue-Whitish Veil White Regression Areas 

Melanoma ( # 241) 157 153 117 69 

Blue Nevi ( # 27) 1 1 4 0 

Combined Nevi ( # 12) 4 9 11 0 

Congenital Nevi ( # 13) 7 11 0 0 

Dermal Nevi ( # 32) 5 24 2 0 

Spitz Nevi ( # 78) 28 43 35 2 

Clark Nevi ( # 401) 302 251 9 39 

Total ( # 804) 504 492 178 110 

Table 3 

Detection results and best configurations for the four annotation models - ∗ identifies the results of the 

model that combines color and texture structures. In bold we highlight the best results. 

Criteria (#Images) Precision Recall F1 Best Configuration 

Blue-Gray(#226) 87.6% ± 4.3% 94.2% ± 5.5% 90.8% ± 3.8% μHSV 

Dark-Brown(#303) 95.7% ± 3.4% 95.7% ± 3.3% 95.7% ± 2.4% 

Light-Brown (#247) 89.1% ± 4.3% 92.7% ± 3.5% 90.9% ± 2.9% 

Black (#179) 81.5% ± 10.6% 88.8% ± 7.8% 85.0% ± 7.7% 

Red (#31) 79.3% ± 14.6% 74.2% ± 21.2% 76.7% ± 15.5% 

White (#15) 63.6% ± 29.5% 93.3% ± 16.7% 75.6% ± 24.1% 

Pigment Network (#504) 77.6% ± 6.7% 88.9% ± 5.8% 82.9% ± 4.0% μg , σ g , μc , μca 

μM , σ M , μm , σ m 

Dots/Globules (#492) 71.8% ± 7.1% 83.2% ± 5.5% 77.1% ± 5.6% Random Forests 

Blue-Whitish Veil (#178) 75.4% ± 9.6% 68.5% ± 7.6% 71.8% ± 7.1% μHSV , μc , μca 

Regression Areas (#110) 60.8% ± 9.9% 51.3% ± 9.8% 55.6% ± 9.7% Random Forests 

Pigment Network ∗ (#504) 78.5% ± 6.8% 86.1% ± 4.5% 82.1% ± 3.8% μc , μca , μM , σ M , 

Dots/Globules ∗ (#492) 72.8% ± 6.2% 83.7% ± 5.1% 77.9% ± 4.7% μm , σ m , 

Blue-Whitish Veil ∗ (#178) 82.8% ± 7.5% 68.1% ± 8.6% 74.7% ± 5.8% μHSV , 

Regression Areas ∗ (#110) 63.9% ± 10.9% 58.8% ± 9.0% 61.2% ± 10.1% Random Forests 
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Table 4 

Comparison of structure detection methods. ”∗” identifies the results obtained 

with the combined structures model. 

Criteria Recall Precision F1 Method (#Images) 

Pigment Network 83.8% 79.2% 81.4% [25] (#504/804) 

82.3% 82.3% 82.1% [74] (#275/436) 

86.0% 79.6% 82.7% [26] (#100/220) 

88.9% 77.6% 82.9% Proposed (#504/804) 

86.1% ∗ 78.5% ∗ 82.1% ∗ Proposed ∗ (#504/804) 

Blue-whitish veil 70.0% 71.0% 70.5% [51] (#173/223) 

68.1% 63.8% 65.9% [52] (#198/855) 

68.5% 75.4% 71.8% Proposed(#178/804) 

68.1% ∗ 82.8% ∗ 77.9% ∗ Proposed ∗(#178/804) 

a  

a  

n  
election of the optimal hyperparameter for the random forests is

traightforward and depends only on the structure to be detected,

hile the selection of the optimal number of topics is selected as

he one that leads to the best combined results for all the criteria

onsidered in the model. 

Figs. 6 and 7 show some examples of the output of the cri-

eria detection block. Although we do not have ground-truth seg-

entation for the criteria (recall that the model was trained us-

ng text labels only), the region labeling proposed by the model

eems to provide a correct interpretation of the lesion. Nonethe-

ess, it is possible to see that in images (c) and (d) the local label-

ng of pigment network and dots/globules extend to other regions

hat clearly are not associated with those structures. This problem

as tackled when the four structures are characterized by a single

odel (see Fig. 8 ). 

Table 4 shows the results obtained by state-of-the-art meth-

ds regarding the detection of pigment network [26,74] and blue-

hitish veil [51,52] . All of these strategies have been developed
 a  
nd tested using images from the EDRA database [5] , which is

lso used in our work. We also show the results of the pigment

etwork algorithm described in [25] applied to our dataset of im-

ges. This is the only case where it is possible to establish a true



278 C. Barata et al. / Pattern Recognition 69 (2017) 270–285 

Fig. 5. Box plots showing the range of the selected optimal hyperparameters: the 

number of trees T of random forests, regarding the detection of the four structures 

(1st row); and the number of topics K of corr-LDA, regarding the color and all struc- 

tures models (2nd row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Original image, region and image annotation obtained with the color, texture 

structures, and color structures models (from top left to bottom right). The color 

scheme is green for pigment network, red for dots/globules, blue for blue whitish 

veil, yellow for regression areas. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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comparison between the two methods, because the training and

test sets are exactly the same. Nonetheless, comparing our results

with those of [26,51,52,74] still provides us with relevant infor-

mation and allows us to check if our results are similar to those

obtained by other methods. Our method compares favorably with

all of the aforementioned approaches. Particularly interesting is the

comparison between the proposed method and the one described

in [51] , since the later uses ground truth segmentations to train

the model. The proposed system is also able to detect multiple

structures, while the state-of-the-art methods only focus on one

structure. 

6.3. Lesion diagnosis - results 

Three experiments were performed on this stage: (i) assess the

performance of the different medical criteria and their combina-

tion; (ii) compare the diagnostic accuracy of SVM-RBF, random
orests, and kNN; and (iii) compare two late fusion strategies (LR

nd MR). 

All of the experiments were carried on using the outputs of

he best corr-LDA models. The number of trees for the random

orests algorithm was set to be T ∈ { 1 , 2 , . . . , 200 } , the hyperpa-

ameters of SVM-RBF are set to be ρ ∈ { 2 −12 , 2 −5 , . . . , 2 12 } and

 ∈ { 2 −6 , 2 −4 , . . . , 2 12 } , and the number U of neighbors of kNN is

earched in the set U ∈ { 1 , 3 , . . . , 101 } . 
Table 5 shows the best results for the experiments with the dif-

erent criteria and their combinations, Fig. 9 shows the ROC curves

f the different classifiers per type of criteria, as well as the results

btained. As expected, the combination of all the criteria improves

he scores. The random forests and kNN algorithms are the ones

hat achieve the best and worse classification scores, respectively.

he low sensitivity values achieved by kNN might be justified by

he unbalance between the number of melanomas and benign le-

ions. Due to the characteristics of late fusion, it was also possible
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Table 5 

Results for melanoma diagnosis using SVM-RBF, random forests (RF), and kNN. “All ∗” refers to 

the combination of the colors with color + texture structures model. Bold highlights the best 

results for each classifier. 

Criteria SVM RF kNN 

Colors SE = 72 . 6% ± 9 . 6% SE = 84 . 6% ± 5 . 5% SE = 54 . 7% ± 6 . 6% 

SP = 71 . 4% ± 7 . 6% SP = 61 . 1% ± 7 . 7% SP = 85 . 1% ± 4 . 6% 

AUC = 75 . 9% ± 7 . 3% AUC = 78 . 6% ± 4 . 4% AUC = 74 . 9% ± 6 . 2% 

Texture Structures SE = 87 . 1% ± 6 . 7% SE = 75 . 1% ± 9 . 1% SE = 58 . 9% ± 10 . 0% 

SP = 60 . 0% ± 8 . 3% SP = 75 . 1% ± 7 . 6% SP = 79 . 6% ± 7 . 4% 

AUC = 78 . 4% ± 7 . 1% AUC = 79 . 7% ± 7 . 5% AUC = 72 . 5% ± 4 . 8% 

Color Structures SE = 83 . 4% ± 9 . 0% SE = 82 . 1% ± 3 . 5% SE = 60 . 1% ± 7 . 8% 

SP = 70 . 9% ± 5 . 8% SP = 72 . 5% ± 5 . 5% SP = 82 . 9% ± 4 . 5% 

AUC = 81 . 5% ± 5 . 8% AUC = 82 . 1% ± 4 . 9% AUC = 76 . 7% ± 6 . 9% 

Color Structures SE = 90 . 9% ± 4 . 3% SE = 80 . 9% ± 8 . 9% SE = 70 . 1% ± 8 . 5% 

& SP = 56 . 0% ± 6 . 6% SP = 74 . 8% ± 6 . 6% SP = 77 . 3% ± 6 . 1% 

Texture Structures AUC = 79 . 8% ± 4 . 4% AUC = 82 . 8% ± 5 . 8% AUC = 76 . 0% ± 6 . 3% 

All SE = 84 . 2 % ± 6 . 8 % SE = 81 . 3 % ± 5 . 3 % SE = 55 . 6 % ± 7 . 8 % 

SP = 72 . 1 % ± 5 . 6 % SP = 74 . 8 % ± 6 . 5 % SP = 86 . 1 % ± 4 . 6 % 

AUC = 85 . 1 % ± 4 . 3 % AUC = 85 . 4 % ± 4 . 2 % AUC = 79 . 4 % ± 5 . 4 % 

All ∗ SE = 85 . 4 % ± 7 . 9 % SE = 82 . 3 % ± 7 . 7 % SE = 57 . 6 % ± 9 . 1 % 

SP = 65 . 4 % ± 6 . 1 % SP = 73 . 2 % ± 8 . 3 % SP = 81 . 7 % ± 6 . 4 % 

AUC = 83 . 8 % ± 6 . 0 % AUC = 84 . 3 % ± 4 . 9 % AUC = 79 . 3 % ± 6 . 4 % 

Table 6 

Results for melanoma diagnosis using criteria and classifier fusion. “All ∗” refers to the combination of the colors 

with color + texture structures model. Bold highlights the best results. 

Criteria SVM + kNN RF + kNN SVM + RF SVM + RF + kNN 

Colors SE = 62 . 6% ± 9 . 6% SE = 67 . 6% ± 7 . 4% SE = 76 . 7% ± 8 . 7% SE = 70 . 9% ± 8 . 9% 

SP = 80 . 8% ± 6 . 8% SP = 75 . 5% ± 5 . 5% SP = 66 . 8% ± 6 . 9% SP = 76 . 9% ± 5 . 4% 

AUC = 77 . 8% ± 6 . 5% AUC = 79 . 7% ± 4 . 8% AUC = 80 . 7% ± 5 . 5% AUC = 80 . 2% ± 5 . 5% 

Texture SE = 64 . 3% ± 9 . 8% SE = 66 . 4% ± 8 . 1% SE = 81 . 7% ± 6 . 9% SE = 69 . 7% ± 9 . 5% 

SP = 77 . 3% ± 6 . 5% SP = 76 . 4% ± 7 . 8% SP = 66 . 1% ± 7 . 5% SP = 76 . 2% ± 6 . 2% 

Structures AUC = 77 . 6% ± 5 . 4% AUC = 78 . 2% ± 6 . 5% AUC = 81 . 1% ± 7 . 0% AUC = 79 . 7% ± 6 . 3% 

Color SE = 70 . 1% ± 9 . 3% SE = 68 . 0% ± 9 . 1% SE = 84 . 6% ± 5 . 3% SE = 78 . 4% ± 6 . 5% 

SP = 78 . 7% ± 5 . 3% SP = 80 . 5% ± 6 . 5% SP = 73 . 4% ± 5 . 2% SP = 78 . 9% ± 7 . 4% 

Structures AUC = 81 . 9% ± 6 . 3% AUC = 82 . 0% ± 5 . 7% AUC = 85 . 0% ± 5 . 3% AUC = 84 . 2% ± 5 . 5% 

Color Structures SE = 76 . 3% ± 9 . 3% SE = 71 . 8% ± 6 . 5% SE = 83 . 4% ± 9 . 4% SE = 79 . 2% ± 8 . 6% 

& SP = 71 . 1% ± 7 . 7% SP = 77 . 3% ± 6 . 6% SP = 68 . 1% ± 8 . 4% SP = 72 . 7% ± 7 . 3% 

Texture Structures AUC = 80 . 9% ± 5 . 8% AUC = 82 . 0% ± 5 . 4% AUC = 83 . 8% ± 4 . 8% AUC = 83 . 3% ± 5 . 0% 

All SE = 67 . 6% ± 7 . 7% SE = 68 . 4% ± 11 . 1% SE = 84 . 6 % ± 6 . 8 % SE = 75 . 9% ± 7 . 8% 

SP = 83 . 8% ± 5 . 4% SP = 79 . 6% ± 6 . 4% SP = 74 . 2 % ± 6 . 9 % SP = 79 . 4% ± 5 . 7% 

AUC = 83 . 6% ± 4 . 6% AUC = 84 . 2% ± 4 . 6% AUC = 86 . 9 % ± 4 . 1 % AUC = 85 . 8% ± 4 . 4% 

All ∗ SE = 69 . 2% ± 11 . 4% SE = 71 . 7% ± 7 . 9% SE = 85 . 8 % ± 8 . 2 % SE = 76 . 7% ± 8 . 5% 

SP = 80 . 5% ± 6 . 2% SP = 76 . 9% ± 5 . 3% SP = 71 . 1 % ± 9 . 2 % SP = 76 . 2% ± 6 . 6% 

AUC = 82 . 6% ± 6 . 2% AUC = 83 . 2% ± 4 . 5% AUC = 85 . 9 % ± 4 . 5 % AUC = 84 . 2% ± 5 . 0% 
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Table 7 

Comparison of melanoma diagnosis methods. 

Dataset Sensitivity Specificity Method 

EDRA 83.0% 76.0% [75] 

84.6% 74.2% Proposed 

PH 

2 98.0% 90.0% [75] 

100.0% 88.2% Proposed 

t  

t

 

u  

(  

n  

o  

E  
o combine the outputs of the different classifier [70] . These fusion

esults can be seen in Table 6 and the ROC curves for the combi-

ation of criteria and classifiers can be seen in Fig. 10 . The best

lassification scores are obtained by combining SVM and random

orests. The results in both tables and figures were achieved using

R as the fusion strategy. Although this method outperformed LR

n all the experiments, the latter also led to reasonable classifica-

ion scores: SE = 79 . 2% , SP = 75 . 6% , and AUC = 83 . 6% . However the

esults of MR ( SE = 84 . 6% , SP = 74 . 2% and SE = 85 . 8% , SP = 71 . 1% ),

re clearly better. It should be stressed that these results were ob-

ained using a challenging multi-source dataset (acquired at three

ifferent facilities). The range of the optimal hyperparameters val-

es of the classifiers that achieved the best classification scores can

e seen in Figs. 11 and 12 . 

Table 7 shows the comparison of the melanoma diagnosis re-

ults obtained in this work against the ones reported in [75] ,

here abstract image features were combined in order to diagnose

elanomas. The proposed method compares favorably, suggesting

hat it is possible to replace the more traditional pattern recogni-
ion features by ones that can be associated with medical informa-

ion, without losing classification power. 

We have also evaluated the generalization power of our method

sing the publicly available PH 

2 dataset that contains 200 images

40 melanomas) [76] . To be able to apply our methodology to this

ew dataset, we first trained two corr-LDA models (one for col-

rs and the other for color+texture structures) using all of the

DRA images. The number of topics K of each model was selected
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Fig. 7. Original image, region and image annotation obtained with the color, texture 

structures, and color structures models (from top left to bottom right). The color 

scheme is green for pigment network, red for dots/globules, blue for blue whitish 

veil, yellow for regression areas. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Output of the corr-LDA that combines color and texture structures for 

lesions (c) and (d). The color scheme is green for pigment network, red for 

dots/globules, blue for blue whitish veil, yellow for regression areas. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Table 8 

Computational times for the best CAD system. 

Step Time (seconds) 

Lesion segmentation + region representation 10.2s 

Detection of medical criteria 0.58s 

Diagnosis 0.0273s 
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i  
ased on the information provided by the box-plots in Fig. 5 , i.e. ,

e selected the median number of topics of each model (the red

ine). This means that a color model was trained using K = 220

nd the color+texture structures model was trained using K = 110 .

oth of these models were then applied to the PH 

2 images, in or-

er to extract the medical features. Finally, the images were clas-

ified as melanoma or benign using the MR fusion of SVM and

andom forests. The classifiers were trained and tested using a 10-

old nested cross validation method and exactly the same folds as

he ones used in [75] , which allowed us to establish a fair com-

arison with the results obtained using abstract features. In order

o deal with any color changes introduced by different acquisition

etups, all of the PH 

2 images were pre-processed as described in

ection 6.1 . The obtained results can be seen in Table 7 . These are

airly similar, with a slight increase in the sensitivity and decrease

n specificity, showing us that the learned models can be applied

o other images to extract relevant information. Moreover, this re-

nforces the idea that it is possible to extract clinically relevant in-

ormation, without losing classification power. 

Table 8 shows the average computational time for dermoscopy

mages of size 768 × 512, using the best CAD system configura-

ion. These results show that the algorithm is able to diagnose the

mage in less than a minute and that the bottleneck of the system

re the steps associated with the lesion segmentation and region

epresentation (respectively described in Sections 5.1 and 5.2 .) 

. Conclusions 

This paper discusses the development of a system for skin le-

ion diagnosis that is inspired by clinical practice, and tries to

imic the different steps of medical analysis. It starts by identify-

ng regions in the lesion that have similar color and texture proper-

ies. These regions are segmented and annotated with one or more

edical criteria. The experimental results are promising and show

hat the proposed framework can be used to identify colors, pig-

ent network, dots/globules, blue-whitish veil, and white regres-

ion areas. Finally, all of the detected criteria are combined in order

o obtain a diagnosis, achieving a sensitivity of 84.6% and a speci-

city of 74.2%. 

The system presented in this work is different from any other

ound in literature. First, it uses an image annotation model

earned from text labels, to identify multiple dermoscopic crite-

ia and obtain a medical description of the lesion. Second it is

apable of combining information from multiple types of medi-

al criteria to obtain a diagnosis. The proposed system compares

avorably with a CAD system that uses abstract image features,

hich is an evidence that it is possible to develop systems that

se features with medical meaning, without compromising the

lassification performance. Moreover, it was also shown that the

earned models can be applied to different datasets. We hope

hat the proposed methodology opens a new direction of progress

n the analysis of dermoscopy images. Future directions for this

ork include: (i) extension to the analysis of non-melanocytic le-

ions; (ii) evaluation on a real world scenario, i.e , during rou-

ine clinical practice; (iii) inclusion of other features with med-

cal meaning, such as shape features; and (iv) allowing medical
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Fig. 9. ROC curves for SVM-RBF, random forests (RF), and kNN in the task of melanoma diagnosis using each type of criteria and the combination of color and texture 

structures. 

Fig. 10. ROC curves for SVM-RBF, random forests (RF), kNN, and their fusion in the task of melanoma diagnosis using the all the medical criteria: “all ∗” refers to the 

combination of the colors with color + texture structures model. 
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eedback, making it possible for the system to learn from a wrong

ecision. 
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ppendix A 

1. Variational EM - update equations 

•E-Step 

The update equations for the variational parameters ( γ d , φd ,
d ) are the following 

http://dx.doi.org/10.13039/501100001871
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Fig. 11. Box plots showing the range of the selected hyperparameters for SVM ( C - 

1st and ρ 2nd row). 

Fig. 12. Box plots showing the range of the selected hyperparameters random 

forests ( T - 1st row) in the task of melanoma diagnosis. 
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T

d 
nk ∝ p(r d n | z n = k, �) exp { E q [ log q (θk | γ d )] } . 

· exp 

{
M ∑ 

m =1 

λd 
mn log p(w 

d 
m 

| y m 

= n, z m 

= i, β) 

}
(A.1)

d 
mn ∝ exp 

{
K ∑ 

k =1 

φd 
nk log p(w 

d 
m 

| y m 

= n, z m 

= i, β) 

}
, (A.2)

d 
k = αk + 

N d ∑ 

n =1 

φd 
nk . (A.3)

hese parameters must be estimated by the order that they are

resented here. 
•M-Step The parameter β that relates the text labels w m 

with

he topic k is updated as follows 

km 

∝ 

D ∑ 

d=1 

w 

d 
m 

N d ∑ 

n =1 

φd 
nk λ

d 
mn . (A.4)

t is not possible to obtain an exact update equation for the Dirich-

et parameter α. Therefore, Blei and Jordan propose the use of the

ewton–Raphon’s method [68] to obtain an estimate of this pa-

ameter. 

When the traditional formulation of corr-LDA is used, each of

he k multivariate parameters �k = (μk , �k ) is computed as fol-

ows: 

k = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

r d n ∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

, (A.5)

k = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

(r d n − μk )(r d n − μk ) 
T ∑ D 

d=1 

∑ N d 
n =1 

φd 
nk 

. (A.6)

hen the von Mises–Gaussian distributions are used to model the

egions’ features the update equations for �k = (μk , �k , τk , ε k ) are

s follows. The parameters μ and � are update as in (A.5) and

A.6) , but using r ′ n (feature vector without the H channel informa-

ion). The remaining parameters are updated using the following

quations 

k = tan 

−1 

( ∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

sin H 

d 
n ∑ D 

d=1 

∑ N d 
n =1 

φd 
nk 

cos H 

d 
n 

)
, (A.7)

n analytical computation of the parameter εk is not possible. Dif-

erent approximations have been proposed to tackle this issue. This

ork uses the approach described in [77] , which makes use of

he Newton–Raphson’s method to obtain an approximation. This

ethod requires a few iterations t of the following equation: 

 

t 
k = ε t−1 

k 
− A (ε t−1 

k 
) − R 

1 − A (ε t−1 
k 

) 
, (A.8)

here, 

 (ε t−1 
k 

) = 

I 1 (ε 
t−1 
k 

) 

I 0 (ε 
t−1 
k 

) 
, (A.9)

nd the variable R is defined as 

 = 

∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

cos ([ H ] d n − τk ) ∑ D 
d=1 

∑ N d 
n =1 

φd 
nk 

. (A.10)

n the first iteration ε 0 
k 

is set to be [77] 

 

0 
k = 

R − R 

3 

1 − R 

2 
. (A.11)

he update equation is applied until convergence is reached. 
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