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Abstract. Feature extraction is a crucial step in any computer aided di-
agnosis (CAD) system for melanoma diagnosis. Therefore, it is important
to select features that are able to efficiently characterize the properties of
the different types of lesions. Local features that separately characterize
and distinguish different regions of the lesions have been shown to pro-
vide good descriptors for these skin lesions. Two powerful methods can
be used to obtain local features: bag-of-features (BoF) and sparse coding
(SC). Both methods have been applied to dermoscopy with promising re-
sults. However, a comparison between the two strategies is lacking. In
this work, we fill this gap by developing a framework to compare the two
methods in the melanoma diagnosis task. The results show that SC sig-
nificantly outperforms BoF, achieving sensitivity = 85.5% and specificity
= 75.1% versus sensitivity = 81.7% and specificity = 66.5%.
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1 Introduction

Melanoma is one of the most common types of cancer in Europe, North America,
and Australia. Due to its rapid growth, it is able to metastasize to other organs,
such as lungs, bones, or brain [1]. The diagnosis of skin lesions follows a specific
guideline: i) inspection of the lesion using a magnification device; ii) assessment
of different criteria, such as the ABCD rule [2] or the 7-point checklist [3]; and iii)
scoring the lesion based on the identified criteria. Although the aforementioned
medical rules are well established and guarantee an increase in the accuracy of
the diagnosis, the evaluation still critically hinges on visual inspection and on
the expertise of the dermatologist [1]. This means that the analysis of lesions is
a highly subjective and difficult task.

Modern inspection devices are able to acquire images of the lesions, obtained
with or without special illumination, dividing the images into two types: der-
moscopy and clinical. For the past two decades, research groups have been work-
ing on computer aided diagnosis (CAD) systems to diagnose the skin lesions,
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using either dermoscopy or clinical images [4, 5]. These CAD systems can be
used as a support tool by dermatologists with any level of expertise, reducing
the subjectivity of the diagnosis. This work uses dermoscopy images, thus from
this point on we will discuss specific aspects of its automatic analysis.

CAD systems follow three main steps: i) lesion segmentation; ii) feature ex-
traction; and iii) lesion diagnosis [4]. Aside from lesion segmentation, which by
itself is a major challenge, there is a significant diversity in the type of features
and classifiers used in steps ii) and iii). A short list of classifiers that have been
applied includes K-nearest neighbor, AdaBoost, support vector machines, and
neural networks [5]. The extracted features can be divided into two categories:
global and local. The former consists of computing a single vector to describe
the entire lesion. This vector can comprise information about the shape and
symmetry of the lesion (e.g., area, circularity measure, shape symmetry), color
(e.g., RGB or HSV histograms), and texture e.g., gray level co-occurrence Ma-
trix) [6]. Local features allow us to separately characterize different regions of
the lesion. This can be seen as an approximation of the analysis performed by
dermatologists, since they also assess different regions of the lesions. A simple
strategy to compute local features is the bag-of-features (BoF) approach, which
has been applied with success in different works (e.g,[7, 8]). More recently, a dif-
ferent method has been used to obtain local features: sparse coding (SC) [9, 10].
This strategy arises from relaxing the restrictive constraints of the BoF opti-
mization problem, as will be discussed in Section 2, and has been shown to be
efficient in capturing salient properties of the image in different computer vision
problems (e.g., [11, 12]).

Both BoF and SC have achieved promising classification results in dermoscopy
image analysis. However, a direct comparison between the two types of features
has been missing. In this paper, we fill this gap by providing a comparison be-
tween the two methods, to assess which one performs the best. The remaining
sections of the paper are organized as follows. In Section 2, we discuss the for-
mulations of BoF and SC and compare them. In Section, 3 we describe the
experimental framework, and in Section 4 we present the results.

2 Local Features - From BoF to Sparse Coding

The BoF method assumes that an image can be represented as a collection of
elements of a dictionary of visual words (atoms). Assuming that a dictionary D
of K elements is known, any image is processed as follows: i) a set of M patches
is extracted and a feature vector xm ∈ RD is computed for each of them; ii) the
features are matched to the closest dictionary element, as follows

min
αm

‖xm −Dαm‖22

s.t αm ∈ {0, 1}K , ‖αm‖0 = 1, (1)

where ‖.‖0 denotes the `0 ”norm”; iii) this information is summarized into a his-
togram of occurrences that counts the number of times each atom was selected.
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The constraint used in (1) is very restrictive. In order to deal with this issue
one can use the SC formulation. Similarly to BoF, the first step of SC is the
extraction of a set of M image patches, followed by the computation of a feature
vector to characterize each patch. The following step is to match the feature
vectors to atoms of a known dictionary. However, instead of assuming that each
vector is only associated with one of the atoms, SC assumes that each vector
is a combination of a small number of atoms. This can be formulated as an
optimization problem with a regularization based on the `1 norm

min
αm

||xm −Dαm||22 + λ||αm||1 , (2)

where αm ∈ RK is a vector of coefficients and λ is a non-negative parameter
specified by the user, which controls the relevance of the regularization term.
Using the `1 norm in the regularization term encourages sparsity of the coeffi-
cients, i.e., only a small number of them is non-zero. Additional constraints can
be added to the problem, such as setting αm ≥ 0 [12].

Aside from the patch representation, another main difference between BoF
and SC is the strategy used to estimate the dictionaries. In both cases these are
estimated using a training set of N feature vectors {x1, ..., xN} ∈ RD, extracted
from the patches of several images. According to the BoF formulation (see (1))
D can be estimated as follows

min
α1,...,αN ,D

N∑
n=1

‖xn −Dαn‖22

s.t αn ∈ {0, 1}K , ‖αn‖0 = 1, ∀n. (3)

This optimization problem can be solved using a clustering algorithm, such as
k-means [13].

In the SC formulation, a dictionary of K elements is obtained by solving the
following optimization problem

min
α1,...,αN ,D

N∑
n=1

||xn −Dαn||22 + λ||αn||1

s.t ‖dk‖2 ≤ 1, k = 1, ...,K , (4)

where dk ∈ RK is the k-th column of D. The normalization constraint ‖dk‖2 = 1
is used to avoid trivial solutions for the dictionary, namely having the columns
of D growing to infinity and the α coefficients approaching zero.

The estimation of α according to (2) is a convex problem, which can be solved
using one of several special-purpose algorithms that have been developed of this
problem [14]. On the other hand, the problem (4) is not convex and has been
the focus of a considerable amount of recent research. The standard approach
to solve (4) is to alternate between estimating the SC coefficients, keeping the
dictionary fixed, and updating the dictionary [14]. Formally:
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i) Fix the dictionary D and solve

min
α1,...αN

||xn −Dαn||22 + λ||αn||1 . (5)

ii) Fix α1, ..., αN and solve

min
D

N∑
n=1

||xn −Dαn||22, s.t. ‖dk‖2 ≤ 1, k = 1, ...,K . (6)

These two steps are repeated for a predefined number of iterations or until some
convergence criterion is satisfied. An extensive review on different methods to
solve these optimizations can be found in [14].

A final difference between the two methods resides in how the final image
representation is obtained. As stated at the beginning of this section, BoF rep-
resents the image as a histogram of occurrences of atoms. The same approach
can not be directly applied to SC, since the vectors αm select more than one
atom, with different weights. Different pooling strategies have been proposed to
tackle this issue: e.g., max-pooling or mean of the absolute values of α [11].

3 Experimental Framework

The goal of this paper is to perform a fair comparison between the BoF and
SC representations. Therefore, we must maintain common parameters of the
methods constant, such as the type and size of patches extracted from the images
and the features used to describe them, and adjust only what is specific of
each method. In the sequel we present the experimental setting used obtain our
results.

i) Patch extraction/image sampling: 16×16 overlapping (step of 8 pixels)
patches are extracted from all of the images. Although it is possible to ex-
tract patches from the entire image (e.g., [9]), we chose to extract patches
only from a bounding box around the lesion. This allows working with the
images in their original size (average 560 × 750), without unbearable com-
putational costs. The area of the image containing the lesion is identified
using manual segmentation.

ii) Patch features: Color and texture features are computed for each patch,
namely color histograms for the RGB and HSV color spaces, and gradient
histograms (amplitude and orientation). All these histograms have 16 bins.
The aforementioned fetures are not the ones used in other sparsity-based
dermoscopy works [9, 10]. Those works use the vectorized patches in either
gray level or RGB space, and learn dictionaries to represent that informa-
tion. Nowadays, learning the dictionaries directly from image patches is a
very popular approach [14]. Image patches are not suitable to be tested in
the BoF framework, because the size of the resulting feature vectors lead to
very high computational costs. Nonetheless, we will use image patches as
features in SC, in order to establish a comparison with related works.
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iii) Dictionary learning: k-means was used to obtain the BoF dictionaries,
while the online dictionary learning method [15] (available in the SPAMS
software package5) was used to obtain the SC dictionaries. The size of all
the dictionaries was chosen in the set K ∈ {27, 28, 29}.

iv) Pooling: The final BoF descriptor was obtained using the traditional vector
quantization approach (see (1)), followed by histogram building.
In the case of SC, the α vectors of the patches were obtained using the LARS
algorithm [16] (available in SPAMS). Two optimization problems were ap-
plied on this phase: the traditional one (2) and one obtained by inserting
a non-negativity constraint.The combination of all of the αm vectors of a
certain image is performed using two strategies: max-pooling (max) and
average absolute pooling (abs), respectively defined as follows:

αj = max{|αj1|, |α
j
2|, ..., |α

j
M |}, (7)

αj =
1

M

M∑
m=1

|αjm|, (8)

where αj is the j-th component of the vector α, M is the number of patches,
and αjm is the j-th component of the m-th patch vector.

v) Classification: The diagnosis was obtained using a SVM with a radial
basis function (RBF) kernel (available in MATLAB 2015b R©). A different
classifier was trained for each of the possible feature configurations, using a
set of dermoscopy images diagnosed by experts. In each of the experiments
we tunned the width of the RBF kernel ρ ∈ {2−12, 2−5, ..., 212} and the
penalty term C ∈ {2−6, 2−4, ..., 26} given to the soft margin.

4 Experimental Results

4.1 Dataset and Performance Metrics

All of the experiments were carried out on a heterogeneous dataset of 804 im-
ages (241 melanomas), selected from the EDRA database [1]. The ground-truth
diagnosis was provided by a group of experts.

The different configurations were evaluated in terms of sensitivity (SE),
specificity (SP ), and a cost score (S) defined as follows

S =
c10(1− SE) + c01(1− SP )

c10 + c01
, (9)

where c10 is the cost of an incorrectly classified melanoma (false negative) and
c01 is the cost of an incorrectly classified non-melanoma (false positive). Since we
consider that an incorrect classification of a melanoma is a more serious error,
we set c10 = 1.5c01 and c01 = 1. The results were obtained using a 10-fold nested

5 http://spams-devel.gforge.inria.fr/
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Table 1. Results for melanoma diagnosis using BoF and SC. In bold we highlight the
best results.

Features BoF SC-abs SC-max SC-max & α ≥ 0

Amplitude histogram
SE = 64.2% SE = 68.0% SE = 69.7% SE =76.3%
SP = 72.8% SP = 64.1% SP = 64.3% SP =60.4%
S = 0.3236 S = 0.3356 S = 0.3246 S =0.3005

Orientation histogram
SE = 66.7% SE = 75.4% SE=74.2% SE = 73.8%
SP = 68.6% SP = 63.4% SP =67.9% SP = 67.7%
S = 0.3254 S = 0.2940 S =0.2832 S = 0.2834

RGB histogram
SE = 77.6% SE = 76.7% SE = 87.9% SE =82.9%
SP = 70.3% SP = 72.3% SP = 70.0% SP = 77.3%
S = 0.2532 S = 0.2504 S = 0.1953 S =0.1934

SE = 81.7% SE = 79.6% SE = 82.1% SE =85.5%
HSV histogram SP = 66.5% SP = 67.3% SP = 79.0% SP = 75.1%

S = 0.2438 S = 0.2529 S = 0.1910 S =0.1860

SE =68.0% SE = 73.9% SE = 73.8%
Gray level patches - SP = 70.9% SP = 52.6% SP = 54.4%

S =0.3084 S = 0.3462 S = 0.3396

SE = 65.5% SE = 72.6% SE =79.2%
RGB patches - SP = 68.4% SP = 70.0% SP = 71.8%

S = 0.3334 S = 0.2844 S =0.2376

cross-validation strategy, where the images were divided into 10-folds, each with
approximately the same proportion of benign and malignant lesions. One of the
folds was kept for testing, while the remaining nine were used for training and
parameter selection. This procedure was repeated ten times with a different fold
for testing, and the results are the average performance.

4.2 Results

Table 1 shows the comparison between BoF and SC for the different features
herein considered. Several conclusions can be drawn from these scores. The first
is that max-pooling leads to significantly better results than abs-pooling. This
happens in almost all the features. Moreover, the non-negativity constraint also
improves the results (only showed for max-pooling). Interestingly, the features
used in other dermoscopy works (gray level and RGB patches) achieve worse
scores than the other tested color and texture features. Finally, we are able to
show that SC outperforms BoF in almost all of the experiments, which suggest
that this approach is more efficient.

Table 2 shows the number of images that are correctly and incorrectly classi-
fied by BoF and SC, using the best configuration (HSV histogram). These values
show that 50% of the images incorrectly classified by BoF are correctly classified
by SC. Although the opposite is also true (58 images), it happens in a much
smaller extent. We would like to point out that the scores obtained with SC
using a single feature still outperform the best results obtained for this dataset
with feature fusion (SE = 83%, SP = 76%) [17].

Figure 1 shows examples of lesions correctly classified by both methods, using
their best configurations, while Figure 2 shows examples of lesions incorrectly
classified by one of the methods.
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Table 2. Number of images correctly and incorrectly classified by each of the methods
using the HSV histograms as patch features.

Sparse Coding
Correct Incorrect

BoF Correct 513 58
Incorrect 116 117

Fig. 1. Malignant (1st row) and benign (2nd row) lesions, correctly classified by both
methods.

Fig. 2. Malignant (1st and 3rd columns) and benign (2nd and 4th columns) lesions,
incorrectly classified by BoF (1st-2nd columns) and SC (3rd-4th columns).

5 Conclusions

In this paper, we have compared bag-of-features and sparse coding in the prob-
lem of melanoma diagnosis. A simple framework was used to compare the two
methods, where the idea was to keep fixed the common variables and only ad-
just the key aspects that are specific of each of the methods. This allowed us to
perform a fair comparison and show that SC outperforms BoF, obtaining a sen-
sitivity = 85.5% and specificity = 73.4% vs. sensitivity = 81.7% and specificity
= 66.5%, for the corresponding best configurations.
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