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ABSTRACT

This paper proposes a novel methodology to describe the trajectories
performed by pedestrians in long-range surveillance scenarios. The
proposed approach describes the trajectories by using sparse mo-
tion/vector fields together with a space-varying switching mecha-
nism embedded in a Hidden Markov Model framework. Despite the
diversity of motion patterns that may occur in a given scenario, the
observed trajectories do not lie in the entire surveilled area. Instead,
they are constrained to patterns corresponding to typical motions. To
achieve a compact representation, we propose a sparse model esti-
mated using the `1 norm applied to the log prior distribution of the
vector fields. Experimental evaluation is conducted in real scenar-
ios, and testify the usefulness of the proposed approach in modeling
typical trajectories that occur in a far-field surveillance setup.

Index Terms— Motion estimation, pedestrian motion analysis,
motion fields, sparse representation.

1. INTRODUCTION

Describing the trajectories performed by pedestrians constitutes a
valuable step to be incorporated in a surveillance setup, since such
information helps to understand what people are doing in the scene
(i.e., recognize human activities and interactions [1,2]), and what
actions should be conducted from those observations. The topic of
interpreting and classifying human activities has plateaued in the last
few years, given the vast number of applications, e.g., intelligent en-
vironments [3,4], human machine interaction [5], sports analysis [6],
and surveillance [7–9]. It has been recently demonstrated the useful-
ness of vector fields, not only in surveillance settings [7–9], but also
in other problems e.g., analysis of hurricane data, GPS tracks of peo-
ple and vehicles, and cellular radio handoffs [10]. The focus of this
paper is to model the trajectories using a set of sparse motion/vector
fields.

Vector fields were used previously [7], where each trajectory
was represented by a sequence of segments, each of which generated
by one vector field. Switching between models occur at any point in
the image domain with a probability that depends on the spatial lo-
cation. This model is flexible enough to represent a wide variety of
motion patterns. The expectation-maximization (EM) algorithm was
applied to learn the model parameters from the observed trajectories.
However, the drawback with the above approach is that we obtain a
“dense” representation of the vector fields in the image domain. By
dense, we mean that we are estimating the vector fields in regions
where no observations were acquired. In this paper we are able to cir-
cumvent this limitation by estimating the motion/vector fields only
on regions where observations exist. This is accomplished by en-
forcing a sparse solution using an appropriate prior as it is discussed
in the paper.
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Fig. 1. Pedestrian trajectories at IST campus, Lisbon

The rest of the paper is organized as follows. Section 2 discusses
related work. Sections 3 and 4 describe the trajectory model and the
motion field model. Section 5 address the motion field estimation
using a MAP criterion and section 6 discusses the prior. Section 7
discusses the optimization procedure. Section 8 presents experimen-
tal results and section 9 draws the main conclusions.

2. RELATED WORK

Image processing algorithms have immensely progressed in the past
decades. This was achieved using better image models. One of
the research directions that has undoubtedly contributed for this
progress, is the use of the sparse representation techniques. Sparse
representation techniques allow to obtain robust and reliable models
that have been sucessfully used in several problems, ranging from
denoising, restauration, to sampling and inverse problems for re-
construction [11]. Related work in sparse methodologies has been
proposed in finding low complexity algorithms that yield solutions to
the aforementioned problems. Two classical families of algorithms
are the matching pursuit (MP) [12,14] and the FOCal Underdeter-
mined System Solver (FOCUSS). The MP algorithms are based on
suboptimal forward sequential algorithms [12–14], that work by
successively adding vectors until the representation of the desired
signal is achieved. Other techniques are based on optimization
methodologies that maximize sparsity, such as the `1 norm [15], or
the more general `(ρ<1) explored by FOCal Underdetermined Sys-
tem Solver (FOCUSS) [16]. As it will be described herein, sparse
methodologies have enlarged its domains of application.

In the context of the present paper, two main concepts have
been adopted. In one hand, the use of trajectories has been recently
proposed for activity monitoring. For instance, in [9] a paramet-
ric Dirichlet process is applied for trajectory clustering, and where
online classification is achieved using a particle based filtering ap-
proach for abnormality detection. Dense trajectories for human mo-



tion recognition has also been proposed [17], where the main idea
is to perform a dense sampling on feature points in each frame, and
then perform tracking based on optical flow. Sparse based methods,
on the other hand, have played an important role in human activity
recognition. In [18] is proposed an algorithm for learning sparse,
spatiotemporal features applying the resulting sparse codes to the
problem of activity recognition.

In this paper, we propose to join the aforementioned concepts
by proposing a new sparse approach to model the trajectories per-
formed by pedestrians. To our knowledge, the use of these two con-
cepts was never used to estimate the vector fields for video surveil-
lance purposes. More specifically, we consider three prior models
that introduce different sparsity levels. It will be shown that the pro-
posed approach is useful for modelling of trajectories in a surveil-
lance setup.

3. TRAJECTORY MODEL

Let us consider a pedestrian trajectory in the image plane, x =
(x1, . . . , xL), where xt ∈ [0, 1]2 denotes the pedestrian position
at discrete time t (see Fig. 1). We will assume that the pedestrian
motion is driven by K motion fields Tk : [0, 1]2 → R2 as suggested
in [7]. It is assumed that each trajectory is generated by a bank of
switched dynamical models,

xt = xt−1 + Tkt(xt−1) + wt, (1)

where kt ∈ {1, . . . ,K} denotes the active motion field at time t and
wt ∼ N(0, σ2I) is a white random perturbation.

We will also assume that switching between active fields de-
pends on the pedestrian position and is modeled as a first order
Markov process. Therefore,

P (kt = j|kt−1 = i, xt−1) = Bij(xt−1), (2)

where B(x) = {Bij(x), i, j ∈ {1, . . . ,K}} is a space-varying ma-
trix of switching probabilities that depends on the pedestrian posi-
tion. Therefore, B(x) is a stochastic matrix for each admissible po-
sition, x ∈ [0, 1]2.

If the sequence of switching labels k = (k1, . . . , kL) is known,
the joint probability p(x, k) can be easily obtained

p(x, k) = p(x1, k1)

L∏
t=2

p(xt, kt|xt−1, kt−1) (3)

= p(x1, k1)

L∏
t=2

p(xt|kt, xt−1)p(kt|kt−1, xt−1), (4)

and taking log we obtain,

log p(x, k) = log p(x1, k1)− (L− 1) log(2πσ2)−

− 1

2σ2

L∑
t=2

‖xt − xt−1 − Tkt(xt−1)‖22+

+

L∑
t=2

logBkt−1,kt(xt−1). (5)

In this paper we will assume that Bi,j(x) is known and we will
focus on the estimation of the motion fields Tk from the training
data. The estimation of B(x) is addressed elsewhere [19]. But first,
we need to discuss how are the motion fields represented.

4. MOTION FIELD REPRESENTATION

Motion fields can be represented in several ways e.g., using para-
metric models [8] or Gaussian processes [9]. In this paper, we will
assume that motion fields are freely specified at the nodes of a regu-
lar grid on the image plane, G =

{
gi ∈ [0, 1]2, i = 1, . . . , N

}
, and

interpolated in other image points x /∈ G. Let Tk ∈ RN×2 be a ma-
trix with the values of k-th motion field at the grid nodes. For x /∈ G,
the motion field is obtained by bilinear interpolation as follows

Tk(x) = Φ(x)Tk, (6)

where Φ(x) is a N × 1 sparse matrix of interpolation coefficients
(only 4 coefficients will be non-zero).

The parameters to be estimated are, thus, the velocities of the K
motion fields at the grid nodes: T = (T1, . . . , TK).

5. MAP ESTIMATION

We will now assume that we have observed a training set of S tra-
jectories, X =

{
x(1), . . . , x(S)

}
, and wish to estimate the motion

fields. The MAP estimate of the motion fields parameters is given
by

T̂ = arg max
T

[log p(X|T ) + log p(T )] , (7)

where log p(T ) is the log prior distribution. Assuming that differ-
ent motion fields have independent priors, we obtain log p(T ) =∑K
k=1 log p(Tk).

Unfortunately, the likelihood function p(X|T ) cannot be analyt-
ically computed. The complete likelihood function p(X ,K|T ) can
be easily obtained from (5), but the marginalization

p(X|T ) =
∑
K

p(X ,K|T ), (8)

involves a sum over all the admissible label sequences, K, and it is
not feasible.

To overcome this difficulty we will adopt the expectation-
maximization (EM) method using the auxiliary function

U(T, T ′) = E
{

log p(X ,K|T )|X , T ′)
}

+ log p(T ), (9)

where T ′ denotes the most recent estimate of T . This function can
be analytically computed since the marginalization was replaced by
an expectation.

Using (5) and neglecting constant terms, we obtain

U(T, T ′) =

K∑
k=1

log p(Tk)−

− 1

2σ2

S∑
s=1

Ls∑
t=2

K∑
k=1

w
(s)
k (t)‖x(s)t − x

(s)
t−1 − Tk(x

(s)
t−1)‖22, (10)

where w(s)
i (t) = P (k

(s)
t = i|x(s), T ′) is the probability of assign-

ing the t−th observation to model i, in sequence s. This is computed
in the E-step.

The M-step of the EM method involves the maximization of (10)
that can be split intoK independent subproblems i.e., one per motion
field by maximizing

Uk(T, T ′) = − 1

2σ2

S∑
s=1

Ls∑
t=2

w
(s)
k (t)‖x(s)t −x

(s)
t−1−Tk(x

(s)
t−1)‖22

+ log p(Tk), (11)

and each of them can be separately computed for x and y compo-
nents of the motion fields, provided that log p(Tk) can be split into
the sum of two functions for x and y velocity components.



6. PRIOR DISTRIBUTION

The prior distribution, p(T ), is used to incorporate a priori knowl-
edge about the parameters, keeping the estimation process simple.
We will assume that each motion field has two properties:

• smoothness: for each pair of neighboring grid nodes xg1, xg2
∈ G, the velocity difference Tk(xg1) − Tk(xg2) should be
small;

• small coefficients: in most grid nodes xg ∈ G, the velocity
Tk(xg) should be small.

The second condition may lead to sparse solutions if the l0 or l1
norms are used. To enforce these conditions we will consider the
following logarithm of the prior (normalization constants were dis-
carded)

log p(Tk) = α‖∆Tk‖22 + β‖Tk‖pp, (12)

where ∆ is an operator that computes all differences between ve-
locities of neighboring nodes, p ∈ {1, 2}, and ‖.‖p denotes the pth
norm of a matrix. We will consider three priors:

1. β = 0 (the choice adopted in [7]);

2. β 6= 0, p = 2 squared error penalty of the coefficients and

3. β 6= 0, p = 1, l1 norm enforcing sparseness in the set of
coefficients.

7. OPTIMIZATION

The cost functional (10) can be split into K independent cost func-
tionals (one per motion field) and each of these can be split again
into two simpler cost functionals: one for vertical velocity field and
one for horizontal velocity field. Each of these 2K optimization
problems can be written in the form

min
uk

‖Wk(v − φuk)‖22 + α‖∆uk‖22 + β‖uk‖pp , (13)

where v includes the pedestrian velocities in all trajectories, uk con-
tains the grid coefficients (horizontal or vertical velocities) for each
field k = 1, 2, ...,K, p ∈ {1, 2}, and Wk is a diagonal weight ma-
trix of the form

Wk =



√
w

(1)
k (2)I . . . 0 . . . 0 . . . 0

... . . .
... . . .

... . . .
...

0 . . .

√
w

(1)
k (Ls)I . . . 0 . . . 0

... . . .
... . . .

... . . .
...

0 . . . 0 . . .

√
w

(S)
k (2)I . . . 0

... . . .
... . . .

... . . .
...

0 . . . 0 . . . 0 . . .

√
w

(S)
k (Ls)I . . .


.

This is a convex cost function that is solved by using CVX pack-
age for convex programs [20]

8. EXPERIMENTAL RESULTS

The algorithm was applied to model the motion of pedestrians in
the Campus data set [7]. This data set contains the trajectories of
134 pedestrians (14308 points) acquired by a static camera at IST
Lisbon. Fig. 2 (top) shows the trajectories extracted superimposed
on one of the Campus images. The images were first transformed
by an homography, in order to compensate the distortion caused by
the perspective projection. Then, the pedestrians were detected and
tracked (see Fig. 2 (bottom left)). These are the trajectories that
were used to estimate the motion fields. We have transformed the

Fig. 2. Trajectories extracted from the IST Campus sequence, each
color denotes a different class-trajectory (top). Trajectories com-
pensated by an homography (bottom left) and pedestrian velocities
and cluster centers obtained with a Gaussian mixture model (bottom
right).

trajectories back by the inverse homography for display purposes
only (see Fig. 2 (top)).

We set the number of fields to K = 4 (roughly North, South,
East and West) and used a grid of 21 × 21 nodes. The learning al-
gorithm was initialized using uniform motion fields, with the field
values obtained by clustering the pedestrian velocities using Gaus-
sian mixture models (see Fig. 2 (bottom right)). This initialization
was considered to be robust since the algorithm always converged to
acceptable field configurations in all the trials.

We tested three priors: i) β = 0; ii) β = 0.2, p = 2, iii)
β = 0.02, p = 1, and α = 0.2 in all experiments (α and β were
empirically chosen). Typical results obtained with these priors are
shown in Figs. 3-5. They all approximate the pedestrian velocity
well. This can be measured by computing the energy of the predic-
tion error as defined in (10). However, the first prior (β = 0) ex-
tends the motion field to the whole image, including regions where
no data is observed. In such regions the model makes no sense since
no information was observed there. In addition, the estimated mo-
tion fields are difficult to interpret in this case. When we penalize the
coefficients with a squared Euclidean norm, the previous problem is
reduced but the estimated fields still tend to occupy most of the im-
age with non-zero velocity estimates. The third prior is the one that
performs best. It provides non-zero estimates in the regions where
data is concentrated and zero velocity estimates in the regions where
there is no data.

To characterize the estimated fields, we computed the amount of
overlap between all the fields as follows

O =
2

K(K − 1)

K∑
i=1

i−1∑
j=1

Oij (14)

where Oij measures the overlap between fields i and j, i.e., the per-



Fig. 3. Learned motion fields with prior 1 (β = 0) and trajectory
segments associated to each field

Fig. 4. Learned motion fields with prior 2 (β = 0.2, p = 2) and
trajectory segments associated to each field

Fig. 5. Learned motion fields with prior 3 (β = 0.02, p = 1) and
trajectory segments associated to each field

Table 1. Percentage of field overlap associated to each prior
Prior 1 Prior 2 Prior 3

Overlap 99.8% 44.7% 16.6 %

centage of grid nodes in which both fields have values greater then
a small threshold. Table 1 shows the experimental results. The first
prior leads to velocity field estimates that cover the whole image,
showing a full overlap (100%) even in regions where there are no
data. The field estimates in such regions is meaningless. On the con-
trary, the third prior (l1 - norm) leads to sparse vector fields that have
a much smaller overlap (17%), since the field estimates are zero if
there is no data in a region. The interpretation of the velocity field
estimates is also much easier. The second prior (squared l2 norm)
lies in the middle. The best results are obtained with the l1 regular-
ization.

9. CONCLUSIONS

This paper studies the effect of the prior on the motion fields esti-
mates. It is shown that a prior based on the `1 norm enforces sparse-
ness on the multiple motion field estimates and has significant ad-
vantages. First, the estimated fields are zero in regions where there
is no data to support them. This is important because it does not
make sense to use motion fields in regions where there is no train-
ing data. Second, it also simplifies the motion fields and make them
more easy to interpret. Third, motion fields overlap much less. The
proposed algorithm is robust and leads to meaningful description of
the data.
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