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Abstract

Cardiovascular diseases are the leading cause of death worldwide. While prevention

has a significant impact in reducing incidence rates, early detection and management is

required to reduce mortality. Cardiac magnetic resonance (CMR) is considered the gold

standard to assess cardiac function and anatomy. Despite its high costs, it is an invaluable

choice for diagnosing and monitoring several cardiac diseases, because it is a non-invasive,

non-ionizing and versatile imaging modality. The evaluation of cardiac function from

CMR data requires measuring the left ventricle (LV) volume. This is achieved by manually

delineating the LV border in the axial slices of a CMR volume, a time-consuming task that

has to be performed by cardiologists. This has fostered the research on the automation of

this process.

The goal of this thesis is to develop a segmentation algorithm for the LV in 3D+t

CMR data. The proposed approach is based on active shape models (ASM), and it is

divided into three parts. The first part of the thesis focuses on extracting the LV border

by analyzing each 2D magnetic resonance (MR) slice individually. In this approach, a

single 2D shape model is assumed to be capable of representing the LV contour and

segment all the slices of the CMR data. The main challenge is the estimation of the shape

model parameters from images with misguiding anatomical structures, such as papillary

muscles. These structures are responsible for the appearance of many outliers that decrease

the accuracy of the segmentations. To deal with this issue, a new Bayesian formulation

is proposed that is able to reduce the influence of outliers in the estimation the model

parameters.

The second part of the thesis explores using a 3D shape model to segment the whole

MR volume simultaneously, instead of dealing with each slice independently. Contrary

to the previous approach, a 3D shape model captures the three-dimensional structure of

the LV and imposes constraints on the segmentations of the slices in a volume. The main

problems faced here are related to the variable number of slices in MR volumes and to the

existence of misaligned slices. These issues make both the training and the test phase of
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an ASM methodology more challenging. The proposed approach consists of preprocessing

the shape examples in the training set to remove misalignments and to resample them to

a predefined number of contours. In the test phase, the shape model is adjusted to fit the

test volumes with a different number of slices.

The final part takes into consideration the temporal dimension of CMR data. In this

case, the segmentation is performed on the whole sequence simultaneously, by taking into

account the motion of the LV. Two different approaches are proposed to embed temporal

information in the ASM framework: i) using vector fields to represent the LV dynamics

during the systolic and the diastolic phases of the cardiac cycle; and ii) imposing the LV

dynamics through regularization of the shape model parameters.

In each part, the experimental results show the advantages of the proposed method-

ologies. Overall, it is possible to conclude that using more information during the segmen-

tation process leads to an improvement of the segmentation accuracy.

Keywords

Cardiac magnetic resonance, Left ventricle, Segmentation, Active shape model,

Expectation-maximization
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Resumo

Doenças cardiovasculares são a principal causa de morte no mundo. Embora a

prevenção tenha um grande impacto na redução da taxa de incidência, a deteção precoce

e o tratamento são vitais na redução da mortalidade. Ressonância magnética card́ıaca

(RMC) é considerada a modalidade de referência na avaliação anatómica e funcional do

coração. É uma técnica de imagiologia que acarreta custos elevados, mas é particularmente

atrativa para o diagnóstico e acompanhamento de doenças card́ıacas por ser não invasiva

e não ionizante. Para avaliar a função card́ıaca em dados de RMC, é necessário medir o

volume do ventŕıculo esquerdo (VE). Isto é conseguido delineando manualmente a fronteira

do VE nos vários cortes axiais dos volumes de RMC, o que é uma tarefa morosa que tem

de ser efetuada por cardiologistas. Por este motivo, a automatização desta tarefa tem sido

alvo de muita investigação.

O objetivo desta tese é o desenvolvimento de um algoritmo de segmentação do VE

em dados 3D+t de RMC. A abordagem proposta baseia-se na utilização de active shape

models (ASM), e está dividida em três partes. A primeira parte foca-se na extração do

contorno do VE através da análise individual de cada imagem 2D obtida na ressonância

magnética (RM). Nesta abordagem, assume-se que um único modelo de forma é capaz de

representar o contorno do VE e segmentar todas as imagens de RM. O principal desafio é

a estimação dos parâmetros do modelo de forma em imagens com estruturas anatómicas

capazes de enganar o modelo, nomeadamente os músculos papilares. Estas estruturas

são responsáveis pelo deteção de muitos falsos positivos, que consequentemente levam à

diminuição da precisão das segmentações. Para lidar com este problema, é proposta uma

nova formulação Bayesiana para a estimação dos parâmetros que diminui a influência dos

falsos positivos.

A segunda parte da tese explora a utilização de modelos de forma 3D para segmen-

tar o volume de RM inteiro, ao invés de cada imagem separadamente. Contrariamente à

abordagem anterior, o modelo de forma 3D é capaz de representar a estrutura tridimen-

sional do VE e impõe constrangimentos às segmentações das várias imagens de um mesmo
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volume. Os principais problemas encontrados estão relacionados com o número variável

de imagens que cada volume de MR tem e com a existência de desalinhamentos entre

imagens consecutivas. Estes problemas tornam mais dif́ıcil tanto a fase de treino como a

fase de teste de uma metodologia baseada em ASM. A abordagem proposta consiste em

pré-processar os dados de treino por forma a remover desalinhamentos e a reamostrar as

formas de treino para que tenham o mesmo número de contornos. Na fase de teste, o

modelo de forma aprendido é também ajustado aos volumes de teste, que poderão ter um

número diferente de imagens.

A parte final da tese tem em consideração a dimensão temporal dos dados de RM.

Neste caso, a segmentação é efetuada na sequência toda simultaneamente, tendo em conta a

dinâmica do VE. Duas abordagens distintas foram usadas para incluir informação temporal

na metodologia ASM: i) usar campos vetoriais para representar a dinâmica do VE nas fases

de śıstole e diástole do ciclo card́ıaco; e ii) impor a dinâmica do VE através da regularização

dos parâmetros do modelo de forma.

Em cada uma destas partes, os resultados experimentais demonstram as vantagens

das abordagens utilizadas. Globalmente, também é posśıvel concluir que a utilização de

mais informação durante a segmentação é beneficial para a qualidade das segmentações.

Palavras Chave

Ressonância magnética card́ıaca, Ventŕıculo Esquerdo, Segmentação, Active shape

model, Expectation-maximization
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1. Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, according

to the World Health Organization [6]. Although a lot of effort as been put into preventing

CVDs by promoting healthier life styles, a large number of people still present behavioral

risk factors (e.g., unhealthy diet, sedentary lifestyle, smoking and alcohol abuse). In these

situations, the most effective preventive measure is the early detection and management

of the disease.

Cardiac magnetic resonance (CMR) is considered the gold standard imaging modal-

ity to evaluate cardiac anatomy and function [71]. It allows an accurate, quantitative

and highly reproducible assessment of ventricle volumes, ejection fraction, muscle mass,

among other medical features. This information is crucial for an objective diagnosis of

cardiomyopathies (cardiac muscle diseases) and is often unobtainable with other imaging

modalities.

The downside of CMR is the post processing that it requires. In order to extract

the desired medical features, it is necessary to know, at the very least, the location of the

left ventricle (LV) border, in some of the acquired images. The medical protocol relies in

the manual segmentation of these image to achieve this. This means that cardiologists

have to analyze the images and manually introduce points along the LV border, through a

computer interface. This is a laborious task that consumes 10-15 minutes from the clinical

hours of a physician for each patient.

There have been several attempts at developing automatic segmentation algorithm

for CMR [138]. However, there are several challenges associated with this process, such

as the complexity of CMR images and the high variability of the heart anatomy, which

make automation a difficult problem. There is still a great interest in the medical and

engineering community to solve this problem, which explains why there have been many

LV segmentation challenges in recent years (e.g., MICCAI 2009 [3], MICCAI 2011 [2,167],

Kaggle 2016 [5]) and why it is still an active research topic. This is also what motivated

the work developed in this thesis, in collaboration with Dr. Pedro Matos from Hospital

CUF Infante Santo in Lisbon, Portugal.

1.2 Objectives

The goal of this thesis is the development of an LV segmentation algorithm that

would help cardiologists to speed up the process of analyzing CMR data. Ultimately,

this could be a tool to relieve them from the laborious task of segmenting the LV, and

automatically provide the required medical features used to diagnose and evaluate cardiac

function.

CMR data of a patient consists of a 3D+t image (a sequence of volumes), which
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1.3 Contributions

depicts the heart moving during one cardiac cycle. Each volume of a specific frame is a

stack of 2D images that are located at different heights along the longitudinal axis of the

heart. This means that there is a lot of information available that has to be processed.

This thesis was divided into three parts, which address three challenging problems

of increasing complexity separately:

1. Segmentation of the LV as a 2D problem: the CMR data is analyzed as individual

2D images, in which the main challenge is identifying the location of the LV border;

this problem is addressed in Chapter 3;

2. Segmentation of the LV as a 3D problem: besides the 2D problem, the three-

dimensional structure of the LV is taken into account, taking the correlation of the

images along the longitudinal axis into account; this problem is tackled in Chapter

4;

3. Segmentation of the LV using temporal information: combine all the previous infor-

mation with prior knowledge of the LV motion; this is addressed in Chapter 5.

These problems are increasingly more difficult due to the amount of information that the

algorithm has to process during the segmentation. However, the additional information

also has the potential to improve the accuracy of the segmentations.

Regarding the first part, Chapter 3 takes into account the fact that the LV border

has a circular shape in all the slices of the magnetic resonance (MR) volume. In fact, using

this shape information has been one of the most popular approaches in CMR segmenta-

tion [138]. Still, the identification of the LV border remains challenging due to the lack of

contrast between the blood pool (inside the LV) and the myocardium (cardiac muscle sur-

rounding the LV), and due to misleading anatomical structures, namely, papillary muscles

(see 2.5).

In Chapter 4, by incorporating the three-dimensional structure of the LV, the prior

information about its shape is expected to be more consistent with reality. Furthermore,

by analyzing the whole volume simultaneously, the algorithm makes the segmentations

coherent along the third dimension.

Finally, the approach explored in Chapter 5 takes advantage of prior knowledge

about how the LV varies throughout the cardiac cycle. This allows the algorithm to

correlated the segmentations in different frames and to make assumptions about their

expected location. This information is combined with the approaches from the previous

parts to further enhance the capabilities of the segmentation method.

1.3 Contributions

The problems mentioned above were addressed using an active shape model, which

is a deformable model-based approach that uses information about the expected shape of
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1. Introduction

the segmented region. The main contributions of this thesis are the following:

• A new active shape model algorithm, called Expectation-Maximization Robust Ac-

tive Shape Model (EM-RASM), for the segmentation of 2D objects (Chapter 3);

• A training and testing framework to use 3D shape models in CMR data (Chapter

4);

• Extension of the EM-RASM algorithm to 3D objects (Chapter 4);

• Extension of the EM-RASM algorithm for 2D+t and 3D+t segmentation:

– An approach to embed a dynamical model based on vector fields into EM-RASM

(Chapter 5);

– A framework that adds temporal constraints to EM-RASM through parameter

regularization (Chapter 5).

1.4 List of Publications

Parts of the work developed during my PhD studies was published in journals, book

chapters and conferences, listed below.

Journal Papers

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Fast Segmentation of the Left

Ventricle in Cardiac MRI Using Dynamic Programming,” Computer Methods and

Programs in Biomedicine, 2017 - review received (Q1)

• C. Santiago, J. C. Nascimento, and J. S. Marques, “A new ASM framework for left

ventricle segmentation exploring slice variability in cardiac MRI volumes,” Neural

Computing and Applications, pp. 1–12, 2016 (selected at IbPRIA for journal publi-

cation)

• C. Santiago, J. C. Nascimento, and J. S. Marques, “2D Segmentation Using a Robust

Active Shape Model With the EM Algorithm,” Image Processing, IEEE Transactions

on, vol. 24, no. 8, pp. 2592–2601, Aug 2015 (Q1)

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Automatic 3-D Segmentation of

Endocardial Border of the Left Ventricle From Ultrasound Images,” Biomedical and

Health Informatics, IEEE Journal of, vol. 19, no. 1, pp. 339–348, Jan 2015 (Q1)
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Book Chapters

• C. Santiago, J. C. Nascimento, and J. S. Marques, “A 3D Active Shape Model for

Left Ventricle Segmentation in MRI,” in Biomedical Image Segmentation: Advances

and Trends. CRC Press, 2016, pp. 99–116

• J. S. Marques, J. C. Nascimento, and C. Santiago, “Robust Deformable Models

for 2D and 3D Shape Estimation,” in Deformation Models: Tracking, Animation

and Applications, M. González Hidalgo, A. Mir Torres, and J. Varona Gómez, Eds.

Dordrecht: Springer Netherlands, 2013, pp. 169–185

Conference Papers

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Fast and accurate segmentation

of the LV in MR volumes using a deformable model with dynamic programming,”

in Image Processing (ICIP), 2017 IEEE International Conference on - submitted.

IEEE, 2017

• C. Santiago, J. C. Nascimento, and J. S. Marques, “A New Robust Active Shape

Model Formulation For Cardiac MRI Segmentation,” in Image Processing (ICIP),

2016 IEEE International Conference on. IEEE, 2016, pp. 4112–4115

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Segmentation of the left ventricle

in cardiac MRI using a probabilistic data association active shape model,” in Engi-

neering in Medicine and Biology Society (EMBC), 2015 37th Annual International

Conference of the IEEE, Aug 2015, pp. 7304–7307

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Robust 3D Active Shape Model
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Science. Springer International Publishing, 2015, vol. 9117, pp. 283–290

• C. Santiago, J. C. Nascimento, and J. S. Marques, “A Robust Active Shape Model
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21th IEEE International Conference on. IEEE, 2014, pp. 6076–6080

• C. Santiago, J. C. Nascimento, and J. S. Marques, “Non-rigid Object Segmentation
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Springer, 2014, pp. 160–169

• C. Santiago, J. S. Marques, and J. C. Nascimento, “A robust deformable model
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2. Cardiac Magnetic Resonance

Over the past twenty years, CMR has become a very popular image modality for

the analysis of cardiac structure, function, and tissue characteristics. Advances in scanner

capabilities and acquisition techniques have made CMR increasingly faster, with higher

resolution, and irreplaceable in the analysis of certain cardiovascular diseases. This chapter

is composed of two parts. The purpose of the first part is to give the reader a brief overview

of the basic principals of CMR, some of the variants that are used in clinical practice and

their applications, and the main advantages over other image modalities. The second

part focuses on short axis cine CMR, which are the images that are being analyzed in

this thesis. A description of the image characteristics is provided, along with the medical

procedure followed by cardiologists in the analysis of these images. Details about the main

challenges faced by automatic segmentation algorithms and popular approaches are also

provided.

2.1 Fundamentals of Magnetic Resonance

Magnetic resonance imaging (MRI) is a complex imaging modality whose funda-

mentals are deeply rooted in the relationship between the electromagnetic and quantum

physics fields [17,27,114,142]. It is based on a magnetic property of the atoms, known as

nuclear spin. Atoms with a non-zero spin, such as hydrogen, generate an electromagnetic

field called magnetic moment. In a resting state, the magnetic moments are randomly

oriented and cancel each other. However, under the influence of an external magnetic

field, they align with the external source. Therefore, instead of canceling, they sum con-

structively, giving rise to the so-called net magnetization.

During an MRI acquisition, a strong magnetic field is used to align the magnetic

moments of the target region. Then, an additional oscillatory field is used to temporarily

change the orientation of the net magnetization. Once the exposure to this field ceases,

the net magnetization gradually converges to the previous equilibrium, in a process called

relaxation. By applying at least three time-varying magnetic fields along the three spatial

dimensions, it is possible to specify the location of the excited image sample in the 3D

space. The variation of the net magnetic during the relaxation is captured by the MR

scanner, which is then translated to a gray scale image. Additional magnetic pulses are

often applied in order to perturb the net magnetization and enhance specific features in

the image.

The most important source of the MR signal is hydrogen, due to its intrinsic nuclear

spin properties, and because it is available in abundance in the human body, particularly

in water and fat tissue. However, the intensity of a pixel in an MR image depends both

on the type of tissue that pixel corresponds to, and on the pulse sequence used during the

acquisition.

The following section briefly describes some of the most common types of CMR
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2.2 Types of CMR

LV

Figure 2.1: CMR imaging modalities: (a) dark blood imaging (extracted from [1]), (b) bright

blood imaging, and (c) tagged CMR.

images that are acquired in the clinical setup and their purpose.

2.2 Types of CMR

The ability to generate different types of images is a feature of MRI that make it

stand out over other imaging modalities. Different pulse sequences allow different types

of contrast between tissues to be acquired. The following subsections explain some of the

most commonly acquired CMR images and their uses [71].

2.2.1 Dark Blood Imaging

Dark blood imaging is an acquisition technique that is characterized by assigning

high intensity values to tissues that are stationary or moving slowly. Since the blood is

always flowing at a higher speed than any other tissue, in this type of images it appears

as a dark region (low intensity), as shown in Fig. 2.1 (a).

This imaging modality may be acquired using either spin echo or inversion recovery

techniques [77,121], in which the intensity of the image depends on the combined influence

of two pulses. However, because the pulses are separated in time, and the blood tissue

keeps flowing within the human body, this leads to the absence of signal inside the heart

and blood vessels.

This modality is useful in many applications, including the analysis of the morphol-

ogy of the heart and blood vessels, e.g., for congenital heart disease [129] or the detection

of myocardial masses [29].

2.2.2 Bright Blood Imaging

Bright blood imaging is typically used for applications that require a higher tempo-

ral resolution. Unlike the previous technique, the blood pool appears brighter than the

surrounding muscle tissue. Although single images can also be used, as shown in Fig. 2.1
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2. Cardiac Magnetic Resonance

(b), the most common practice is to acquire a set of images that are then stacked to build

a sequence, named cine imaging. This simulates a movie of the heart moving during the

cardiac cycle.

This type of images are acquired using gradient echo pulse sequences, namely, the

balanced steady-state free precession (bSSFP) technique [171], which are characterized by

allowing faster acquisitions without significant loss in spacial resolution [162].

Bright blood imaging, and in particular cine imaging, is the most common type of

CMR, used in applications in the assessment of myocardial function of both the left and

right ventricles. This is useful in diagnosis and follow-up of diseases such as congestive

heart failure or myocardial infarction [142].

2.2.3 Tagged CMR

Myocardial tagging has gained popularity over the past decade for its potential in

the evaluation of regional myocardial function [74]. Conventional imaging techniques lack

the necessary anatomical landmarks to assess local deformations of the cardiac muscle.

Thus, it is only possible to analyze the motion of the inner and outer borders of the LV.

With tagged images, however, the muscle tissue is marked with a magnetization pattern,

e.g., a grid, that appears as black stripes in the image, as shown in Fig. 2.1 (c). This

temporarily creates markers (on the grid nodes) that follow the muscle tissue as it deforms,

enabling the quantification of muscle strain and stress.

The two most widely used techniques for tagged CMR are harmonic phase [133]

and displacement encoding with stimulated echoes [9]. Both of these approaches rely on

marking tissue with a magnetization saturation in a specific pattern, which then appears

darker than the neighboring unmarked tissue. They also include a post processing part

that aims to track these markers in order to quantify its motion. The analysis is performed

on the Fourier transform of the tagged image, from which motion estimates are extracted.

Tagged imaging has been used in the quantification of myocardial dysfunction, as

well as enabling the identification of the local contractile capability, which is useful, e.g.,

in assessing ischemic heart diseases [74].

2.3 Advantages of CMR

CMR is a popular imaging modality in clinical practice. It has several advantages

over other modalities [27,71], such as computerized tomography (CT) or ultrasound. First

it is non-invasive and non-ionizing, which facilitates the diagnosis and the monitoring of

patients without the risks associated to radiation exposure (as in CT). Second, CMR can

be acquired in any plane or acquisition view, which does not happen, e.g., in ultrasound

imaging, due to the fact that the ultrasonic beam is not able to bypass the chest bones. It

can also be easily adjusted, as explained previously, to capture specific types of images, by
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2.4 Acquisition

changing the pulse sequence of the acquisition, e.g., to show the cardiovascular anatomy

and structure, or to analyze myocardial viability and function. This makes it more versatile

than other image modalities, and useful in a larger spectrum of applications. Finally, the

quality of CMR images in terms of contrast, signal to noise ratio, and spatial resolution

makes quantification of specific measurements, such as ventricle volumes and muscle mass,

highly reproducible. These advantages make CMR the gold standard for the diagnosis of

cardiac function and anatomy, with which other modalities are compared [21,71].

2.4 Acquisition

This thesis is focused on a specific type of CMR data: bright blood images acquired

using the bSSFP technique (recall Section 2.2.2). The goal of this technique is to obtain

a sequence of MR volumes (i.e., 3D+t data) comprising a stack of 2D images (slices) that

are organized according to the phase of the cardiac cycle they belong to (frame) and to

their position along the longitudinal axis (slice position). This section focuses on details

about the acquisition procedure, which are useful to understand some the features of the

corresponding images.

Although the bSSFP technique is faster at acquiring images than most conventional

MRI pulse sequences, it is still not fast enough to capture an entire image associated with

a specific phase of the cardiac cycle. Therefore, obtaining CMR data requires a complex

acquisition procedure that takes place during several seconds. The standard approach is to

divide each image into segments. These segments are small enough to be entirely acquired

at a specific time instance (e.g., corresponding to a time interval of 30 ms). Considering

each heart beat corresponds to approximately 1 s, and that the cardiac cycle is divided

into 20 phases (frames), then it is possible to acquire one segment of all the images in a

specific slice position during a single heart beat (20× 30 = 600 ms < 1 s). If each image

is made up of 20 segments, then the total time required to acquire the entire sequence on

that slice position is approximately 20 heart beats [114]. Then, this process is repeated

for the remaining slice positions.

In order to assign each image with a specific phase of the cardiac cycle, it is necessary

to synchronize the acquisition with the electrocardiogram (ECG) of the patient. This is a

unique feature of cine CMR that is accomplished using one of the possibilities, illustrated

in Fig. 2.2:

Prospective Gating, also denoted by ECG triggering, relies on the detection of the

R-wave (which signals the beginning of a new cardiac cycle) to trigger the acquisition of a

predefined number of phases (typically 20). In order to avoid extending the acquisition of

those phases beyond one cardiac cycle, data acquisition must stop before the next R-wave,

which means it is not possible to acquire all the phases of the cardiac cycle.
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2. Cardiac Magnetic Resonance

R-wave

prospective

retrospective

Figure 2.2: Schematic illustration of prospective and retrospective ECG gating (adapted from [4]).

Retrospective Gating, on the other hand, acquires data continually and assigns la-

bels to each segment based on the phase of cardiac cycle it belongs to, relative to the

R-wave. Then, the images are obtained by compiling all the segments of each phase, in a

retrospective procedure. This allows the MR sequence to be comprised of equally spaced

images throughout the whole cardiac cycle.

Older CMR techniques were severely hampered by breathing motion, which caused

the heart to change its position during the acquisition. Since it is very difficult to cancel

this effect by modeling the complex motion of the heart during the respiratory cycle, the

most reliable approach is to acquire CMR during breath-hold [112]. In practice, this means

that patients have to hold their breath several times during the acquisition to cover the

whole heart. During each breath-hold, the MR scanner acquires the entire sequence of

images for a specific slice position. In the example above (see Fig. 2.2), the 20 segments

that compose each of 20 MR images in the sequence are acquired while the patient is

breath-holding for approximately 20 seconds. Patients are asked to be consistent about

the breath-hold position, in order to guarantee that the heart does not change position.

Otherwise, motion artifacts may appear between consecutive slices, causing misalignments

in the position of the heart in these slices.

2.5 Analysis of CMR

This section discusses the medical procedure that takes place after the acquisition of

CMR. As mentioned previously, the bSSFP acquisition technique produces images where

the blood inside the ventricle is bright (high intensity value) and the heart’s muscle is

darker (low intensity value). This difference in intensity values creates a contrast that helps

locate the endocardium, i.e., the border between the LV chamber and the myocardium

around it (see Fig. 2.1 (b) for an example). The acquired images are combined to form a

set of volumes covering one complete cardiac cycle. This includes the end-diastolic (ED)
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2.5 Analysis of CMR

phase, in which the heart muscles are relaxed and the heart is expanded, and the end-

systolic (ES) phase, in which the muscles are contracted and volume is minimal. The

difference between the ventricle volume in these two particular phases, denoted as stroke

volume, is the amount of blood that is pumped out of the heart during each heart beat.

This cardiac performance measurement is used to compute the ejection fraction - required

to diagnose and assess cardiac function.

In the clinical practice, after acquiring the CMR, physicians have to personally

analyze the data and perform the procedure shown by the diagram in Fig. 2.31. They

perform the following tasks:

(1) Selection of a region of interest (ROI), which is region that depicts a close up of the

LV in all the slices of the sequence;

(2) Adjustment of the intensity to increase the visual contrast between the inside and the

outside of the LV;

(3) Identification of the ED and ES phases, which are the only ones required for the

computation of the ejection fraction; and

(4) Manual segmentation of the LV in each slice of these two phases.

(1)

ROI Selection

(2)

Intensity

Adjustment

(3)

Identification of

ED and ES phases

(4)

Manual

segmentation

Figure 2.3: Diagram of the workflow for the analysis of a CMR sequence.

After all the segmentations have been done, the computer determines the ventricle

volume by using the summation of discs technique [71]. This is based on Simpson’s rule,

which allows the computation of the volume of a complex structure by summing all the

quantifiable subvolumes within it. In practice, this consists in approximating the volume

of each slice of the LV by the product of the area of the segmentation (disc area) with the

spacing between slices (disc height) and then summing all the slice volumes [26], as shown

in Fig. 2.4.

The analysis described above is laborious and time consuming. In particular, the

last task, (4) Manual segmentation of the LV, requires the physician to manually introduce

10-15 points in each of the 5-10 slices of the MR volume in the ED and ES phases, which

1This was the procedure used at Hospital CUF Infante Santo in Lisbon, Portugal, as described by Dr.

Pedro Matos on July 2012.
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2. Cardiac Magnetic Resonance

Figure 2.4: Summation of discs technique used to compute the ventricular volume [26]. The

figure shows the LV in a longitudinal view and the corresponding slice segmentations that are used

to compute the LV volume.

means introducing 100-300 points for a single patient. This is the reason why a lot of effort

has been put into the automation of this process. However, obtaining a reliable automatic

segmentation of the LV is not a simple task. In the next section, we discuss the problems

associated to the automatic segmentation of the LV.

2.6 Automatic Segmentation of the LV

This thesis focuses on the automation of the last task of the analysis of CMR:

Manual segmentation of the LV. The remaining tasks are additional steps that may be

used to improve the performance of the automatic algorithm, but are not fundamental

for its completion. The first task, ROI selection, is used by physicians to zoom in on

the region they are interested in. In the automation process, this step could be used

for initialization purposes, or by imposing that the method should only look for the LV

border in a specific region of the slices, thus reducing the computational complexity of

the method. The second task, adjustment of the intensity, only influences the way the

slices are shown to the physicians, and not their actual content. While this is unnecessary

for the automation process, it may be helpful to replace this step with a pre-processing

step to improve image quality and facilitate the segmentation. Finally, regarding the third

task, identification of the ED and ES phases, the ideal approach would be to select the

phases where the LV volume is largest and smallest, respectively. However, this is difficult

to do without knowing beforehand the LV segmentations in each phase - the physicians

are able to do this by roughly comparing the size of the LV blood pool in each phase [26].

The automatic alternative would be to segment the entire sequence, compute the volume

in each phase, and identify the ED and ES phases by comparison of the volumes. This

means that this task is easily achievable once the segmentations are available, leaving the
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2.6 Automatic Segmentation of the LV

Epicardium

Papillary muscles

Endocardium

Myocardium

LV

RV

Figure 2.5: Example of a CMR image.

automation of the fourth task as the most important for the whole procedure.

2.6.1 Challenges

Developing an automatic LV segmentation method for CMR involves dealing with

three main problems associated to this imaging modality: i) identifying the LV border in

each MR slice; ii) slice misalignments caused by different levels of breath-hold; and iii)

motion of the LV during the cardiac cycle.

The problem of determining the location of the LV border is the most critical. Fig.

2.5 shows an example of a slice annotated with some of the most important structures

in the ROI. The LV blood pool is typically a bright circular structure surrounded by the

myocardium, which has a darker intensity. The endocardium is the inner border of the

LV that we want do segment (green line). Notice that the image intensity alone does not

provide a trustworthy indication of where the endocardium is. The papillary muscles, in

particular, are anatomical structures that often mislead automatic segmentation methods

that do not impose shape constraints. In other cases where the myocardium is very thin, it

is also difficult to distinguish the endocardium from the epicardium in the region opposite

to the right ventricle (RV). It is also increasingly difficult to segment the slices near the

apex and the base of the LV [167], because the contrast between the blood pool and the

surrounding tissues is not so clear (see Fig. 2.6), and due to the proximity to the aortic

and mitral valves, respectively. Even among cardiologists, the correct location of the LV

border is ambiguous [167], as shown by the examples in Fig. 2.7.

Besides the above problem, two other issues make the automation a difficult task.

First, the acquisition process may create translational artifacts in the position of the LV

between consecutive slices. This is caused by different levels of inspiration for the breath

holding during the acquisition (recall Section 2.4). The consequences of this motion artifact

can be seen in the example shown in Fig. 2.8 (a), where the location of the LV in the third

and fourth slice is significantly different. Because these misalignments are unpredictable,

they are hard to model, and it is difficult to perceive the LV as a 3D shape. Second,

the contraction of the heart muscle during the cardiac cycle makes the heart a moving
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2. Cardiac Magnetic Resonance

Figure 2.6: Difference in contrast between the blood pool and the myocardium on the basal slice

(left) and on the apical slice (right). The images below show the intensity profile along the red

line.

(a) (b) (c)

Figure 2.7: Examples of disagreement in the delineation of the endo and epicardium by experts

in: (a) a mid slice, (b) an apical slice, and (c) a basal slice. Extracted from [167].

organ. Consequently, throughout the cardiac cycle, the location and size of the LV changes

significantly. Fig. 2.8 (a) shows an example of the segmentation of the LV in one slice

throughout time, in which this issue is very clear.

These three main difficulties are addressed throughout the course of this thesis in

Chapters 3, 4 and 5, respectively.

2.6.2 State of the Art

Over the past decades, several methods for segmenting the LV in CMR have been

proposed [138, 170]. These methods use a wide range of approaches, which may be cat-
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Figure 2.8: Challenging features of CMR: (a) slice misalignment, which cause translational

artifacts in the position of the LV along the slices of an MR volume, and (b) cardiac motion,

showing how the position of the LV in a specific slice significantly changes throughout time.

egorized in one of the following: image-driven [35, 41, 68, 69, 96, 103]; dynamic program-

ing [89,137,175]; deformable models [15,59,61,87,93,101,107,160,166,185]; biomechanical

models [24, 30, 165]; shape/appearance models [11, 94, 118, 119, 130, 131, 139, 141, 164, 177,

188,190]; machine learning [14,106,109,128]; and atlas/registration [16,49,98,115].

Besides the type of approach used, it is also possible to categorize the proposed

methods based on what type of data is being analyzed, in which case the alternatives are:

2D approaches, in which each MR slice is segmented independently; 2D+t approaches,

which segment a sequence of MR slices using temporal information; 3D approaches, where

the purpose is to extract the location of the LV surface in each MR volume; and 3D+t

approach, which perform the segmentation using 3D and temporal information.

Table 2.1 shows a small collection of the works in the literature and where they are

located in this categorization scheme. Note that blank entries do not necessarily mean

that that type of approach does not exist. However, the distribution of works in the table

gives an idea of what are the most popular approaches.

The following sections briefly explains how each type of approach addresses the

segmentation of the LV in CMR and its challenges.

2.6.3 Image-Driven

Image-driven approaches comprehend a large spectrum of image processing tech-

niques, namely, thresholding, edge detection, region growing, watershed, and/or morpho-

logical operations. They rely solely on image analysis and do not require any pre-training

or learning procedure.

The goal of this type of approaches is to determine which pixels are located inside the
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2. Cardiac Magnetic Resonance

Table 2.1: Popular approaches of LV segmentation algorithms.

2D 2D+t 3D 3D+t

Image-driven [68, 69,103] [35,41,96]

Dynamic

programming
[89, 137] [175]

Deformable

models
[61, 93,185] [15,160,166] [59,87,101]

[107,165]

[24,30]

Shape/appearance

models
[119] [139,141,164]

[118,130]

[94,177]

[188,190]

[11,131]

Machine

learning
[14, 106,128] [109]

Atlas/registration [16, 115] [49,98]

LV chamber, and which belong to other structures or to the background [35,41,69,96,103].

To achieve this, unsupervised classification algorithms are often used, e.g., Ostu’s method

[135] or k-means, which transform the original intensity image into a binary (or labeled)

image. After this step, the segmented region usually requires additional processing, based

on morphological (e.g., open/close) or convex hull operations, to obtain a reasonable shape.

Another common pipeline is to perform an edge detection algorithm, and them extract

the LV border through region growing or watershed techniques [35,68].

The main advantage of these methods is their low computational complexity. How-

ever, they rely on strong intensity differences between the blood pool and the myocardium

to determine the location of the LV, which, as mentioned in Section 2.6.1, is not always

the case.

2.6.4 Dynamic programming

Dynamic programming (DP) approaches are closely related with image-driven ap-

proaches. The difference between them lies in the fact the DP is used to extract a curve

corresponding to the LV border, rather than to labeling the pixels explicitly.

The typical approach is to convert the image into a cost matrix, in which low cost

are assigned to pixels along the LV border. Different approaches may be used to compute

the cost matrix, such as through thresholding [89,137] or edge detection. It is also common

to convert the cost matrix to polar coordinates, where the LV border is assumed to be

approximately a straight line.

DP has also been used to impose temporal constraints on the parameters of a shape

model [175]. In this case, a higher dimensional DP problem is solved to determine the
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2.6 Automatic Segmentation of the LV

optimal parameters along the time frames.

Although this class of approaches offers optimal solutions to the estimation of the LV

contour(s), its performance greatly depends on the ability of the cost matrix to correctly

assign low weights to the desired path.

2.6.5 Deformable Models

Deformable models have been popularized by two distinct approaches: active con-

tours [85] and level-sets [108], both of which were able to increase the robustness of the

segmentations while keeping the computational complexity low. The goal of this type of

approaches is to model the border of the LV as a deformable structure (either a curve, a

surface, or a volumetric object). This deformable structure is governed by a data term,

which attracts it to specific image features associated to the location of the LV border,

and a regularization term that imposes shape constraints. Although many of these ap-

proaches impose some shape constraints, these are typically smoothness-related or hand

designed [11]. This means that the model may not be able to accurately represent the LV

border in some cases, but it also means that it does not depend on having a representative

training dataset.

This type of approaches is attractive because their formulation is easily adaptable to

include different forms of prior shape or intensity information [185], as well as to impose

smooth changes throughout the cardiac cycle [160]. Biomechanical models, for instance,

are a subclass of deformable models, in which the constraints imposed are based on physics

that try to mimic the mechanical properties of the heart [24,30,165]. The main advantage

here is that a model of the LV dynamics may be used to ensure consistent segmentations

across the temporal dimension. Despite these advantages, these approaches are sensitive

to the initialization, because their accuracy typically depends on the initial proximity of

the LV border, and to image conditions, since imaging artifacts can make the segmentation

extremely difficult without more information [11,125].

2.6.6 Shape/Appearance Models

The drawbacks associated with deformable models contributed to the popularity of

shape models, in which training sets of annotated data are used to learn the expected

shape of the LV. A classical method developed using this approach is the Active Shape

Model (ASM) [37]. The main idea behind ASM is to describe the shape of LV through a

discretized contour or surface and the corresponding statistics, i.e., the mean shape and

the main modes of deformation [11, 66, 94, 130, 131, 177]. This allows the shape of the

segmented region to be constrained such that it is always similar to those found in the

training set.

ASMs have also been used to incorporate motion information about the LV [11,131,
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188, 190]. In this case, the idea is to use statistical information about the motion of the

LV throughout the cardiac cycle to constrain the segmentations of the MR sequence. This

makes the segmentation consistent across different frames and helps guide the model in

frames that are harder to segment.

Shape models were latter extended to appearance models, namely using Active Ap-

pearance Models (AAM) [38]. Contrary to shape models, which are typically edge-driven

algorithms, AAMs also include statistical information about the expected appearance (in-

tensity) of the LV. Therefore, AAMs provide a framework that increase the robustness of

shape models to image conditions [11,118,119].

The disadvantage of this type of approach is that it relies on having a representative

training set. Unseen shapes and appearances are deemed as highly unlikely, and thus are

not accurately segmented with these methods. This may be prejudicial in the segmentation

of CMR data from diseased patients that are not represented in the training set.

2.6.7 Machine Learning

The goal of machine learning approaches is to classify the pixels in the MR im-

ages either as inside or outside the LV border. Contrary to more simple image-driven

approaches, they rely on a pre-training set in which a classifier is trained on previously

labeled data.

Besides the lack of large dataset of labeled data, machine learning approaches suffer

from the fact that the blood pool inside the LV is not very texture-rich and it does not

have any particular intensity properties. Thus, from that point of view, is not easily distin-

guishable from other anatomical structures in the image. Furthermore, pixel classification

alone cannot prevent unexpected shapes of the segmented regions, which is why some

methods rely on a post-processing algorithm based on deformable/shape models [14,128].

A common trait of these methods is that they depend on preprocessing steps, for

intensity normalization and preliminary ROI selection [14, 106, 109, 128]. This is a useful

strategy to prevent false positive classifications to arise from other neighboring structures.

2.6.8 Atlas/Registration

Atlas-based approaches rely on previously learned CMR atlases to extract the seg-

mentation of the LV. Atlases are typically generated from one manually labeled volume or

by combining information from multiple labeled volumes [16,138]. Labeled volumes often

include not only the location of the LV, but also of the remaining cardiac structures (e.g.,

RV and myocardium).

New volumes are segmented by aligning them with the atlas(es), through a non-rigid

registration process [49, 98]. The registration includes a global affine transformation, and

local deformations, e.g., using the free-form deformation model [163]. These transforma-
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tions are estimated by maximizing the similarity between the two volumes, which can be

achieved using different metrics, such as intensity likelihood [16] or normalized mutual

information [98]. It has also been shown that performing patch-based registration may be

advantageous to allow refining local deformations [16].

Although this type of approaches has the advantage of providing the segmentations

of multiple cardiac structures simultaneously, it comes at the expense of an increase com-

putational cost [170].

2.7 Conclusions

This chapter provides an overview of the problem addressed in this thesis and the

main challenges that are faced. A brief description of the characteristics of CMR data,

how it is acquired, and what is the medical procedure to analyze MR images and extract

all the information required to assess the cardiac function and diagnose pathologies. This

procedure involves the laborious task of manually delineating the border of the LV, whose

automation is the main goal of this thesis. However, performing the automatic segmen-

tation of the LV is not a trivial task. The main challenges include: i) identifying the LV

border in each MR slice, which is not always simple due to the presence of other anatomical

structure in its vicinity and to the lack of contrast in some of the images; ii) dealing with

motion artifacts, caused by different levels of breath-hold during the acquisition process,

which lead to the appearance of misaligned slices; and iii) taking into consideration that

the LV considerably changes position throughout the cardiac cycle. These challenges are

addressed throughout this thesis.

A review of the state of the art in LV segmentation algorithms is also presented. Sev-

eral approaches have been used during the past decades, each with advantages and disad-

vantages. Interestingly, deformable models, shape/appearance models and atlas/registrations

are the most popular approaches among those that use temporal information. This choice

is related to the adaptable and extensible frameworks that these approaches use, which

easily allow the inclusion of a prior information about the shape, appearance and dynamics

of the LV.
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3. 2D Segmentation

The segmentation of the LV in CMR is popular topic in the literature [138]. It is

a common approach to treat this problem in a 2D setting, in which the segmentation

algorithm analyzes each slice of the MR sequence individually. This is advantageous

because the amount of data being processed is much smaller and because it bypasses

some of the issues related with the three-dimensional structure of the LV and its motion

throughout the cardiac cycle. This chapter addresses the segmentation of the LV in the

2D setting.

3.1 Introduction

When analyzing CMR from a 2D perspective, it becomes clear that one of the most

distinguishable features of the LV is its circular shape (see the examples shown in Fig.

3.1). This information about the shape of the LV is often used by segmentation algorithms

to impose constraints on the shape of the segmented region and to guarantee reasonable

estimates [138].

Statistical shape models (SSM) are one of the most well established approaches based

on deformation models that use prior information about the shape of the segmentation [66].

The most popular SSM is the Active Shape Model (ASM) algorithm, proposed by Cootes

et al. [37]. It consists of describing the contour of an object by a mean shape and its most

significant modes of deformation, learned from training data. In this method, the contour

of an object is characterized by the parameters of a (global) pose transformation and by

deformation coefficients. This provides a simple and effective way of modeling the contour

of the object, and preventing unpredictable or unexpected segmentation shapes.

Fitting the learned model to the boundary of an object in an image comprises two

steps: 1) searching for observation points located on the object’s boundary in the image,

and 2) estimating the model parameters (pose and deformation parameters) based on

those observations.

In the ASM method, the model parameters are estimated with the least squares

method, under the assumption that all the observation points belong to the object bound-

ary. However, in most real applications this is not true and many of the observations

are often outliers. For instance, in CMR, the presence of other anatomical structures in

the image, e.g., the papillary muscles (recall Section 2.6), lead to the detection of these

outliers. In these cases, the estimates obtained with least squares method correspond to

poor segmentations [65,143].

One approach that has been used to overcome this limitation of the standard ASM is

to improve the boundary detection method [12,36,38,43,179,184]. By reducing the number

of outliers detected, these works are able to improve the accuracy of the segmentations.

Another approach is to use an estimation method that is able to deal with the presence

of outliers [7, 143].
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Figure 3.1: Examples of CMR images from different patients, slices and phases. Each pair shows

a slice with and without the corresponding LV segmentation (red contour).

This chapter focuses on the second type of approach. The proposed approach is

based on the assumption that a single 2D shape model is able to describe the LV contour

of any image, regardless of which slice and frame it corresponds to. Then, a novel Bayesian

framework is proposed for the estimation of the shape model parameters that allows for a

reliable and robust segmentation in the presence of outliers. This new algorithm assumes

that some of the observation points are outliers and takes this into account when estimating

the parameters. The proposed approach was evaluated on synthetic images and in the

segmentation of the LV in CMR. Furthermore, in order to show that the algorithm is more

general than this particular problem, two other application were tested: the segmentation

of the LV in ultrasound and the segmentation of the lip in frontal face images.

The remainder of this chapter is organized as follows. Section 3.2 provides a back-

ground about the methods discussed in the following sections, and presents an overview

of the state of the art. Section 3.3 formalizes the problem, and the proposed framework is

described in Sections 3.4-3.5. The experimental setup and statistical results are shown in

Section 3.6-3.7, as well as a comparison with related works. Finally, Section 3.8 concludes

the chapter.

3.2 Background

In the mid 80’s, Active Contours (AC) (e.g., Snakes) were very popular in computer

vision problems. They consist of a curve that iteratively deforms until it fits a specific

object in an image. These deformable curves follow a minimization scheme that includes

two terms: an image-dependent term that attracts the curve towards the boundary of

25



3. 2D Segmentation

the object of interest; and a model-dependent term that preserves the smoothness of the

curve [113]. This approach leads to very good segmentation results and remains very

appealing, mainly due to its flexibility and adaptability to different image segmentation

problems. However, AC are extremely sensitive to nearby structures that do not belong

to the object of interest. Consequently, they easily assume undesired shapes in order to fit

all the surrounding structures. In this sense, a lot of effort has been made to distinguish

between the true object boundaries and background structures [110] with successful results.

Furthermore, in cases where parts of the object boundary are absent (gaps), AC are free

to assume any smooth shape that fills those gaps, which can lead to unexpected shapes.

Alternatively, several works were proposed using more rigid models. For instance,

Jain et al. [76] proposed using deformable templates to detect an object of interest in dif-

ferent images. Deformable templates are represented by an image with the expected object

shape that is allowed to undergo similarity transformations (i.e., translation, rotation and

scaling), as well as local deformations. These deformations are obtained by applying a

displacement field to the template image. When searching for the object of interest in

a new image, Jain et al. use a Bayesian formulation to infer the best transformations

that the template must undergo to fit the object. Since the object is expected to have

a shape similar to the template, large deformations are penalized by receiving a smaller

probability. This type of approach proved to be effective in the detection of rigid objects,

but it is prone to fail in the medical images case due to the large variability of biological

shapes [66].

3.2.1 Active Shape Model

In the 90’s, Cootes et al. [37] proposed the use of ASMs to segment object with

large variability. ASMs add specificity to the shape model by limiting the allowed type

and extent of deformations, thus overcoming the problems of previous approaches.

The standard ASM methodology can be divided into three core components: (i) the

shape representation; (ii) learning shape statistics; and (iii) using the learned shape model

to segment new images. Each of these components will be addressed separately in the

following subsections.

3.2.1.1 Shape Representation

ASMs rely on models that are described by a set of points. These points can either be

located along the object boundary and on any internal or external features (e.g., the center

of curvature); points from adjacent objects can also be used to facilitate the fitting process

(e.g., using part of the right ventricle in a shape model of the LV in echocardiography [37]).

The model points should be located in specific and application-dependent features of the

image, such as anatomical landmarks in medical images. If persistent landmarks do not
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exist in some applications, it is also possible to use semi-landmarks, which consist of

points that do not need to match specific image features but are somehow consistent

across different examples.

Formally, the goal of ASMs is to approximate the boundary of an object by a set of

N points,

x̃ =


x̃1

...

x̃N

 . (3.1)

where x̃ ∈ R2N×1, and x̃i ∈ R2 are the 2D coordinates of i-th point (see examples in Fig.

3.2). The location of these points is determined by applying a global (pose) transformation

Tθ, with parameters θ = {a, t}, such that

x̃i = Tθ(xi)

=

a1 −a2

a2 a1

xi1
xi2

+

t1
t2


= Axi + t, (3.2)

where xi is the position of the i-th model point in the shape space, which is defined by

the average shape x = (x1 >, ...,xN >)> ∈ R2N×1, and a linear combination of the L main

modes of deformation D ∈ R2N×L,

x = x+Db, (3.3)

where each column of D corresponds to a specific deformation mode, and b ∈ RL×1 are

the deformation coefficients that determine the contribution of each deformation mode.

Accordingly, the i-th model point in the shape space is given by

xi = xi +Dib, (3.4)

where Di ∈ R2×L is a matrix containing the lines of D associated to the i-th model point.

Combining (3.2) with (3.4), the position of the i-th shape model point may be rewritten

as

x̃i = A(xi +Dib) + t. (3.5)

The shape model parameters that define the contour of the object are: 1) a =

(a1, a2)
>, which determines the scaling and rotation of the contour through matrix A; 2)

t, which determines the translation of the contour; and 3) b which defines the contribution

of each deformation mode.

3.2.1.2 Learning Shape Statistics

The goal here is to learn the shape statistics of the object. Since shape is a property

of an object that does not change under similarity transformations (translation, rotation

27



3. 2D Segmentation

 𝑥1  𝑥1
 𝑥1

 𝑥1  𝑥1
 𝑥1

Figure 3.2: Shape examples used to learn the 2D shape model of the LV. The red dots mark the

position of the contour points and the blue circle is the first model point.

and scaling) [66], a prerequisite for learning a statistical shape model is to remove these

type of transformations between examples in the training set through alignment. In some

applications, such as CMR analysis, one may also want to capture the variation in scale

(changes in size of the LV during the cardiac cycle) as a shape feature, in which case

the alignment transformation would have to disregard scaling. The learning procedure of

ASMs can be divided in two steps:

1. Aligning the shape examples in the training set; and

2. Computing the mean shape and main modes of deformation.

Shape Alignment The alignment process aims to guarantee that corresponding points

in each example are as close to each other as possible. Let x̃ref be the reference shape in a

training set to which all the others are aligned (which could be either a randomly selected

example of the average of all examples). The alignment of a specific example, x̃, and the

reference shape, x̃ref, is achieved by determining the global transformation parameters, a

and t, that minimize the sum of squared errors between the two shapes,

â, t̂ = arg min
a,t

(x̃− x̃ref)
>(x̃− x̃ref). (3.6)

The solution to this optimization problem is the following [37]â
t̂

 =

 N∑
i=1

Xi>Xi Xi>

Xi I

−1 N∑
i=1

Xi>x̃iref

x̃iref

 , (3.7)

where

Xi =

xi1 −xi2
xi2 xi1

 ,
xi1
xi2

 = x̃i. (3.8)
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Typically, to avoid biasing the shape model with the choice of reference shape, after

transforming all the examples in the training set, the reference shape is updated to be the

(new) mean shape, x̃ref = x, and the alignment process is repeated until it converges.

Mean Shape and Deformation Modes Once the shapes in the training set are

aligned, it is possible to analyze the statistics of shape variability. Cootes et al. in-

troduced the notion of Point Model Distribution as a way to model the variation in the

position of each landmark, noting that these variations are not uncorrelated from each

other. Instead of analyzing each point independently, they consider each shape as a single

point in a 2N dimensional space (the vector x̃). They determine the so-called “allowable

shape domain” as the region inside which training shape points exist. Within this region,

it is possible to create new shapes that will be similar to the ones in the training set.

Assuming that these points have an ellipsoidal distribution in the 2N -D space, they

determine the principal axes of the ellipsoid, which are related to the orthogonal modes

of shape variation. This is achieved by performing Principal Component Analysis (PCA),

which works as follows. Let x̃j be the j-th (aligned) example in a training set of M

examples. First, the mean vector and a 2N × 2N covariance matrix are computed

x =
1

M

M∑
j=1

x̃j (3.9)

S =
1

M

M∑
j=1

(x̃j − x)(x̃j − x)T . (3.10)

Then, eigenvectors of S and the corresponding eigenvalues are determined

Sdl = λldl, l = 1, . . . , 2N (3.11)

where dl and λl correspond to the l-th eigenvector and eigenvalue, respectively. Each

eigenvector, dl ∈ R2N , can be viewed as a displacement vector related to a specific mode

of deformation, and λl is the corresponding variance on the training set. The eigenvectors

associated to the largest eigenvalues correspond to the most significant modes of variation.

Since most of the variation can be explained by just a subset of the eigenvectors, the ones

associated to smaller eigenvalues can be discarded to reduce the dimensionality of the

representation. This is typically done by using only the first L eigenvectors such that

these account for a large proportion of the total variation

L :

L∑
l=1

λl > r

2N∑
k=1

λk. (3.12)

Typical values for the proportion parameter are r ∈ [0.9, 0.98].

Using the learned mean shape and the main modes of variation it is possible to

analyze new images, using the procedure described in the next section.
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3.2.1.3 Fitting Algorithm

The final component of ASMs is to analyze unseen images, by identifying the location

of the object of interest and determining the shape model parameters that make the model

fit the object. Since it is unfeasible to do this in a global and single step, the most common

approach is to iteratively adapt the model towards the desired position.

The ASM approach assumes that the object boundary is identified by an intensity

transition in the image (an edge). Given an initial guess of the model position, edge points

are extracted from search lines orthogonal to the contour at each model point. This leads

to a set of observations, denoted by y =
(
y1
>
, . . . ,yN

>
)>

, where yi corresponds to the

desired position of the i-th model point.

Given the set of observations, the position of the shape model is updated by com-

puting

â, t̂, b̂ = arg min
a,t,b

(x̃− y)>(x̃− y). (3.13)

Rewriting this equation using (3.5) leads to

â, t̂, b̂ = arg min
a,t,b

N∑
i=1

∥∥A(xi +Dib) + t− yi
∥∥2. (3.14)

This is a non-convex optimization problem that is solved in [37] by alternating between:

(i) the estimation of the transformation parameters, a and t, assuming b fixed; and (ii)

the estimation of the deformation coefficients, b, assuming a and t fixed. This process is

described next.

Update of the Transformaton Parameters For each iteration t of the fitting pro-

cedure, the shape model parameters a and t are updated by aligning the shapes x̃ and y

using a procedure similar to the alignment of the training examples described in Section

3.2.1.2. Let at, tt, bt be the model parameters at iteration t. Assuming b = b(t−1) fixed,

the deformed model is given by x = x+Db(t−1), and the transformation parameters are

update by solving

â, t̂ = arg min
a,t

N∑
i=1

∥∥Axi + t− yi
∥∥2

= arg min
a,t

N∑
i=1

∥∥Xia+ t− yi
∥∥2, (3.15)

where Xi is given by (3.8). The solution of (3.15) is obtained by computing the derivative

of the objective function and equating to zero, which leads to an equation similar to (3.7)

(where x̃ref is now given by y).
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Update of the Deformation Coefficients The estimation of the deformation coeffi-

cients is achieved by assuming a and t to be known and fixed in (3.14), leading to

b̂ = arg min
b

N∑
i=1

∥∥A(t)(x
i +Dib) + t(t) − yi

∥∥2. (3.16)

As previously, this new optimization problem is linear and its solution is straightforward

to compute

b̂(t+1) =

(
N∑
i=1

Di>A>(t+1)A(t+1)D
i

)−1( N∑
i=1

Di>A>(t+1)

(
yi −A(t+1)x

i − t(t+1)

))
.

(3.17)

Since the deformation parameters obtained by this expression may correspond to an un-

expected shape, an additional step is required. In order to constrain the solution given

by (3.17), the deformation coefficients are shrinked, as needed, to values within the “ex-

pected”. For this purpose, the Mahalanobis distance, d, is used as a way to measure what

is acceptable. Formally, d has to be lower than a specific threshold, dmax,

d2 =

L∑
l=1

b̂2l
λl
≤ d2max. (3.18)

where b̂l denotes the l-th component of b̂(t+1), and λl is the eigenvalue associated to the

l-th deformation mode. The threshold is chosen so that most of the shapes in the training

set satisfy (3.18) (a typical value is dmax = 3). If b̂(t+1) does not satisfy (3.18), it is rescaled

to the closest acceptable shape by

b̂(t+1) ← b̂(t+1)
dmax

d
if d > dmax. (3.19)

Since in each of these steps the distance between the shape model and the obser-

vations is being minimized, this procedures eventually converges to a specific solution.

However, there is no guarantee that this is the global optimal solution.

3.2.2 Related Work

The standard ASM, described above, was used in many works [20,37,39,63,117,179].

However, it estimates the shape model parameters under the assumption that all the

observation points belong to the object boundary. In most applications, this is not true

and, consequently, the segmentations obtained in the presence of noisy observations are

often poor. This drawback of the ASM method caused subsequent works to propose

alternative ways of estimating the shape model parameters [7, 36,94,143,183].

Most works consider multiple candidates for the location of each model point. This

makes the algorithm less dependent on the accuracy of the boundary detection method and
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3. 2D Segmentation

increases the probability that the true object boundary is among the detected observation

points. Then, the estimation of the model parameters is accomplished by simultaneously

selecting the subset of observation points that maximizes a specific objective function,

which typically promotes: i) segmentations along points with specific image features, e.g.,

edge points (located along an image edge), and ii) segmentations with shapes similar to

those observed in the training set.

Different approaches have been used to accomplish this. Wang and Staib [183], for

instance, use the gradient descent method to obtain the model parameters that maximize

the posterior probability, which includes a prior about the parameters learned from a

training set and the likelihood of each pixel location. Similarly, Cootes et al. [36] proposes

an algorithm for maximizing the overall quality of fit between the shape model and the

image, based on a random forest regressor that evaluates the quality of fit of the image

pixels around each model point. However, these two methods do not explicitly account

for the presence of outliers. Instead, they rely on the objective function (posterior proba-

bility/overall quality of fit) to guide the model toward the true object boundary.

Few works have proposed to deal with outliers explicitly. For instance, the approach

used in [7] is based on the Robust Point Matching (RPM) algorithm [34]. The RPM al-

gorithm pairs observation points with model points, and the points that are left unpaired

are considered outliers and disregarded in the estimation of the parameters. In order to

determine if points should be paired, they compute a matrix of correspondence degrees,

in which each entry measures the likelihood of a correspondence between a pair of points.

This matrix is then used in the estimation of the shape model parameters by minimizing

the distance between all pairs of points, weighted by the corresponding confidence degree.

They use a deterministic annealing term to control the fuzziness of the matrix of corre-

spondences: in the beginning, they allow the matrix to be more fuzzy, and as the algorithm

iterates, the force the matrix to become closer to a binary correspondence matrix. Rogers

et al. [143], on the other hand, tests two types of approaches: 1) M-estimators, which

weight the observation points based on some criteria, and 2) random sampling strategies

(e.g., the Random Sample Consensus (RANSAC) algorithm [51]) to determine the best

subset of observation points to be used in the estimation of the shape model parame-

ters. They conclude from their results that sampling strategies lead to better results than

M-estimators, although both significantly outperform the standard approach. Lekadir et

al. [94] proposes to determine which observation points are outliers using a local shape

dissimilarity metric. This metric is based on the distance between pairs of model points.

Observation points that do not respect the local shape of the object are treated as out-

liers. A disadvantage of this approach is that only one observation point is allowed for

each model point.

In this chapter, a new method for estimating the model parameters is proposed

using a Bayesian approach that assigns each observation a different weight based on the
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probability of that observation belonging to the object boundary. The main difference

between [143] and the proposed method is the following: in [143], the weights are obtained

using an heuristic strategy (see equation (10) in [143]) designed by Huber [70]; here, these

weights are automatically determined in a principled and well founded probabilistic way.

Since outliers often receive low probabilities, their influence in the parameter estimation

is reduced, making the method robust in the presence of outliers. A similar approach

has been previously used in [123] for the estimation of a Snake model [85]. However, a

drawback in [123] is that the Snake model can assume unexpected shapes, since is does not

use prior information about the object shape. The following sections describe the problem

and the proposed methodology.

3.3 Problem Formulation

The boundary of an object of interest is described using a shape model, x̃ ∈ R2N ,

where the position of the i-th model point is given by

x̃i = Tθ(xi)

= A(xi +Dib) + t. (3.20)

Given an image I, the segmentation of the object is obtained by estimating the model

parameters, {a, t, b}.
Three formulations, illustrated in Fig. 3.3, were tested in this thesis. The first for-

mulation is the closest to the original ASM. Given the image I, the idea is that each model

point searches in its vicinity for observations (edge points) that are candidate positions for

the object border. Many edge points may be assigned to the same model point, and the

main assumption is that each observation point may either be a valid point (located on the

object border) or an outlier. In the second formulation, the notion of observation is refined

to edge segments composed of several edge points. In this case, each segment may either

be valid or outlier, and the edge points in a specific segment are not considered indepen-

dent observations. The last formulation explores the concept of data association [18] as a

way to determine which observations are outliers or not. The idea of this approach is that

the border of the object is given by an unknown subset (interpretation) of the detected

edge segments. In other words, there is a combination of binary labels that represents the

object border, in which the label one is assigned to valid segments and zero to outliers.

In this case, there is a specific interpretation that represents the object border more accu-

rately, while the other interpretations may be missing valid segments or including outliers.

The tests showed that edge points achieved better results than the other two. Therefore,

this chapter focuses on this particular approach. The formulations using edge segments

and interpretations are described in Appendices A and B, respectively.
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Edge Points Edge Segments

Interpretations

Figure 3.3: Different formulations from which the shape model parameters are estimated. Edge

points/segments: each detected point/segment may either belong to the LV border or be an

outlier. Interpretations: each interpretation is a subset of the detected edge segments, and of all

the interpretations, only one represents the LV border accurately, while the remaining ones have

outliers/are missing valid segments.

Figure 3.4: Example of the detection of observation points. The blue line corresponds to the

model; the dashed cyan lines correspond to the search lines; and the red dots correspond to the

detected observation points.

Assuming an initial guess of the model position is given, a set of observation points

is extracted from the image by searching in the vicinity of each model point. This can be

done using many approaches, e.g., by searching along lines orthogonal to the contour at

each model point, as shown in Fig. 3.4, or by searching within a region around each model

point, as in [36]. Regardless of the method used to extract these observations, the result

is that, for each model point, x̃i, a set of observation points, Y i = {yij , j = 1, . . . ,M i},
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is obtained. In general, M i 6= M j for i 6= j. An important remark is that many of the

observations contained in the set Y i do not belong to the object boundary and should

be considered as outliers. Unfortunately, it is not possible to know, beforehand, which

observation points are valid (truly belonging to the object boundary) or invalid (outliers).

To tackle this issue, two sensor-observation models considered, and a binary label, kij ∈
{0, 1}, is assigned to each observation point, where kij = 1, if yij is considered valid, and

kij = 0 otherwise. The two models occur with unknown probabilities, p0 = p(kij=0) and

p1 = p(kij=1), with p0 + p1 = 1.

The model described so far comprises three sets of parameters: 1) global transforma-

tion parameters (a, t), where a = (a1, a2) and t = (t1, t2), 2) local deformation parameters

b, and 3) the label probabilities p = (p0, p1). In the following, the set of all the model

parameters will be denoted by Θ = (a, t, b,p).

Let the j-th observation point detected in the vicinity of the i-th model point be

denoted as yij =
(
yij1 , y

ij
2

)>
, and let kij be the corresponding model label assigned to yij .

Assuming that observation yij is valid (kij = 1) the following sensor model is considered

yij = x̃i + vi, (3.21)

where vi ∼ N (0,Σi) is a zero mean white Gaussian noise with diagonal covariance matrix

Σi. This covariance matrix may either be estimated from training data, or defined by

the user, allowing the uncertainty of the model to be tuned. In this chapter, the latter

approach was chosen.

Combining (3.20) and (3.21) yields

yij = T (xi) + vi

= A(xi +Dib) + t+ vi. (3.22)

It follows that the probability of yij being a valid observation is given by

p
(
yij
∣∣kij=1

)
= N

(
yij ;A(xi +Dib) + t,Σi

)
, (3.23)

where N (·;µ,Σ) denotes a normal distribution with mean µ and covariance matrix Σ.

On the other hand, it will be assumed that if yij has the label kij = 0 (i.e., outlier), then

it follows a uniform distribution within a region Vx̃i (validation gate) in the vicinity of x̃i,

p
(
yij
∣∣kij=0

)
= U(Vx̃i). (3.24)

The interpretation of these two models is that valid observations are more likely

to appear near the shape model, whereas outliers are equally likely to appear anywhere

within a specific region.
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3.4 Expectation Maximization Framework

Given the probabilistic model described above, the goal is to estimate the model

parameters (global transformation (a, t) and deformation coefficients b) that fit the shape

model to the observation points, Y = {yij} extracted from the image. Ideally, the binary

labels K = {kij} associated to each observation points yij would be known. However,

this information is not available, i.e., K is an unobserved (hidden) set of labels. The

class-conditional generative model is thus obtained by marginalizing with respect to the

missing label sequence, as follows

p(Y |Θ) =
∑

K∈{0,1}M
p (Y ,K|Θ) (3.25)

where M =
N∑
i=1

M i is the (often large) total number of detected observations.

The estimation of the model parameters by maximization of (3.25) would require

taking into account all possible combinations of K, which is infeasible. In fact, it is

not possible to obtain a closed form expression nor to analytically optimize it. This

difficulty is circumvented by searching for a sub-optimal solution using the Expectation-

Maximization (EM) method [45]. The EM method iteratively updates the transformation

and deformation parameters by maximizing an auxiliary function, Q
(
Θ; Θ̂(t)

)
where Θ̂(t)

is the most recent estimate of the unknown parameters. In this work, two approaches will

be described: 1) maximizing the expectation of the likelihood function, which leads to

the maximum likelihood (ML) estimate; and 2) maximizing the expectation of the joint

probability function, which leads to the maximum a posteriori (MAP) estimate. These

two approaches are detailed next.

3.4.1 Maximum Likelihood Estimation

In the ML framework, the complete log-likelihood of a set of observation points Y

and labels K is given by

L(Y ,K,Θ) = log p (Y ,K|Θ)

= log (p (Y |K,Θ) p (K)) . (3.26)

Assuming conditional independence between observations, the previous equation can be

factorized as follows

L(Y ,K,Θ) = log

 N∏
i=1

M i∏
j=1

p
(
yij
∣∣kij ,Θ) p (kij)


=

N∑
i=1

M i∑
j=1

log p
(
yij
∣∣kij ,Θ)+ log p

(
kij
)
, (3.27)
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where p
(
kij
)

is the probability of the label kij (i.e., either p1 or p0), N is the number of

model points, and M i is the number of observation points associated with the i-th model

point.

The EM algorithm comprises the following two steps [45]: 1) the E-step, in which

the expectation of the log-likelihood is updated by computing the probability of each

observation, based on a previous estimate of the parameters; and 2) the M-step, in which

the parameters are updated by maximizing the expectation obtained in the E-step. These

steps are detailed in the following subsections.

3.4.1.1 E-step

Let Θ̂(t) = (â, t̂, b̂, p̂)(t) be the estimates of the model parameters at iteration t.

Given the set of observations, Y , and the most recent estimates, we can define the auxiliary

function QML

(
Θ; Θ̂(t)

)
as the expected value of the log-likelihood function

QML

(
Θ; Θ̂(t)

)
= EK

[
L(Y ,K,Θ)

∣∣∣Y , Θ̂(t)

]
=

N∑
i=1

M i∑
j=1

EK
[
log p(yij | kij ,Θ) + log p(kij)

∣∣∣Y , Θ̂(t)

]

=
N∑
i=1

M i∑
j=1

1∑
l=0

p(kij=l|yij , Θ̂(t))
[
log p(yij | kij=l,Θ) + log p(kij=l)

]
=

N∑
i=1

M i∑
j=1

wij0
(
log p

(
yij
∣∣kij=0,Θ

)
+ log p0

)
+ wij1

(
log p

(
yij
∣∣kij=1,Θ

)
+ log p1

)
,

(3.28)

where wijl , l ∈ {0, 1}, denotes the confidence degree of observation yij , given by

wij1 = p
(
kij=1

∣∣∣yij , Θ̂(t)

)
∝ p̂1(t) p

(
yij
∣∣∣kij=1, Θ̂(t)

)
∝ p̂1(t) N

(
yij ; Â(t)(x

i +Dib̂(t)) + t̂(t),Σ
i
)
, (3.29)

wij0 = p
(
kij=0

∣∣∣yij , Θ̂(t)

)
∝ p̂0(t) U (Vx̃i) , (3.30)

such that wij0 + wij1 = 1. These weights correspond to the probability of the labels as-

signed to the observation yij being kij=1 and kij=0, respectively, given the current model

estimate.
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3.4.1.2 M-step

Given the most recent estimates of the unknown parameters at iteration t, Θ̂(t) =

(â, t̂, b̂, p̂)(t), the M-step aims to solve the following optimization problem

Θ̂(t+1) = arg max
Θ

QML

(
Θ; Θ̂(t)

)
. (3.31)

This is done by taking the derivative of QML(Θ; Θ̂(t)) with respect to each parameter

and equating to zero. We simplify this step by sequentially updating the transformation

and deformation parameters, as follows: 1) compute â(t+1) and t̂(t+1), assuming b = b̂(t)

fixed; then 2) compute b̂(t+1) assuming both a = â(t+1) and t = t̂(t+1) fixed; and finally,

3) update the probabilities of each model p̂(t+1). These three steps can be solved using

standard matrix calculus as will be described next.

Update of the Transformation Parameters Let xi = (xi1, x
i
2)
> = xi+Dib̂(t), be the

deformed shape according to the previous estimate of the deformation parameters, b̂(t).

The optimization of (3.31) with respect to the transformation parameters, t = (t1, t2)
>

and a = (a1, a2)
>, yields the following equations

∂

∂a
QML(Θ; Θ̂(t)) = 0 ⇐⇒

N∑
i=1

M i∑
j=1

wij1 X
i>Σi−1 (−yij +Xia(t+1) + t(t+1)

)
= 0, (3.32)

∂

∂t
QML(Θ; Θ̂(t)) = 0 ⇐⇒

N∑
i=1

M i∑
j=1

wij1 Σi−1 (−yij +Xia(t+1) + t(t+1)

)
= 0, (3.33)

where

Xi =

xi1 −xi2
xi2 xi1

 .
Combining (3.32) and (3.33) leads to the following linear system of equations

N∑
i=1

M i∑
j=1

wij1

Xi>Σi−1Xi Xi>Σi−1

Σi−1Xi Σi−1

â(t+1)

t̂(t+1)

 =
N∑
i=1

M i∑
j=1

wij1

Xi>Σi−1yij

Σi−1yij

 . (3.34)

The transformation parameters are updated by solving (3.34). This can be interpreted

as a weighted least squares solution to the alignment of two sets of points (the obser-

vation points {yij} and the corresponding model points {xi}). This estimation of the

transformation parameters differs from the standard ASM [37] in the following:

1. There is no restriction on the number of observation points detected in the vicinity

of each model point, M i, whereas in the standard ASM, M i = 1; and

2. Each observation point has a specific weight, wij1 in the estimation, as opposed to a

constant weight of 1 in the standard ASM.

38



3.4 Expectation Maximization Framework

The first difference means that more observation points can be detected, thus reducing

the importance of the boundary detection method and increasing the chance of detecting

the true object boundary. As for the latter, since outliers often receive lower values of

wij1 than the valid observations, the update of the transformation parameters will be less

influenced by the presence of outliers.

Update of the Deformation Coefficients Once the transformation parameters

Â(t+1) =

â1 −â2

â2 â1


(t+1)

, t̂(t+1) =

t̂1
t̂2


(t+1)

,

have been updated using (3.34), QML(Θ; Θ̂(t)) in (3.28) is maximized with respect to b,

leading to N∑
i=1

M i∑
j=1

wij1 D
i>Â>(t+1)Σ

i−1Â(t+1)D
i

 b̂(t+1) =

=

N∑
i=1

M i∑
j=1

wij1 D
i>Â>(t+1)Σ

i−1
(
yij − Â(t+1)x

i − t̂(t+1)

)
. (3.35)

Note that, as in the standard ASM methodology, the deformation coefficients obtained by

solving (3.35) may correspond to an unexpected shape. Therefore, the coefficients may

need to be shrink to acceptable values, which is done using (3.19).

Update of the Model Probabilities Finally, the estimates of the probabilities of each

model, p̂0(t), p̂1(t), are updated. Maximizing QML(Θ; Θ̂(t)) with respect to p0 and p1 yields

p̂1(t+1)
=

N∑
i=1

M i∑
j=1

wij1

N∑
i=1

M i∑
j=1

wij1 + wij0

=
1

M

N∑
i=1

M i∑
j=1

wij1 , (3.36)

p̂0(t+1)
=1− p̂1(t+1)

, (3.37)

where M =
N∑
i=1

M i is the total number of detected observation points.

3.4.2 Maximum Posterior Estimation

The estimation of the model parameters using the MAP method is done in a sim-

ilar way. However, instead of using the complete log-likelihood, this approach uses the

complete log-joint probability, which can be expressed as

P(Y ,K,Θ) = log p(Y ,K,Θ)

= log
(
p(Y ,K|Θ) p(Θ)

)
= log p (Y |K,Θ) + log p (K) + log p(a, t) + log p(b) + log p(p) (3.38)
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The first two terms in (3.38) are the same as in (3.27); the remaining terms are the prior

probabilities for the transformation parameters, (a, t), deformation parameters, b, and

sensor probabilities, p. As previously, the EM algorithm is used to estimate the model

parameters by maximizing the expectation of (3.38).

The next subsection describes the prior probabilities used in this chapter and the

two steps of the EM algorithm for the MAP formulation.

3.4.2.1 Prior Probabilities of the Model Parameters

Transformation Parameters In this chapter non-informative priors will be used to

define the prior term of the transformation parameters p(a, t). Although no prior infor-

mation about the transformation parameters is used here, these priors can be useful in

many applications, as will be explored in Chapter 5.

Non-informative priors, pioneered by Jeffreys [78–80], are a class of probability den-

sity functions capable of expressing ignorance about the model parameters. Rather than

describing a priori beliefs, they should be viewed as a way of letting the data “dominate”,

while staying inside a Bayesian framework [75].

For a generic model parameter α ∈ Rn, the Jeffreys’ prior is defined by

p(α) ∝
√

det (I(α)), (3.39)

where I(α) is the Fisher information matrix introduced by Fisher [52]. Its best known use

is in the Cramer-Rao (lower) bound (see, e.g., [88, 161] or [180]). The coefficients of I(α)

are given by

I(α)ij = −EY
[
∂2 log p (Y |α)

∂αi∂αj

]
, (3.40)

where p (Y |α) is the likelihood of a set of observations Y , given the model parameter α.

Now consider the problem described in Section 3.3. The transformation parameters,

a = (a1, a2)
> and t = (t1, t2)

>, are assumed to be independent, thus the prior can be

factorized as p(a, t) = p(a)p(t). The log-likelihood of a set of observation points Y is

given by1

log p (Y |a, t) =

N∑
i=1

M i∑
j=1

logN
(
yij ;Axi + t,Σi

)
.

After straightforward manipulations, the Fisher information matrix for each of the trans-

formation parameters, a and t, is given by

I(a) = −
N∑
i=1

M i∑
j=1

xi
>

Σi−1xiI, (3.41)

I(t) = −
N∑
i=1

M i∑
j=1

Σi−1, (3.42)

1We are only considering the model k = 1 from equation (3.23), since the outlier model does not depend

on the parameters a and t.
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where I is a 2× 2 identity matrix. This leads to the following Jeffreys’ priors

p(a) ∝
√
|I(a)| =

√√√√√
∣∣∣∣∣∣−

N∑
i=1

M i∑
j=1

xi>Σi−1xiI

∣∣∣∣∣∣ = ca (3.43)

p(t) ∝
√
|I(t)| =

√√√√√
∣∣∣∣∣∣−

N∑
i=1

M i∑
j=1

Σi−1

∣∣∣∣∣∣ = ct, (3.44)

where ca and ct are constants that do not depend on the parameters a and t. This means

p(a) and p(t) are both uniformly distributed in R2.

Deformation Coefficients The prior for the deformation parameters b is obtained

from the PCA method (used to learn the shape model), which assumes they are normally

distributed with zero mean

p(b) = N
(
b; 0,Σb

)
= cb exp

(
−1

2
b>Σb−1b

)
, (3.45)

where cb is a normalization constant, and Σb is a L × L diagonal matrix whose entries

are the eigenvalues Σb
ll = λl, obtained by the PCA method. This prior assigns higher

probability to shapes that are similar to the average shape in the training set, i.e., that are

not too deformed. Furthermore, a wider Gaussian distribution is assigned to deformation

modes that show more variability.

Model probabilities For the model probabilities, since we do not know which model

is more likely, the following prior is used [50]

p(p0) = p(p1) =
1

2
= cp, (3.46)

which does not depend on the parameters and ensures that p0 + p1 = 1.

3.4.2.2 E-step

Replacing the priors (3.43)-(3.46) in (3.38) yields

P(Y ,K,Θ) = log p (Y |K,Θ) + log p(K) + log ca + log ct + log cp + log cb −
1

2
b>Σb−1b,

(3.47)

Assuming independence between the observations, this equation can be rewritten as

P(Y ,K,Θ) =

N∑
i=1

M i∑
j=1

log p
(
yij
∣∣kij ,Θ)+ log p

(
kij
)

+ C − 1

2
b>Σb−1b, (3.48)
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where C = log ca + log ct + log cp + log cb is a constant. Thus, given an estimate of the

model parameters, Θ̂(t), and a set of observation points, Y , the expectation of (3.48) is

QMAP

(
Θ; Θ̂(t)

)
= EK

[
P(Y ,K,Θ)

∣∣∣Y , Θ̂(t)

]
= EK

 N∑
i=1

M i∑
j=1

log p
(
yij
∣∣kij ,Θ)+ log p

(
kij
)+ C − 1

2
b>Σb−1b,

(3.49)

where the first term in the expectation is given in (3.28), i.e.,

QMAP

(
Θ; Θ̂(t)

)
= QML

(
Θ; Θ̂(t)

)
+ C − 1

2
b>Σb−1b. (3.50)

The constant C can be discarded since it does not change the outcome of the maximization

step. Therefore, with these priors, the MAP formulation only differs from the ML in the

last term, which will affect the estimation of the deformation coefficients.

3.4.2.3 M-step

The maximization of QMAP

(
Θ; Θ̂(t)

)
in (3.50) with respect to the model parameters

is similar to the ML estimation. As previously mentioned, because we use non-informative

priors for the transformation parameters and model probabilities, the only difference to

the ML estimation is in the case of the deformation parameters b. The updates will be

detailed in the following steps.

Update of the Transformation Parameters Since the prior terms in (3.50) do not

depend on the transformation parameters, (a, t), these parameters are updated by solving

(3.34), as in the previous formulation.

Update of the Deformation Coefficients Maximizing (3.50) with respect to the

deformation coefficients, b, yields an additional term, due to the Gaussian prior in (3.45).

The update is achieved by solvingΣb−1 +
N∑
i=1

M i∑
j=1

wij1 D
i>Â>(t+1)Σ

i−1Â(t+1)D
i

 b̂(t+1) =

 N∑
i=1

M i∑
j=1

wij1 D
i>Â>(t+1)Σ

i−1
(
yij − Â(t+1)x

i − t̂(t+1)

) ,
(3.51)

where the term Σb−1 “pulls” the coefficients of b̂(t+1) closer to zero. This means that the

algorithm will try to keep the deformation coefficients low, which guarantees that shape

of the segmentation is similar to the shapes in the training set.
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Update of the Model Probabilities The derivative of (3.50) with respect to the

model probabilities, p0 and p1, yields the same update equation as the ML estimation

case, given by (3.36)-(3.37).

3.4.3 Comparison With Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) conditions can be used to add inequality constraints

to an unconstrained optimization problem. This is a generalization of the Lagrange mul-

tipliers, which allow adding equality constraints to the solution [28].

Consider the update of the deformation parameters in the ML approach. The addi-

tional step in (3.19) aims at finding the estimate b̂ that satisfies the condition in (3.18).

This can be viewed as an inequality constraint on the solution of the optimization problem

in (3.31). Formally, we wish to find

b̂(t+1) = arg max
b

QML

(
Θ; Θ̂(t)

)
subject to b>Σb−1b ≤ d2max.

(3.52)

The KKT conditions allow us to obtain the solution to this problem by finding the

value of b that satisfies the following equation

∇bQML

(
Θ; Θ̂(t)

)
− µ∇bg(b) = 0 (3.53)

where µ ≥ 0 is a constant - a KKT multiplier, and g(b) = b>Σb−1b−d2max is the inequality

constraint in (3.18). This leads to the solutionµΣb−1 +

N∑
i=1

M i∑
j=1

wij1 µD
i>Â>(t+1)Σ

i−1Â(t+1)D
i

 b̂(t+1) =

 N∑
i=1

M i∑
j=1

wij1 D
i>Â>(t+1)Σ

i−1
(
yij − Â(t+1)x

i − t̂(t+1)

) .
(3.54)

This means that the MAP estimation of the deformation parameters in (3.51) is a partic-

ular case of (3.54), for µ = 1.

3.4.4 Comparison Between the ML and the MAP Formulations

The difference between the ML and the MAP formulations lies in the estimation

of the deformation parameters. The ML formulation has an additional step that shrinks

the estimate of the deformation parameters, using (3.19), in order to guarantee that the

corresponding segmentation has an acceptable shape and is not over-deformed [37]. This is

required because the objective function QML

(
Θ; Θ̂(t)

)
defined in (3.28), does not contain

any (prior) information about the deformation coefficient. Without the additional step,
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the algorithm could give significantly different solutions from those found in the training

set. On the other hand, in the MAP formulation, the objective function QMAP

(
Θ; Θ̂(t)

)
,

defined in (3.50), includes a constraint on the deformation coefficients due to the prior p(b).

This constraint is obtained in a natural and principled way and “pushes” the estimates

to zero, thus inducing a shrinkage effect similar to the one in (3.19). Furthermore, in the

ML formulation, the shrinkage step in (3.19) scales all the components of b uniformly,

disregarding the importance of each mode of variation, whereas in the MAP estimation

the shrinkage effect is weighted by the covariance matrix Σb (recall (3.51)), which means

it depends on the eigenvalue of each deformation mode.

3.5 Algorithm Overview

The algorithm described in the previous sections can be summarized as follows.

Given an initial estimate of Θ̂(t=0), the shape model parameters are iteratively updated

by:

1. Searching for observation points in the vicinity of the model;

E-Step

2. Computing the observation probabilities wij1 , w
ij
0 using (3.29) and (3.30);

M-Step

3. Updating the transformation parameters a, t using (3.34);

4. Updating the deformation coefficients b using (3.35) and (3.19) in the ML case, or

(3.51) in the MAP case; and

5. Updating the model probabilities p1, p0 using (3.36)-(3.37).

This process is repeated until no significant changes are observed in the contour. This

algorithm is denoted as Expectation-Maximization Robust Active Shape Model (EM-

RASM).

3.6 Experimental Setup

The evaluation of EM-RASM is divided in two experiments: 1) in synthetic data,

to illustrate the difference between the proposed method and the standard ASM; and

2) in the segmentation of the LV in CMR data. In both experiments, the quantitative

evaluation of the results is based on the metrics described in Section 3.6.2.

The experiments using synthetic data compare the performance of EM-RASM against

the standard ASM using two example images. These images will also be used to evaluate
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the robustness of the method and its sensitivity to: 1) the presence of outliers; 2) the model

initialization; 3) over/under training; and 4) the amount of deformation in the training set.

Finally, we will also show the computational overhead of the proposed method compared

to the standard ASM.

The proposed method is applied to the segmentation of the LV in CMR data from

the dataset described in Section 3.6.1. Using the proposed approach, a single shape model

is learned based on training shapes from different slices and different frames. This shape

model is then used to segment the images in new MR sequences. The accuracy of the

proposed method is compared to another state of the art method, proposed in [143],

which combines an ASM with RANSAC [51] to determine which observation points are

outliers.

Furthermore, in order to show that the proposed approach is more general than

CMR segmentation, results are shown for two additional applications: the segmentation

of the LV in ultrasound images, and the segmentation of the lip in face images.

Sections 3.6.4 and 3.6.3 details the model parameters used in the experiments, and

describe the method used to detect the observation points.

3.6.1 CMR Dataset

The evaluation of the proposed methodologies is based on a publicly available dataset

[11], acquired at the Department of Diagnostic Imaging of the Hospital for Sick Children

in Toronto, Canada, using the acquisition technique bSFFP, namely the FIESTA scan

protocol of a GE Genesis Signa MR scanner.

The dataset contains CMR data from 33 different patients, two of whom are healthy,

two have an unknown diagnosis, and the remaining ones have a cardiomyopathy, such

as tachycardia, ischemia, and ventricular hypertrophy. The patients are all children or

teenagers, whose age ranges between 2 and 17 years old. For each patient, the CMR data

is a sequence of 20 volumes that start and end in the diastolic phase, with the end-systolic

phase around the 9-th volume. The number of slices in each volume varies from 8 to 15

slices. The LV is not present in all of these slices, but rather in just 4 to 10 of them.

Spacing between the slices also depends on the patient, and ranges between 6 to 13 mm.

Each slice is a 256 × 256 image with an average resolution of 1.4 ± 0.2 mm/pixel. The

dataset also provides a manual segmentation of the LV border, that is used for evaluation

purposes as ground truth (GT). These manual segmentations were processed so that the

first point in all the contours was located on the junction of the left and right ventricles,

closest to the posterior interventricular sulcus, and the remaining points were distributed

in arc-length, with a total of 30 points.
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3.6.2 Quantitative Evaluation Metrics

The segmentations obtained with the proposed methods are compared with the GT,

and the accuracy is quantitatively determined using four metrics:

1. the Dice coefficient [47], dDice;

2. the average minimum distance of each model point to the GT, dAV [138];

3. the LV volume difference, dVD [11]; and

4. the percentage of good segmentations [68],

which are described below.

Let S be a binary 2D image such that pixels inside the LV border have the value one

and pixels outside have the value zero. Denoting S1 as the binary image associated with

the proposed segmentation and S2 as the corresponding GT image. The Dice coefficient

is computed as follows

dDice(S1, S2) = 2
C(S1 ∧ S2)

C(S1) + C(S2)
, (3.55)

where C(·) counts the number of pixels within the region (number of ones) and ∧ denotes

a pixel-wise AND operator. A Dice coefficient of 1 means there is a perfect match between

the segmentations and a value of 0 means the corresponding regions do not even overlap.

The average metric is defined as follows. Let S1 =
{
s11, s

2
1, . . . , s

N
1

}
be a col-

lection of N 2D points that defines the proposed LV border in a specific image, and

S2 =
{
s12, s

2
2, . . . , s

M
2

}
be the collection of M 2D points with the corresponding GT seg-

mentation. Then, the average minimum distance metric is given by

dAV(S1,S2) =
1

N

N∑
i=1

min
j
‖si1 − s

j
2‖. (3.56)

Regarding the LV volume difference, dVD, it is computed using the summation of

discs technique, i.e., by computing the area of the each segmentation, multiplying by the

slice thickness, and then summing for all the slices in the volume.

Finally, the percentage of “good” segmentations has also been used in the liter-

ature [68, 69], because it provides a quantitative way to measure the number of wrong

segmentations. These failures are not simply inaccurate segmentations, which could po-

tentially be corrected through user interaction, but gross errors that should be discarded

altogether. The most common criterion for deciding if a segmentation is “good” is if it

has dAV ≤ 5 mm. Thus, the percentage of “good” segmentations is given by

% good =
# good segmentations

# segmentations
(3.57)

In the results shown in the next section, the average minimum distance metric is

measured in millimeters (unless otherwise stated), and the volume difference in milliliters.
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3.6.3 Detection of Observation Points

In this chapter, the observation points were obtained by searching for edge points

along lines orthogonal to the contour at each model point, as originally proposed in [25].

The feature detection algorithm used was the match filter for edges (see [25] Section 5.2).

This edge detector takes an image profile (1D signal of the image intensity along the search

line) and convolves it with an edge mask. Edge points correspond to the maxima of the

resulting filtered signal, which are detected by applying thresholding and non-maximum

suppression. The threshold allows the sensitivity of the edge detector to be tuned, which

may be different for each application. The length of the search line is also application-

dependent since it is related to the uncertainty of the contour.

The ASM, as described in [37], performs a similar search method, but the observation

points correspond to the strongest image edge along each search line. Furthermore, in this

approach there is always a one-to-one mapping between model and observation points,

while in the proposed approach there is a one-to-many mapping between a model point

and the observations. Consequently, the total number of detected observation points is

typically larger in the EM-RASM approach.

3.6.4 Parameters

The user defined parameters used in the proposed method were chosen based on

several trials, by selecting the parameters that led to the best results. Some of these pa-

rameters vary depending on the application. For instance, the variance of the observation

model for valid edge points, Σi, i = 1, . . . , N , was defined as a diagonal matrices, all with

the same diagonal value, i.e.,

Σ =

σ 0

0 σ

 . (3.58)

In the synthetic data tests, the variance was set to σ = 10, whereas in the LV segmentation

in CMR it was defined as σ = 5. The same number of model points, N = 40, was used

in both experiments. The training shapes were resampled in arc-length, such that the

first point was located at the same position in all the examples. As for the number of

deformation modes, in the synthetic data we used L = 2, and in the CMR data L = 10.

The length of the search line used to extract edge points from the image is related to

the expected variance of the observation model. For the synthetic data, the length was set

to 80 pixels in each direction (i.e., 160 pixels in total), while in the LV segmentation it was

set to 15 pixels (30 pixels in total). Regarding the thresholding operation, used exclude

low gradient edge points, the threshold used in CMR data was gmin = 0.4gmax, where gmax

is the maximum gradient along each search line. In the synthetic data, different values

for this parameter were used to control the amount of edge points detected, as will be

explained below.
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Regarding the initial guess of the shape model parameters, in all the tests performed,

the model was initialized with the average shape x (i.e., b(0) = 0). The initial guess for

the transformation parameters was obtained either by aligning the average shape x with

a contour obtained by human input using the standard least squares method (see (3.7)),

or by providing an initial guess of the translation and scale of the model. The initial guess

for the models probabilities was p0 = p1 = 0.5. No evidence was found suggesting that

the initial values for these probabilities significantly changed the output of the algorithm.

3.7 Results

3.7.1 Synthetic Images

The performance of the EM-RASM method was evaluated in two synthetic images.

These images consist of two different corrupted versions of a binary image of a rectangle,

with intensity value 1 inside the rectangle and 0 outside. In the first example, the binary

image was corrupted by white Gaussian noise with zero mean and variance σ2noise = 0.5

(see top left corner of Fig. 3.5). In the second example, the rectangle image was corrupted

by black regions (see top right corner of Fig. 3.5).

The goal is to retrieve the correct location of the rectangle given an initial guess.

However, in the corrupted versions of the image, additional observation points will be

detected on edges that do not belong to the rectangle boundary, which means the set of

observation points will be noisy. In these examples, the results using the ML and MAP

estimation methods were very similar. For the sake of clarity in the presentation, we show

only the results using the ML method.

The shape statistics was learned using synthetic data generated by adding random

Gaussian perturbations to the true object boundary x. More specifically, each training

example x ∈ R2N×1 is a realization of

x = x+ e , e ∼ N (0, σ2trainI) (3.59)

where σtrain = 2 is the standard deviation imposed on the synthetic model points. Since

the Gaussian noise is isotropic and identical for all model points, the shape model is not

expected to identify any significant modes of variation (which is why only two modes of

deformation are used, i.e., L = 2).

Fig. 3.5 shows the output of the proposed algorithm and the output of the standard

ASM for different initial guesses. In the first example, the standard ASM was unable to

cope with the outliers and, consequently, it did not fit the rectangle border accurately.

The EM-RASM, on the other hand, was able to accurately segment the rectangle despite

the detection of many outliers (note the large number of red dots in the images that do not

lie along the rectangle edges). In the second synthetic example, the gradient associated

to the edges of the black regions is stronger than the one associated to the edges of the
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Initial Guess ASM EM-RASM Initial Guess ASM EM-RASM

Figure 3.5: Segmentation of synthetic images of a rectangle: (top left) corrupted by white

Gaussian noise with variance σ2
noise = 0.5; and (top right) corrupted by black regions. The ground

truth segmentation is shown in dashed green. Each row shows an example using a different initial

guess (left column) and the final segmentation using the standard ASM (middle column) and the

EM-RASM (right column). The red dots correspond to the detected observation points in the last

iteration.
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rectangle. Consequently, some of the detected observation points are outliers. The figure

shows that the presence of these outliers causes the standard ASM to be unable to correctly

segment the image, since it tries to fit all the observation points simultaneously (including

outliers). The EM-RASM, on the other hand, is able to accurately segment the rectangle

and disregard the outliers. The last row in the figure shows an example in which neither

the standard ASM nor the EM-RASM were able to segment the rectangle. This was due

to a poor initialization of the model parameters, as shown by the initial guess on the left

column. In this case, due to an incorrect estimation of the orientation, the models end up

fitting only the borders in the upper part of the rectangle.

3.7.1.1 Sensitivity to the presence of outliers

Further tests were performed using the first synthetic example (see Fig. 3.5 left), in

order to provide statistical evidence that the proposed approach is robust in the presence

of a large number of observation points. The shape model used in the previous section

is used here again in several trials. In each trial, the test image was generated using

different a value of σ2noise ∈ [0, 1] (variance of the noise added to the binary image).

Larger values of σ2noise lead to noisier images, which, in turn, lead to the detection of a

larger number of outliers. In the final iteration of each trial, the number of outliers is

measured by counting all the observation points located more than 2 pixels away from the

true rectangle boundary. Depending on the percentage of outliers (number of outliers /

number of observation points), we placed each trial in one of four categories: (a) 0− 20%,

(b) 20− 40%, (c) 40− 60%, and (d) 60− 80%.

Fig. 3.6 shows the segmentation accuracy for each category, each with 100 segmen-

tation trials, i.e., a total of 400 trials are represented in the figure. The boxplots show that

the standard ASM (on the left) and the proposed method (on the right) have a similar

performance when few outliers are detected (up to 20%). However, for higher percentages

of outliers, there is a clear increase in the error using the standard ASM, whereas the

EM-RASM keeps the error value low, even for percentages of outliers of 60-80%. Note

that the proposed method allows many observation points to be extracted for each model

point. This means, on one hand, that there is a higher probability of detecting the valid

observation points. On the other hand, it also means that the number of outliers (and

thus the percentage of outliers) is often also higher.

3.7.1.2 Sensitivity to the model initialization

In order to demonstrate the sensitivity of the proposed method to the initialization,

its performance was evaluated using the image of the second synthetic example (see Fig.

3.5 right) and with different initializations. Each transformation parameter was analyzed

separately by varying its initial value while keeping the remaining parameters unchanged.
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Figure 3.6: Comparison between the performance of ASM and EM-RASM for different percent-

ages of outliers. The top row shows the accuracy results using the Dice coefficient and the bottom

row using the average distance metric (measured in pixels).

For a clearer interpretation of the results, the transformation parameters a1 and a2 are

replaced as scale, s, and rotation, φ, which are related to a1 and a2 by a1 = s cos(φ)

and a2 = s sin(φ). The translation parameters, t = [t1, t2]
>, are shown separately as

translation in the first and second dimension of the image, respectively.

Fig. 3.7 shows the performance of the algorithm obtained for each initialization

test, using the ML approach (the results for the MAP approach were very similar). In this

example, the interval of parameter values that achieves good performances is essentially

bounded by the values that still initialized the whole model within the image domain.

Outside these intervals, the performance of the algorithm decreases significantly. The

rotation is the exception, which shows that for initial rotation angles of |φ| > 45◦, the

algorithm is unable to accurately segment the rectangle. The reason is it tries to fit the

model assuming a 90◦ rotation (see last row of Fig. 3.5 for an example).

3.7.1.3 Sensitivity to over/under training

Typically, learning algorithms require large training datasets to be flexible enough to

perform well in the test dataset, but they may also overfit the training data. In this case,

more training data means that the shape statistics are more accurate, which influences
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Figure 3.7: Performance of EM-RASM for different initializations. Each plot shows the Dice

coefficient of the algorithm (ML) for different initial values of the transformation parameter: (a)

t1, (b) t2, (c) scale, and (d) rotation.

the estimation of the deformation coefficients b.

In order to evaluate the sensitivity of the proposed algorithm to over/under training,

we performed several segmentation tests using an increasing number of training shapes for

the segmentation of the image in the second synthetic example in Fig. 3.5. The training

shapes were obtained using (3.59), which adds random Gaussian noise to the true object

boundary. A total of 105 training shapes were generated: in the first test, only the first

10 training shapes were used; in the second test, the first 100 training shapes were used;

and so on. In other words, the n-th test used 10n training shape, including all the training

shapes used in the (n− 1)-th test.

Fig. 3.8 shows the superiority of the MAP over the ML. The MAP approach is able

to outperform the ML when using a larger number of training shapes, suggesting that the

prior information enriches the shape estimates as the training data increases. Nevertheless,

the ML also exhibits good performances with a Dice coefficient of approximately 0.990−
0.995 and an average error of approximately 0.6− 1.0 pixels.
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Figure 3.8: Performance of the ML and MAP formulations of EM-RASM for different sizes of the

training set. The left plot shows the Dice coefficient and the right plot shows the average distance

(in pixels). The blue lines shows the performance for the ML approach and the dashed red line

the performance of the MAP approach.
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Figure 3.9: Performance of the ML and MAP formulations of EM-RASM for different values of

σtrain. The left plot shows the Dice coefficient and the right plot shows the average distance (in

pixels). The dashed red line depicts the performance of the MAP approach and the blue lines the

ML approach for dmax = {2.5, 3.0, 4.0}.

3.7.1.4 Sensitivity to amount of deformation

The sensitivity of the proposed algorithm to the amount of deformation in the train-

ing set was also tested. Several experiments were performed using σtrain ∈ [0.1, 10] with

increments of 0.1 to generate the training examples (see equation (3.59)). For each value

of σtrain, we generated 1000 training shapes. The tests were performed using the image in

the second synthetic example (see Fig. 3.5 on the left).

If the value of the diagonal observation model variance is set to σ = σtrain, then

increasing the value of σtrain also makes the Gaussian distribution become wider. This

means that the probabilities wij1 and wij0 become less distinct, and, thus, that the model

is not able to clearly distinguish outliers from valid observation points, resulting in poorer

segmentations.

The performance of the proposed methods is shown in Fig. 3.9. The results show
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that the MAP approach performs better than the ML for larger values of σtrain. In

order to show the influence of dmax in the ML approach (recall equation (3.19)), three

different values were tested, dmax = {2.5, 3.0, 4.0}. It is possible to see that larger values

of dmax lead to poorer segmentations. However, in real problems, the object segmentation

typically does not correspond to the average contour. Therefore, setting dmax too low can

be prejudicial to the performance of the ML approach. Fig. 3.9 shows that the MAP

formulation has a slightly lower performance when few training shapes are used, whereas

for larger training sets, it outperforms the ML formulation.

3.7.1.5 Computational performance comparison

This section compares the computational overhead of the proposed algorithm against

the standard ASM. The algorithm overview shown in Section 3.5 is similar to the standard

ASM, with the addition of steps 2) Computing the observation probabilities and 5) Up-

dating the model probabilities. However, the bottleneck remains the update of the model

parameters (steps 3) and 4)). Regarding the update equations, the difference in compu-

tational complexity between the two methods lies in the number of detected observation

models. The proposed algorithm allows multiple observation points for each model point,

which has a cost in computational performance.

In order to evaluate the difference in computational performance, both algorithms

(the proposed one and the standard ASM) were used on the first synthetic image (Fig. 3.5

on the left) using different values for σ2noise ∈ [0, 1]. This experiment was repeated until

each algorithm ran a total of 1000 iterations. For each iteration, the running time and the

number of detected observations were recorded.

Fig. 3.10 shows the computational performance as a function of the number of de-

tected observations for each iteration. The blue crosses denote the results for the standard

ASM and the red dots correspond to the results using the proposed algorithm. Note that

the standard ASM always detects one observation for each model point. The results show

that the computational performance is linearly proportional to the number of detected

observations. When both algorithms detect the same number of observations points, their

computational performance is very similar.

3.7.2 LV Segmentation in CMR

The proposed method was evaluated on the CMR dataset described in Section 3.6.1,

which contains 33 sequences. For each test sequence, the shape statistics were learned using

the remaining 32 sequences, i.e., using a leave-one-sequence-out scheme.

The initialization of the transformation parameters for each test sequence was ob-

tained by aligning the average contour x with a circle in the image, whose center and

radius was given by human input. This initialization was only performed for the first
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Figure 3.10: Comparison of the computation performance between ASM and EM-RASM. The

blue crosses correspond to the standard ASM results and the red dots to the proposed method.

Table 3.1: Statistical results of the LV segmentation in CMR using EM-RASM and comparison

with ASM and RANSAC: mean value (standard deviation).

ASM RANSAC
EM-RASM

ML MAP

dDice 73.0 (9.5) 79.9 (7.3) 84.2 (9.2) 84.1 (9.5)

dAV 4.7 (2.1) 3.3 (1.3) 2.58 (1.68) 2.63 (1.79)

dVD 25.7 (38.8) 13.5 (17.8) 11.8 (11.4) 11.8 (12.0)

% Good 64.2 82.0 89.2 88.7

slice of each volume. The remaining slices were initialized by successively propagating the

segmentation of one slice to the next.

Fig. 3.11 shows examples of the segmentations obtained with the MAP formulation

of EM-RASM and the corresponding GT. Despite the irregularity of the LV border, both

in terms of shape and image intensity, most of the times the algorithm is able to discern

in which edges it should trust and which it should discard. Examples of images that were

not so accurately segmented are shown in the last row of Fig. 3.11, where it is possible to

see that the algorithm was misled by the papillary muscles or with the intensity transition

associated with the outer border of the myocardium.

Table 3.1 shows statistical results of the segmentation accuracy. Comparing the ac-

curacy of the proposed method with the accuracy of the standard ASM, it is possible to see

that the proposed approach significantly improves the segmentation results. EM-RASM

is also able to achieve better results than the RANSAC approach, even though the latter

is also a significant improvement over the standard ASM. Comparing the performance of

the ML and the MAP formulations, the table shows that ML has a slightly better perfor-

mance. Fig. 3.9 suggests that having a larger training set may lead to a reversal of this

results, i.e., as more training shapes are used to learn the shape model, the performance

of the MAP formulation should improve and eventually outperform the ML formulation.
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Figure 3.11: Segmentation of the LV in CMR images. Each plot shows one slice of a different

MR sequence with the segmentation obtained using the MAP formulation of EM-RASM (red),

and the corresponding GT (green).

3.7.3 Other applications

3.7.3.1 LV Segmentation in Ultrasound

The EM-RASM method was applied to the segmentation of the left ventricle in 2D

ultrasound image sequences. The dataset is composed of five 2D sequences (five different

patients), each with 16-20 frames, leading to a total of 87 images.

The shape model was trained using manual medical annotations of the left ventricle

contours (ground truth). Each training example was obtained by resampling, in arc-

length, the medical contours with a fixed number of points from the bottom left to the

apex (top) and from the bottom right to the apex. We tested the proposed algorithm and

the standard ASM using a leave-one-sequence-out cross validation strategy.

In each test sequence, the initial guess for the transformation parameters was ob-

tained by aligning the average contour x with a contour obtained by human input using

the standard least squares method. A different human input contour was used in each test

sequence, and the resulting initial guess was used in all the frames of the sequence (i.e.,

we did not propagate the contours from one frame to the next).
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Table 3.2: Dice coefficient of the LV segmentation in ultrasound images using EM-RASM and

comparison with ASM: mean value (standard deviation).

ASM
EM-RASM

ML MAP

Seq 1 0.80 (0.05) 0.86 (0.05) 0.87 (0.05)

Seq 2 0.79 (0.04) 0.87 (0.03) 0.87 (0.05)

Seq 3 0.71 (0.05) 0.87 (0.02) 0.87 (0.02)

Seq 4 0.76 (0.05) 0.89 (0.04) 0.90 (0.03)

Seq 5 0.81 (0.04) 0.89 (0.03) 0.89 (0.02)

Average 0.78 (0.06) 0.88 (0.04) 0.88 (0.03)

Table 3.3: Average distance error of the LV segmentation in ultrasound images using EM-RASM

and comparison with ASM: mean value (standard deviation).

ASM
EM-RASM

ML MAP

Seq 1 17.7 (4.2) 11.5 (3.6) 11.1 (3.3)

Seq 2 21.6 (4.5) 12.1 (2.2) 12.4 (2.2)

Seq 3 24.4 (4.0) 9.5 (1.5) 9.6 (1.3)

Seq 4 19.3 (3.6) 7.8 (2.7) 7.5 (2.2)

Seq 5 19.3 (3.6) 10.2 (2.6) 10.5 (2.7)

Average 20.4 (4.6) 10.3 (3.0) 10.3 (2.9)

Fig. 3.12 shows one frame of each sequence with the segmentation obtained with

EM-RASM (using the ML approach) and with the standard ASM. In all the examples,

a large number of the detected observations (red dots) are outliers. The figure shows

that the EM-RASM performed better than the standard ASM and was able to fit the LV

boundary, whereas the accuracy of the segmentation obtained using the standard ASM

was hampered by the outliers.

Statistical results are presented in Tables 3.2-3.3 and in Fig. 3.13. The results show

that the ML and the MAP approach perform similarly and that they lead to a significant

improvement in accuracy over the standard ASM (approximately half the error using the

average distance metric).

57



3. 2D Segmentation

Ground Truth ASM EM-RASM

Figure 3.12: Segmentation of the LV in ultrasound images. Each row shows one frame from

a different sequence. The green dashed line shows the ground truth (left column); the blue lines

correspond to the estimated segmentation using the standard ASM (mid column) and the proposed

algorithm (right column); and the red dots represent the detected observations in the last iteration.

3.7.3.2 Lip Segmentation

The last application in which the EM-RASM method was tested was the segmen-

tation of the lip. The dataset consists of four sequences of face images. These se-

quences were acquired from the neutral expression samples of the Cohn-Kanade expression

database [104], each with 10-20 frames, for a total of 58 images. The training shapes were

obtained by resampling, in arc-length, the lip contours provided in the database so that

the number of points in the lower lip and the number of points in the upper lip were the

same in all the contours. As in the previous case, the shape model was trained using a

leave-one-sequence-out cross validation strategy. The initial guess for the transformation
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Figure 3.13: Boxplot of the results of the LV segmentation in ultrasound images (the average

distance is measured in pixels).

Ground Truth ASM EM-RASM

Figure 3.14: Segmentation of the lip in face images using EM-RASM and comparison with ASM.

Each row shows one frame from a different sequence. The green dashed line shows the ground

truth (left column); the blue lines correspond to the estimated segmentation using the standard

ASM (mid column) and the proposed algorithm (right column); and the red dots represent the

detected observations in the last iteration.

parameters for each test sequence was obtained by aligning the average contour x with a

contour obtained by human input. The same initial guess was used in all the frames of the

test sequence. The performance of the proposed method was compared with the approach

proposed in [143], which combines ASM with RANSAC.

Tables 3.4-3.5 and Fig. 3.15 show the statistical evaluation of EM-RASM, using the

dDice and dAV error metrics. The results compare the proposed approach with the standard
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Figure 3.15: Boxplots of the results of lip segmentation in face images (the average distance is

measured in pixels).

Table 3.4: Dice coefficient of the segmentation of the lip using the ML and MAP formulations of

EM-RASM and comparison with ASM and RANSAC: mean value (standard deviation).

ASM RANSAC
EM-RASM

ML MAP

Seq 1 0.91 (0.02) 0.94 (0.01) 0.94 (0.01) 0.92 (0.01)

Seq 2 0.67 (0.06) 0.74 (0.08) 0.88 (0.03) 0.87 (0.04)

Seq 3 0.73 (0.02) 0.91 (0.04) 0.94 (0.01) 0.93 (0.02)

Seq 4 0.85 (0.05) 0.91 (0.01) 0.91 (0.01) 0.91 (0.01)

Average 0.78 (0.11) 0.86 (0.10) 0.91 (0.03) 0.90 (0.04)

Table 3.5: Average distance error of the segmentation of the lip using the ML and MAP formu-

lations of EM-RASM and comparison with ASM and RANSAC: mean value (standard deviation).

ASM RANSAC
EM-RASM

ML MAP

Seq 1 2.0 (0.5) 1.4 (0.1) 1.5 (0.1) 1.9 (0.3)

Seq 2 3.6 (0.3) 3.2 (0.8) 1.8 (0.3) 1.8 (0.5)

Seq 3 4.0 (0.4) 1.6 (0.7) 1.1 (0.3) 1.2 (0.4)

Seq 4 2.3 (0.6) 1.5 (0.2) 1.7 (0.2) 1.5 (0.2)

Average 3.0 (0.9) 2.1 (1.0) 1.6 (0.3) 1.7 (0.4)

ASM and the RANSAC approach proposed in [143]. As in the previous segmentation

problem, the proposed method outperforms the standard ASM. These results also show

that the proposed method is more accurate than the RANSAC method, although the latter

also performs significantly better than the standard ASM and has a similar performance

to EM-RASM in some sequences. It is also possible to see that the ML and the MAP

approaches have a similar performance.
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Fig. 3.14 shows examples of the segmentations obtained with EM-RASM (using

the ML approach) and with the standard ASM. It is possible to see that the ability to

detect more than one observation point for each search line increases the probability of

detecting the true object boundary, particularly if that boundary is not associated with

a strong edge (e.g., in Fig. 3.14 second and third rows). On the other hand, despite the

consequent increase in the number of outliers, the proposed approach was able to fit the

valid observations. This does not happen in the standard ASM, in which the obtained

contour was misguided by the outliers. In some cases, if the number of outliers is small,

both methods perform similarly, which is in agreement with the boxplots shown in Fig.

3.6.

3.8 Conclusions

In this chapter, a 2D ASM is combined with a robust estimation of the model pose

and deformation using an outlier model, an algorithm denoted by EM-RASM. Contrary

to the standard ASM, the proposed approach allows multiple observation points to be

extracted from the image for each model point, and assumes that these points have some

probability of being outliers. The estimation of the model parameters is achieved using

the EM method that weights each observation point by the probability of that point

belonging to the object boundary. Outliers typically have a lower probability of belonging

to the object boundary, which means that their contribution to the estimation of the

model parameters is reduced. This allows EM-RASM to accurately estimate the model

parameters even in the presence of outliers. The results show EM-RASM significantly

outperforms the standard ASM, both in synthetic and real images.

Regarding the segmentation of the LV in CMR, the robustness to outliers allows

the shape model to disregard some of the anatomical structures that typically mislead

LV segmentation algorithms, such as papillary muscles and the epicardium. Nonetheless,

and even though the proposed method outperforms the standard ASM and the RANSAC

approaches, the segmentation accuracy for CMR segmentation can still be improved by

using additional information, namely, the three-dimensional structure of the LV and the

temporal dynamics of the heart throughout the cardiac cycle. This is explored in the

following chapters of this thesis.

A different approach to the 2D segmentation of the LV was also explored in Appendix

C. It is inspired in [46,111] and consists in analyzing the images in polar coordinates and

using dynamic programming to determine the location of the LV border. It has the

advantage of providing faster segmentations, but the EM-RASM approach has a better

performance.
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This chapter addresses the LV segmentation as a 3D problem. Since the LV is a

three-dimensional structure, we explore how a 3D shape model can be used in the context

of CMR segmentation. This has potential advantages over the previous 2D approach

because it correlates the segmentations of the slices in a particular MR volume, leading

to segmented regions that are more consistent with the 3D structure of the LV.

4.1 Introduction

Contrary to the 2D approach used in the previous chapter, a 3D shape model is

able not only to capture the three-dimensional shape of the LV but also allows specific

shape patterns to be identified for each slice of a volume. Unfortunately, applying a 3D

shape model to the LV segmentation in CMR is not straightforward and some crucial

considerations have to be taken into account.

First, the size of the LV varies from patient to patient based on the size of the heart.

Consequently, the number of slices in the MR volume in which the LV is visible also

varies [71]. This makes learning the shape model difficult, because the training examples

are not equally sampled, which is required in order to use standard procedure for learning

shape models [37].

Second, as mentioned in Chapter 2, different levels of expiration during the ac-

quisition of CMR data can cause shifts in the position of the heart [11], leading to the

appearance of misaligned slices (recall Fig. 2.8 (a)). These misalignments are unexpected

and highly variable, which means that examples affected by this issue may introduce ar-

tifacts in the estimated shape of the LV. This makes learning the 3D shape model harder.

Furthermore, it is also necessary to take this into account during the segmentation process.

Since misalignments are not well represented by the shape statistics, the shape model will

be unable to fit the LV border in such volumes.

These two issues affect both the training phase of an ASM methodology and the test

phase, in which new volumes are segmented. For the training phase, these issues can be

combined to formulated the following problem: How can we learn the shape statistics of

the LV from training data with a variable number of misaligned slices? For the test phase,

two problems have to be addressed: 1) How can a 3D shape model be used to segment MR

volumes with a variable number of slices? and 2) how will the shape model be able to cope

with misaligned slices? This chapter addresses these problems by proposing a framework

to learn a 3D shape model from CMR data and to use it to segment new volumes.

The remainder of this chapter is organized as follows. Section 4.2 provides a back-

ground on how other methods have used 3D shape models for the segmentation of the LV

in CMR, and how it differentiates from the proposed approach. Section 4.3 describes the

proposed strategy to learn the 3D shape model from CMR data. Section 4.4 explains the

proposed approach to segment the LV using the 3D shape model on new MR volumes to
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obtain the LV segmentation. Sections 4.5 and 4.6 discuss the experimental setup and the

results obtained. Finally, Section 4.7 concludes the chapter with final remarks about the

proposed method.

4.2 Background

Many shape models are based on the Point Distribution Model (PDM) [37], in which

the border of an object is defined using a set of specific landmarks (recall Section 3.2.1).

When these landmarks are uniquely identified in all the shape examples, it is easy to

analyze the distribution of corresponding landmarks to learn the mean shape and the

main modes of deformation. However, in 3D shape models, establishing correspondences

between landmarks of two objects may not be trivial [66]. In CMR, the number of slices

in each volume varies, thus the number of contours that describe the 3D shape of the LV

also varies (see Fig. 4.1). In this context, establishing landmark correspondences is not

straightforward.

The Iterative Closest Point (ICP) algorithm [23] is a common approach to overcome

this issue [31, 32, 54]. This algorithm aligns two sets of points (shapes) by iteratively

performing the following steps: i) establishing landmark correspondences, based on the

distance between them; and ii) estimating the pose transformation that aligns the sets of

corresponding points. However, it assumes that the number of points in each example is

the same. Variants of the ICP algorithm have been proposed to allow the algorithm to

deal with surfaces with a different numbers of landmarks [33,81,140]. In these cases, they

rely on the assumption that some of the landmarks may be discarded and the alignment

is determined based only on a subset of landmarks that are common across the examples.

In CMR data, the examples are defined by a variable number of contours at different

positions along the LV axis, as shown in Fig. 4.1. Therefore, the ICP algorithm is only

able to establish landmark correspondences in the basal and apical slices. That is why

many works in the 3D LV segmentation problem use other approaches.

Mitchell et al. [118], for example, propose the use of a normalized cylindrical coordi-

nate system to define the position of the landmarks. First, they resample each contour at

predefined angle intervals around the LV axis, which guarantees that all the 2D contours

have the same number of landmarks. It also guarantees that there is a correspondence

between the landmarks in consecutive slices. Then, they interpolate the position of the

landmarks along the LV axis using linear interpolation. This allows the contours in the

shape examples to be resampled. A similar approach is also used by Andreopoulos et

al. [11].

Other works perform a preliminary step to establish the landmarks’ position and

correspondences based on volumetric registration [53, 177]. They use a volumetric mesh,

in which voxels are labeled based on the type of structure they belong to. With this in-
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Figure 4.1: Example of two training shapes that are used to learn the shape model. Besides the

contours in the basal and apical slices, it is not possible to establishing landmark correspondences

between the two shape examples.

formation, the alignment of a specific volume in the training set with a reference volume

is obtained using a non-rigid registration algorithm [144]. After aligning the two volumes,

the landmarks in the reference volume are supposed to segment the training volume accu-

rately, despite having a different discretization. Then, knowing the transformation used

to align them, it is possible to extract the new landmarks of the training volume by ap-

plying the reverse transformation to the reference landmarks. This procedure is similar

to the approach adopted in atlas-based segmentation algorithms [98,99,101], in which the

segmentation of a volume is indirectly obtained by aligning the volume with a previously

segmented atlas. Doing this for all the shape examples leads to a training set with shape

examples that have the same landmarks as the reference volume.

Another alternative consists of using the level-set method [132] has also been used.
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For instance, Tsai et al. [174] learn the shape statistics using the signed distance maps in

the training set, instead of the landmark’s positions. This approach has the advantage of

not requiring landmark correspondences between shapes, as well as the advantage of being

able to change the topology of the segmentation. The latter is not of particular interest for

the problem of segmentation of the LV in CMR, since the LV does not change topology,

but may be useful in other applications such as the segmentation of brain structures [173].

During the analysis of new volumes, the misalignment between slices is often disre-

garded [95, 102]. For 2D approaches, this does not constitute a severe problem, as each

slice segmentation is independent, so there is no notion of misalignment. However, for 3D

approaches, and in particular those using shape models, it may be difficult to fit the shape

model to the LV border in all slices. In order to deal with this problem, Andreopoulos et

al. [11], for instance, use preprocessing step to correct the slice position before applying

the 3D model. The preprocessing step is based on an image registration procedure for

translation only. A similar procedure is described in [102], although here the registration

is also based on longitudinal CMR images. However, without knowing the location of

the LV, performing a registration is, by itself, a complex task, and is the basis of many

segmentation algorithms [98,101,115,191,192].

Another issue that arises in the analysis of new volumes is that the learned shape

model and volumes may have a different number of slices, which means that some of the

contours in the model will not correspond to the observed slices. Instead, the contours will

be located in between slices. In these cases, finding the necessary image features to segment

the volume may require interpolating voxel intensities [87, 118]. However, in CMR, the

distance between consecutive slices is very large (compared to the distance between pixels

within a slices) and the intensity transitions along the LV axis are not smooth. Combining

this with the existence of misaligned slices makes interpolation a poor choice. Instead, the

method proposed in [176,177] interpolate the position of the shape model points to obtain

new points located within the volume slices. These new points are used to extract the

image features and to determine the location of the LV border. Then, this information is

propagated to the original model points to update their position.

The method proposed in this chapter differs from the approaches mentioned above

in several ways:

In the training stage:

1. Before the computation of the shape statistics, a translation-based pre-registration

is performed to remove slice misalignments. This is necessary to remove artifacts

induced by these misalignments.

2. A polynomial interpolation scheme is applied to the shape examples in the training

set, in order to resample the contours along the LV axis, and to establish correspon-

dences between them.
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3. Two additional deformation modes are used to allow the shape model to shift the

position of each contour within the slice plane, thus enabling the model to fit the

LV border in misaligned slices.

In the test phase:

1. The learned shape model (i.e., mean shape and main modes of deformation) is

resampled taking into account the number of slices in the test volume, in order to

avoid interpolating voxel intensities when searching for the LV border.

2. The estimation of the model parameters is achieved using an extension of the EM-

RASM algorithm to 3D data.

A schematic representation of the proposed method is shown in Fig. 4.2. The

following sections describe each step in detail.

4.3 Training Phase

This section describes a framework to learn a 3D shape model from CMR data. The

training data consists of MR volumes with a variable number of slices and their correspond-

ing annotations (expert segmentation of the LV). In each slice, the expert segmentation

is defined by a contour with N points (landmarks), as in the previous chapter. In order

to learn a 3D shape model, each training example is the collection of expert contours for

a specific volume, which means that each example is described by a variable number of

contours. Since the shape model is based on the PDM [37], the training examples are

required to have the same number of landmarks. To meet this requirement, we propose

to resample them along the LV axis so that all the training examples are represented by

the same number of contours, S.

Let us consider a specific MR volume, say, v, in the training set. The volume slices

are located at equally spaced positions, sm, along the LV axis

sm =
m− 1

Sv − 1
, (4.1)

where m = 1, . . . , Sv, and Sv 6= S is the total number of slices in the volume v. We assume

that the first slice, s1 = 0, corresponds to the basal slice, whereas the last slice, sSv = 1,

corresponds to the apical slice. Therefore, the LV contour at the m-th slice is defined by

a 2Nv × 1 vector

x̃v(sm) =


x̃1(sm)

x̃2(sm)
...

x̃N
v
(sm)

 (4.2)
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slice misalignments
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(d)

Learned shape model

with 6 slices

(a)

Training shapes with variable
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(e)

Resampled shape model
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(g)

LV Segmentation

(f)

Test volume with 4 slices

Figure 4.2: Illustration of the proposed methodology using a 3D shape model, comprising the

training and test phases. From (a) the initial training shapes with a variable number of contours,

it is necessary to perform (b) a correction of misaligned slices, before (c) resampling all the models

to a pre-defined number of slices (in this case six slices); after this stage, (d) the shape model is

obtained comprising both the mean shape and the main modes of the deformation; then, (e) the

learned shape model is resampled, before applying it to segment the (f) a test volume that may

have a different number of slices (in this case four slices), after which (g) the segmentation of the

LV is obtained.

where Nv 6= N is the number of points in each contour of volume v, and x̃i(sm) =(
xi1(sm), xi2(sm)

)> ∈ R2×1 is the position of the i-th contour point in the m-th slice.

The first step in the proposed framework corrects the contours’ position, to remove

misalignment errors (see Fig. 4.2 (b)), by performing a rigid pre-registration. This is

achieved by simply aligning the centroids of all the slice contours in volume v.

The second step resamples all the training examples using a polynomial approxima-

tion scheme (see Fig. 4.2 (c)). This step is explained in the next section.
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4.3.1 Resampling Shape Examples

This task aims to resample the shape examples in the training set so that they are

all described by a pre-defined number of contours, S, regardless of the number of slices

of the corresponding MR volume. This means that new contours, located at a generic

position, s, along the LV axis, have to be determined. This corresponds to going from

Fig. 4.2(b) to Fig. 4.2(c).

4.3.1.1 Approximation Model

In order to sample a new contour, denoted by x̂v(s), at any position, s ∈ [0, 1], along

the LV axis, we model it as a function of the position s, based on a combination of K

polynomial basis functions, ψ(s) =
[
1, s, . . . , sK−1

]> ∈ RK×1,

x̂v(s) = Cvψ(s), (4.3)

where Cv ∈ R2N×K is the coefficient matrix associated to volume v, defined by

Cv =



c11,1 c11,2 . . . c11,K

c12,1 c12,2 . . . c12,K
...

...
. . .

...

cN1,1 cN1,2 . . . cN1,K

cN2,1 cN2,2 . . . cN2,K


=



c11

c12
...

cN1

cN2


. (4.4)

Notice that the coefficient matrix is specific for each MR volume, v, while the polynomial

basis, ψ(s) depend only on the slice position, s. Using (4.3), any contour can be obtained

for s ∈ [0, 1], as shown in Fig. 4.3, which means that shape examples can be resampled at

a predefined number of slice positions.

In this work, the same model degree K−1 is used to resample all the shape examples

in the training set, regardless of the number of slices of the corresponding volume, Sv. This

means that in some volumes, where Sv > K, the blue lines shown in Fig. 4.3 will not

go through the shape landmarks (shown in green), and only approximate the original

contours. In other volumes, for which Sv ≤ K, the blue lines go through the shape

landmarks, and the resampling process is an interpolation of the contours.

4.3.1.2 Estimation of the Coefficient Matrix

The resampling process described above requires having previously computed the

coefficient matrix, Cv, of each volume in the training set. This section describes how these

matrices are computed.

Let Xv ∈ R2N×Sv
be the concatenation of the Sv contours corresponding to the

annotations of volume v that we wish to resample, defined by

Xv = [x̃v(s1), x̃v(s2), . . . , x̃v(sSv)] , (4.5)
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Resampled
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Figure 4.3: Illustration of the resampling process. The training example (left) consists of an MR

volume with 4 slices and the corresponding contours (in red). The blue lines (mid and right) show

the approximation model for a subset of the contour points (green dots), which allows any contour

between the basal and apical slices to be obtained (right).

where each vector, x̃v(si), is a contour as defined in (4.2). Each pair of lines in Xv,

denoted herein by Xi
v ∈ R2×Sv

, can be regarded as samples of the trajectory of the i-th

contour point along the LV axis (see the green dots and the corresponding blue lines in

Fig. 4.3). The trajectory can be written as

Xi
v =

xi1(s1), . . . , xi1(sSv)

xi2(s1), . . . , x
i
2(sSv)

 =

Xi
1v

Xi
2v

 , (4.6)

where each line, Xi
jv, j = 1, 2, is associated with the coefficients, cij , of matrix Cv (recall

(4.4)).

These trajectory samples are used to estimate cij by solving the following ridge

regression problem [67]

cij = arg min
c
‖Xi

jv
> −Ψc>‖2 + γ‖c‖2, (4.7)

where Ψ = [ψ(s1), . . . ,ψ(sSv)]> ∈ RSv×K is the concatenation of the polynomial basis

ψ(sm),m = 1, . . . , Sv, and γ ≥ 0 is a regularization constant. The solution of (4.7) is

given by

ci>j =
(
Ψ>Ψ + γI

)−1
Ψ>Xi>

jv , (4.8)

where I is the K × K identity matrix. This solution differs from the Ordinary Least

Squares (OLS) solution due to the regularization term (assuming γ > 0), which guarantees
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that the term
(
Ψ>Ψ + γI

)
is invertible for any polynomial degree, K ∈ N, used in the

resampling process. The ridge regression was chosen, because we are using a fixed value

for K, regardless of Sv, which would not be possible with the OLS solution (obtained by

setting γ = 0) since it can only be computed for K ≤ Sv.
The solution in (4.8) can be rewritten taking all the lines in Cv into account as

follows

C>v =
(
Ψ>Ψ + γI

)−1
Ψ>X>v , (4.9)

where Xv is given by (4.5). Once the coefficient matrix Cv has been computed, the

approximation model defined in (4.3) can be used to obtain the contours at the desired

positions along the LV axis. This is done for all the shape examples in the training set

and guarantees that they all have the same number of landmarks.

4.3.2 Computation of the Shape Statistics

We propose to learn the shape statistics for each slice independently, using a learning

procedure similar to the one described in Section 3.2.1, i.e., computing the mean shape,

x(sm), and the main modes of deformation, D(sm), for each slice separately. This is

not a typical 3D shape model [66], in which the surface of an object is described by a

single vector and the shape statistics are computed for the whole surface. The proposed

approach is similar to the strategy used in hierarchical shape models [11,100], which divide

the whole shape into smaller patches and compute the shape statistics for each patch. This

is advantageous because it reduces the dimensionality of the data, while still allowing for

a 3D shape model to be used. In this case, each patch corresponds to the contour of a

specific slice.

We propose to describe the 3D structure of the LV using a set of S 2D contours,

such that each contour,

x̃(sm) =


x̃1

...

x̃N

 , x̃i =

xi1
xi2

 , (4.10)

is given by

x̃(sm) = Tθ (x(sm) +D(sm)b(sm)) , (4.11)

where x(sm), D(sm), and b(sm) are the mean shape, deformation modes, and deformation

coefficients, respectively, associated with the m-th slice, and Tθ(·) is a similarity transfor-

mation. This transformation is assumed to scale, rotate, and translate the contours only

in the axial plane, thus ensuring that the contours are always located on the volume slices

(or on some parallel plane). It is also assumed that the transformation does not depend

on the slice position, which means that the pose of the LV is fully described by a single
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transformation applied to all the contours in the volume. The position of each contour

point after applying the transformation is given by

Tθ(x̃i(sm)) = Xi(sm)a+ t, (4.12)

where

Xi(sm) =

xi1(sm) −xi2(sm)

xi2(sm) xi1(sm)

 ,
and a = [a1, a2]

> defines the scale and rotation, and t = [t1, t2]
> defines the translation

on the axial plane.

The first step towards the computation of the shape statistics is to align all the shape

examples in the training set by removing the pose of the LV. Consider a particular shape

example defined by the resampled slice contours, x̂(sm), with sm = m−1
S−1 and m = 1, . . . , S.

This shape is aligned with a reference shape, xref, by finding the parameters, θ? = {a, t},
of a global (pose) transformation, Tθ, such that

θ? = arg min
θ

S∑
m=1

N∑
i=1

∥∥Tθ (x̂i(sm)
)
− xiref(sm)

∥∥2 , (4.13)

where Tθ
(
x̂i(sm)

)
is given by (4.12). This optimization problem is solved using a standard

least squares approach, similar to the alignment algorithm described in Section 3.2.1.

After correcting the pose of all the shape examples in the training set, it is possible to

compute the mean shape and the main modes of deformation. In Fig. 4.2, this corresponds

to going from (c) to (d). The mean shape for each slice, denoted by x(sm), m = 1, . . . , S,

is computed as the average slice contour over all the models in the training set. The main

modes of deformation and corresponding eigenvalues, denoted by

D(sm) = [d1(sm), . . . ,dL(sm)] ∈ R2N×L, (4.14)

λ(sm) = [λ1(sm), . . . , λL(sm)]> ∈ RL×1, (4.15)

are obtained by performing PCA, where dl(sm) ∈ R2N×1 and λl(sm) ∈ R are the l-th

main mode of deformation and corresponding eigenvalue, respectively, of the m-th slice,

and L ≤ 2N is the number of main deformation modes that are used.

From this point on, the learned shape model is used to segment new MR volumes, in

the test phase, which means estimating the model parameters, a, t, b(s1), . . . , b(sS), that

make the contours fit the LV border in each slice.

4.4 Test Phase

This section describes how the learned shape model (Fig. 4.2 (d)) is applied to a

test volume (Fig. 4.2 (f)). The test volume may have a different number of slices, say
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𝑠𝑚 𝑠𝑚+1
𝑠𝑚 + 𝑠𝑚+1

2

Figure 4.4: Example of an interpolated volume slice, at s = s4+s5
2 , obtained by linear interpola-

tion between two consecutive slices, s4 and s5.

St, which means that the position of the shape model contours may not coincide with the

position of the volume slices. A simple approach would be to interpolate voxel intensities

between the volume slices when searching for the LV border. However, this is not a good

strategy due to the large distance between slices and to the existence of misaligned slices.

Fig. 4.4 (middle) shows an example of an MR slice, located at s = sm+sm+1

2 , obtained by

linear interpolation of the two neighboring (misaligned) slices, sm and sm+1. The result is

an image in which the LV borders are impossible to identify - besides being blurred, there

appears to be two distinct borders, each created by one of the neighboring slices. Thus,

in the proposed approach, instead of interpolating voxel intensities, the shape model is

resampled with the same number of contours as the number of slices in the test volume,

as described in the next section.

Besides this issue, it is also necessary to take into consideration the challenges posed

by the existence of misaligned slices, and the accurately fitting the model to the LV border.

The former is dealt with by adding two new deformation modes to each deformation ma-

trix, D(sm), that allow each contour to translate within the slice plane and fit misaligned

slices. The latter problem is addressed by using an extension of the EM-RASM algorithm

to 3D. These two topics are described in detail in Sections 4.4.2 and 4.4.3, respectively.

4.4.1 Resampling the Learned Shape Model

The mean shape of the learned shape model is resampled using the approach de-

scribed in Section 4.3.1 to resample the shape examples. The contours of the mean shape

at the new positions are obtained by: 1) computing the corresponding coefficient matrix,

C, using (4.9); and 2) computing the new contours using (4.3).

Regarding the modes of deformation, resampling is not a trivial task. A different

resampling strategy is proposed for the modes of deformation Suppose that a test slice

is located at the position s between the contours of the learned shape model located at

sm and sm+1, i.e., s ∈ [sm, sm+1]. The goal is to estimate the modes of deformation

of the shape model at the new location s. However, since the shape model is learned
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independently for each slice, the correspondences between the modes of deformation of

different slices also have to be determined.

Let D(s) = [d1(s), . . . ,dL(s)] be the deformation modes (to be estimated) of the

shape model contour located at s ∈ [sm, sm+1]. Also, let α ∈ [0, 1] be the relative distance

between s and sm,

α =
s− sm

sm+1 − sm
. (4.16)

Without loss of generality, assume that sm is the closest slice (i.e., α ≤ 0.5). The l-th

deformation mode and corresponding eigenvalue are obtained by

dl(s) = (1− α)dl(sm) + αdF (l)(sm+1), (4.17)

λl(s) = (1− α)λl(sm) + αλF (l)(sm+1), (4.18)

where

F (l) = arg min
n
‖dl(sm)− dn(sm+1)‖ (4.19)

defines the correspondence between the deformation modes in sm and sm+1. These equa-

tions may be interpreted as computing the new l-th deformation mode by linearly interpo-

lating between the l-th deformation mode in sm and the most similar deformation mode

in sm+1.

This interpolation process is repeated for all the deformation modes, l = 1, . . . , L,

and all the St new slice positions. Once this is done, the new shape model has the same

number of contours as the number of slices in the test volume.

4.4.2 Deformation Modes for Fitting Misaligned Slices

The shape model described in the previous sections is defined by a global transfor-

mation, θ = {a, t}, that scales, rotates and translates all the slice contours equally, and by

the deformation coefficients for each slice, b(sm). However, at this point the learned shape

model is not able to fit the LV border in all the slices if the test volume has misaligned

slices, since it is not capable of translating each slice contour individually.

For the shape model to fit the LV border in a misaligned slice, two extra modes of

deformation are added to each matrix of deformation that account for small translations

within the slice plane. Formally, we define a new matrix

D(sm) = [d1(sm), . . . ,dL(sm),dt1(sm),dt2(sm)] , (4.20)

where dt1(sm),dt2(sm) ∈ R2N×1 are defined by

dt1(sm) =
1√
N

[1, 0, 1, 0, . . . , 1, 0]> (4.21)

dt2(sm) =
1√
N

[0, 1, 0, 1, . . . , 0, 1]> . (4.22)
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The additional deformation modes, dt1(sm) and dt2(sm), apply a translation along the first

and second dimension of the slice, respectively. The corresponding eigenvalues for these

two modes of deformation, λt1(sm), λt2(sm), determine the variance of the two translational

deformation modes. This variance will influence the extent of translational deformation

that is allowed, as will be explained in the following section. The deformation coefficients,

b(sm), also have two additional coefficients (a total of L + 2 coefficients) that determine

the extent of the translation in each direction. For example, if the last coefficient of b(sm)

is bL+2(sm), then, recalling (4.11), the mean shape in the m-th slice, x(sm), is translated

by
bL+2(sm)√

N
pixels along the second dimension.

4.4.3 Extension of EM-RASM to 3D Data

The segmentation process described in this section revises the EM-RASM algorithm

proposed in Chapter 3 and extends it to the 3D case. The difference between the method

described here in comparison with the EM-RASM is that this new formulation uses a 3D

shape model that aims to fit the LV border in all the slices simultaneously.

Formally, given a test volume, the segmentation of the LV, x̃(sm), m = 1, . . . , St, is

obtained by determining the global transformation parameters, θ = {a, t}, and deforma-

tion coefficients, b(sm), such that x̃(sm) fits the LV border in all slices.

Given an initial estimate of the model parameters for a test volume, a set of edge

points are extracted from each volume slice by searching along lines orthogonal to the

contours, using the method described in Section 3.6.3. This typically leads to the detection

of several edge points, of which only one may correspond to the LV border. Therefore, an

outlier model is required to accurately estimate the model parameters.

Let Y i(sm) = {yij(sm), j = 1, . . . ,M i} be the set of detected edge points, associated

with the i-th model point x̃i(sm), on the m-th slice. Since we do not know which edge

points are valid or invalid (outliers), two observation models are considered. A binary

label, kij(sm) = 1, is assigned to yij(sm) if it is considered valid; on the other hand,

if yij(sm) is invalid, then it will be assigned the label kij(sm) = 0. These two labels

occur with probabilities P (kij(sm) = 1) = p1 and P (kij(sm) = 0) = p0, respectively, with

p0 + p1 = 1.

When an edge point yij(sm) is valid, the following observation model is assumed to

be active

yij(sm) = x̃i(sm) + vi(sm), (4.23)

where vi(sm) ∼ N (0,Σi(sm)) is a zero mean white Gaussian noise with diagonal covari-

ance matrix Σi(sm). It follows that the probability of the yij(sm) is given by

p
(
yij(sm)

∣∣kij(sm)=1,Θ
)

= N
(
yij(sm); x̃ij(sm),Σij(sm)

)
, (4.24)

where Θ = {a, t, b(s1), . . . , b(sSt), p0, p1} is the set of all the model parameters. If yij(sm)

is considered an outlier (i.e., ki(sm) = 0), then we assume that it follows a uniform
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distribution

p
(
yij(sm)

∣∣kij(sm)=0,Θ
)

= U(Vx̃i(sm)), (4.25)

within a validation gate Vx̃i(sm) in the vicinity of x̃i(sm). This formulation is similar to

the formulation described in Chapter 3, but now most of the variables depend on the slice

position sm, whereas previously each MR image was analyzed in the same way, regardless

of the slice position.

Let Y = {Y (s1), . . . ,Y (sSt)} be the set of the detected edge points in all the slices

of the test volume, and K = {K(s1), . . . ,K(sSt)} be the set of the corresponding labels,

where Y (sm) = {yij} andK(sm) = {kij(sm)} are the set of edge points and corresponding

labels in the m-th slice. The proposed algorithm aims to find the parameters, Θ, that

maximize the log-joint probability distribution

P(Y ,K,Θ) = log p(Y ,K,Θ)

= log p (Y ,K|Θ) + log p(Θ)

= log p (Y |K,Θ) + log p(K) + log p(Θ). (4.26)

Assuming conditional independence between edge points, the equation above can be fac-

torized, leading to

P(Y ,K,Θ) =
St∑
m=1

N∑
i=1

M i∑
j=1

log p
(
yij(sm)

∣∣kij(sm),Θ
)

+ log p(kij(sm)) + log p(Θ). (4.27)

The first term corresponds to the likelihood of the edge points, the second term is the

probability of the observation model, kij , and the last term corresponds to the priors of

the parameters Θ. The prior probability distribution for the deformation coefficients is

assumed to be given by

p
(
b(s1), . . . , b(sSt)

)
=

St∏
m=1

p
(
b(sm)

)
, (4.28)

where, as in the previous chapter,

p
(
b(sm)

)
= N

(
b(sm); 0,Σb(sm)

)
, (4.29)

On the other hand, the prior probabilities for the other parameters are given by the

Jeffreys’ prior, i.e., they do not depend on any of the model parameters, Θ, and hence do

not influence the segmentation (recall Section 3.4.2.1).

Since it is infeasible to maximize (4.27) analytically, we use the MAP formulation

of the EM algorithm as follows.
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4.4.3.1 E-step

Let Θ̂(t) denote the current estimate of the model parameters (Θ̂(0) is the initial

guess). At each iteration, a new set of edge points, Y , is extracted from the test volume.

The EM algorithm is based on the auxiliary function

Q
(
Θ; Θ̂(t)

)
= EK

[
P(Y ,K,Θ)

∣∣∣Y , Θ̂(t)

]
, (4.30)

where EK[·] denotes the expectation over the two observation models. This leads to

Q
(
Θ; Θ̂(t)

)
=

St∑
m=1

N∑
i=1

M i∑
i=1

wij0 (sm)
[
log p

(
yij(sm)

∣∣kij(sm)=0,Θ
)

+ log p0
]

+ wij1 (sm)
[
log p

(
yij(sm)

∣∣kij(sm)=1,Θ
)

+ log p1
]

+ log p(Θ),

(4.31)

where wij0 and wij1 denote the confidence degree of each stroke, such that wij0 (sm) +

wij1 (sm) = 1 and

wij1 (sm) = p
(
kij(sm)=1

∣∣∣yij(sm), Θ̂(t)

)
∝ p

(
yij(sm)

∣∣∣kij(sm)=1, Θ̂(t)

)
p
(
kij(sm)=1

∣∣∣Θ̂(t)

)
∝ p̂1(t)N

(
yij(sm); x̃i(sm),Σi(sm)

)
(4.32)

wij0 (sm) = p
(
kij(sm)=0

∣∣∣yij(sm), Θ̂(t)

)
∝ p̂0(t)U

(
Vx̃i(sm)

)
. (4.33)

These weights correspond to the probability of kij1 (sm) and kij0 (sm) being the correct label

for yij(sm), given the current model estimate.

Combining (4.31) with (4.24)-(4.25) and (4.28) yields

Q
(
Θ; Θ̂(t)

)
= c− 1

2

St∑
m=1

(
b>(sm)Σb(sm)b(sm)− 1

2

N∑
i=1

M i∑
j=1

wij0 (sm) log p0+

+ wij1 (sm)

(
eij
>

(sm)Σi−1(sm)eij(sm) + log p1

))
, (4.34)

where

eij(sm) = yij(sm)−A
(
xi(sm) +Di(sm)b(sm)

)
− t, (4.35)

and c is a constant that does not depend on the model parameters, Θ.

4.4.3.2 M-step

In this step, the model parameters are updated by maximizing the auxiliary function

(4.34). We simplify this step by maximizing first with respect to the transformation

parameters, a, t, and only then for b(s1), . . . , b(sSv) and p0 and p1.
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4.4 Test Phase

Update of the Transformation Parameters Regarding the transformation parame-

ters, the update equation is obtained by taking the derivative of (4.34) with respect to a

and t, which leads to the following linear system,

St∑
m=1

N∑
i=1

M i∑
j=1

wij1 (sm)

Xi>(sm)Σi−1(sm)Xi(sm) Xi>(sm)Σi−1(sm)

Σi−1(sm)Xi(sm) Σi−1(sm)

â(t+1)

t̂(t+1)

 =

=

St∑
m=1

N∑
i=1

M i∑
j=1

wij1 (sm)

Xi>(sm)Σi−1(sm)yij(sm)

Σi−1(sm)yij(sm)

 (4.36)

where

Xi(sm) =

xi1(sm) −xi2(sm)

xi2(sm) xi1(sm)

 ,
xi1(sm)

xi2(sm)

 =xi(sm) = xi(sm) +Di(sm)b̂(t)(sm),

and Di(sm) are the lines of D(sm) associated with the model point xi(sm). The solution

of (4.36) corresponds to a weighted least squares solution to the problem of aligning the

edge points extracted from the volume and the corresponding model points. The weights,

wij1 (sm), mean that each edge point contributes to the estimation of the parameters based

on their probability of being valid.

Update of the Deformation Coefficients The update of the deformation parameters,

b̂(t+1)(sm), is obtained by taking the derivative of (4.34) with respect to b(sm), for each

slice, m = 1, . . . , St, leading to[(
Σb(sm)

)−1
+

N∑
i=1

M i∑
j=1

wij1 (sm)Di>(sm)Â>(t+1)Σ
i−1(sm)Â(t+1)D

i(sm)

] [
b̂(t+1)(sm)

]
=

=
N∑
i=1

M i∑
j=1

wij1 (sm)
[
Di>(sm)Â>(t+1)Σ

i−1(sm)
(
yij(sm)− Â(t+1)x

i(sm)− t̂(t+1)

)]
(4.37)

where

Â(t+1) =

â1(t+1) −â2(t+1)

â2(t+1) â1(t+1)

 .
The term Σb(sm) comes from the prior distribution of the deformation coefficients, given

by (4.28).

Update of the Model Probabilities Finally, the observation model probabilities,

p̂0(t), p̂1(t), are updated by taking the derivative of (4.34) with respect to p̂1(t) (recall that
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4. 3D Segmentation

p̂0(t) = 1− p̂1(t)). This leads to the following update equations

p̂1(t+1) =

St∑
m=1

N∑
i=1

M i∑
j=1

wij1 (sm)

St∑
m=1

N∑
i=1

M i∑
j=1

wij1 (sm) + wij0 (sm)

(4.38)

p̂0(t+1) =1− p̂0(t+1). (4.39)

The difference between the 3D formulation of EM-RASM proposed in this chapter

and the 2D formulation proposed in Chapter 3 comes from the fact that, in the 3D set-

ting, the edge points from the whole MR volume will contribute to the estimation of the

transformation parameters a and t. This makes the estimation more robust to slices in

which the LV border is not so easy to identify, because the contribution of the other slices

in the volume can compensate for this issue.

4.5 Experimental Setup

This section describes the experimental setup used to evaluate the proposed method.

The evaluation is based on the public database described in Section 3.6.1, which consists

of 33 sequences of volumes. The annotations provided in the database (i.e., the manual

segmentations of the LV) were used in the training phase, to learn the shape statistics, and

in the test phase, as GT for evaluation purposes. This was done using a leave-one-sequence-

out cross validation, i.e., for each test sequence, the shape model was learned using the

shape examples from the other 32 sequences. The training shapes were resampled using

the method described in Section 4.3, with the following parameters: number of points in

each slice contour, N = 40; number of slices per volume, S = 8; number of basis functions,

K = 10; and regularization constant, γ = 10−4. The choice of these last two parameters

was based on a number of tests comparing the performance of the resampling methodology

for different values of K and γ (see Section 4.6.1). The shape model was learned using

the approach described in Section 4.3.2, and the number of deformation coefficients used

in each contour of the shape model was L = 10 (or L = 12, considering the two additional

deformation modes for misalignments).

The initial guess of the model parameters is as follows. The transformation param-

eters â1(0) and t̂(0) are initialized by human input of the rough location of the LV center

and its radius in the basal slice. The remaining parameters are initialized by the default

values: â2(0) = 0, b̂(0)(sm) = 0, m = 1, . . . , St and p̂0(0) = p̂1(0) = 0.5.

The quantitative evaluation of the results was based on the Dice coefficient, dDice,

the average perpendicular distance, dAV, the volume error, dVD, and the percentage of

good segmentations, all of which are described in Section 3.6.2.
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Figure 4.5: Average distance between the annotations and the approximation model for different

values of K and γ.

4.6 Results

This section is divided in two subsections. The first shows the performance of the

resampling strategy described in 4.3 on the training data, in order to determine the best

parameters. The second shows the performance of the proposed method in the estimation

of CMR data.

4.6.1 Accuracy of the Approximation Model

The performance of the resampling scheme described in Section 4.3 depends on two

main parameters: i) the number of polynomial basis functions, K, and ii) the regularization

constant, γ, used to estimate the coefficient matrix in (4.4). The first parameter is related

to the degree of the polynomial used to model the trajectory of a contour point along

the slices. There are two possible scenarios: i) K is smaller than the number of slices

in the volume, Sv, in which case the polynomial may not able to accurately describe

the trajectories of the contour points; and ii) K ≥ Sv, in which case the accuracy of

the approximation model is only limited by the regularization term. On the other hand,

the regularization parameter, γ, is responsible for keeping the elements of the coefficient

matrix small, which keeps the trajectory estimates smooth.

The evaluation was performed by comparing the original shape examples in the

training set and their interpolated counterpart (with the same number of contours), using

on the error metric dAV. The idea is that the interpolated model should be as similar to

the original shape example as possible. Fig. 4.5 shows how the dAV error metric varies for

different values of K = {2, 4, 6, 8, 10, 12} and γ = {0, 10−4, 10−3, 10−2, 10−1}. The figure

shows that higher values of K lead to better results. It is possible to see that for each

curve there is a value of K beyond which the accuracy improvement is not significant. As

for the regularization constant, it is also possible to see that smaller values lead to better
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4. 3D Segmentation

results, as is expected. However, it is important to note that for γ = 0, the computation

of the coefficient matrix has numerical instability for K > Sv, because Ψ>Ψ becomes

non-invertible1 (recall equation (4.9) in Section 4.3.1.2). Since Sv ≤ 10 for all the volumes

in the dataset, it was not possible to compute any coefficient matrix for K = 12. Based

on these results, the choice of parameter values to use in the following section was K = 10

and γ = 10−4.

4.6.2 LV Segmentation

This section presents the results of the LV segmentation using the proposed ap-

proach. For comparison purposes, the proposed method was evaluated using two config-

urations: i) with and ii) without translational deformation modes (TDM) to compensate

for misaligned slices. (recall Section 4.4.2). In this way, we are able to assess the benefits

of introducing these additional modes of deformation.

Table 4.1 summarizes the results. Note that the approach that does not use TDM

is not able to fit misaligned slices, and it is possible to see that this has a significant

influence on the performance of the algorithm. The table shows that the addition of

these deformation modes improves the segmentation accuracy by approximately 6%. The

percentage of good segmentations is also representative of the amount of gross errors

obtained by the approach without TDM, in which almost 25% of the segmentations have

dAV > 5 mm. Examples of the improvements achieved with the use of TDM are shown in

Fig. 4.6. These examples clearly show that the correct segmentation is severely affected

by slice misalignments. The segmentations obtained without using TDM are not capable

of fitting the shifted slices, leading to poor results in which the model fits the LV border

in some slices but fails in others. In the configuration that uses TDM, the model is able

to follow the slice misalignments (except for one of the slices in example 1) and achieve

accurate segmentation results.

Comparing the results of the 2D approach from the previous chapter with the 3D

method proposed in this chapter, it is possible to see that the 3D modality achieves better

results, particularly in the volume error measured by dVD. Another interesting conclusion

is that the variance of the results is also reduced using the 3D approach, meaning that

the precision of the segmentations is higher. This is expected since the 3D shape model

prevents large deviations from the mean three-dimensional shape of the LV, thus reducing

gross errors. On the other hand, the small difference in the overall results may be a

consequence of the 3D shape model being too restrictive and preventing the model contours

from accurately fitting the LV border in all the slices. For further comparative results,

Fig. 4.7 shows the average Dice coefficient for each volume in the dataset. Each image is

a 33× 20 matrix in which the color of each pixel is based on the average Dice coefficient

1In such cases, the dAV was not computed and the volume was removed from the results.
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Table 4.1: Statistical performance of the 3D EM-RASM with and without TDM and comparison

with the 2D EM-RASM.

dDice

(%)

dAV

(mm)

dVD

(mL)
% Good

2D
84.2

(9.2)

2.6

(1.7)

11.8

(11.4)
89.2

3D

without

TDM

78.3

(8.3)

3.8

(2.3)

10.6

(19.7)
75.3

with

TDM

84.6

(6.8)

2.5

(1.2)

9.2

(9.4)
89.1
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Figure 4.6: Two examples of the segmentations obtained with and without TDM. The colors are

defined by the Dice coefficient based on colorbar on the right (greener is better).
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2D 3D

𝑑Dice

0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.7: Quantitative evaluation of all the volumes using the Dice coefficient. The vertical

axis corresponds to different patients and the horizontal axis to different phases of the cardiac

cycle. The colors are defined by the colorbar in the bottom (greener is better).

of the volume segmentation for that particular patient and frame of the cardiac cycle.

An analysis on the overall results leads to the conclusion that the 3D setting is able to

prevent many of the gross errors of the 2D formulation (compare the amount of red pixels

in both images). However, many pixels in the 3D image are yellow (i.e., with an average

Dice coefficient of approximately 0.7 < dDice < 0.8), which did not happen much in the

2D formulation. This is in accordance with the analysis of the statistical results, which

show that the 3D approach is better at avoiding gross errors, but is too restrictive to allow

accurate segmentations of the remaining slices.

Fig. 4.8 shows other examples of the segmentations obtained using the proposed

method. It is possible to see that, in almost all the cases, the obtained segmentation is

very similar to the ground truth. The last row shows an example where the proposed

segmentation was slightly hampered by the papillary muscles (second and third columns).

4.7 Conclusions

This chapter addresses the segmentation of the LV in CMR as a 3D segmentation

problem. The proposed method is based on a 3D shape model that is able to deal with the

two major difficulties associated with CMR: 1) the variable number of slices in a volume,

and 2) misalignment between slices.

In the training phase, the proposed framework deals with the variability in the

number of slices by resampling all the shape examples in the training set to a predefined

number of contours. This overcomes the issue of learning a shape model from examples

84



4.7 Conclusions

Figure 4.8: Examples of the LV segmentation using a 3D shape model. Each row shows four

slices of a different volume depicting, the segmentation obtained using the proposed method (red),

and the ground truth (green).

with a variable number of landmarks. For the segmentation of test volumes, the proposed

algorithm avoids voxel intensity interpolation by resampling the mean shape and the main

modes of deformation instead. This allows the 3D shape model to be used in any test

volume, regardless of the number of slices it has.

Regarding the misaligned slices, the approach described in this chapter proposes to

deal with this issue during the training phase by applying a pre-registration of the shape

examples, in order to avoid shape artifacts caused by the misalignments. In the test phase,

the 3D shape model is given the ability to fit misaligned slices through the introduction of

two additional deformation modes for each contour, which enables the model to shift the

contours within the slice plane. The results show that there is a significant advantage in

using these new deformation modes. Without them, the model is unable to accurately fit
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4. 3D Segmentation

the LV border in many volumes, consequently leading to a large number of gross errors.

The statistical results shows that this proposed approach, which relies on an exten-

sion of EM-RASM to 3D data, is able to achieve good segmentation results, and is able

to outperform the 2D setting described in the previous chapter. However, there are still

examples in which the algorithm is not able to obtained accurate segmentations of the LV,

particularly in the systolic phase of the sequence. This suggests that only by using tem-

poral information will the segmentation algorithm take advantage of all the information

available and achieve accurate segmentations. This is explored in the next chapter of this

thesis.
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5. Segmentation Using Temporal Information

The two previous chapters have addressed the segmentation of the LV using infor-

mation extracted from: 1) individual MR slices (2D), and 2) the whole MR volume (3D),

respectively. The next step considered in this thesis consists of integrating information

about the LV temporal dynamics in the segmentation algorithm. This information has

potential to improve the segmentation results by imposing constraints on how segmenta-

tions differ from one frame to another. This is particularly useful when the LV is not so

clearly visible, or when the detected observations are not trust worthy, because it allows

the model to disregard the observations extracted from the image and rely on prior knowl-

edge about the LV dynamics. However, the integration of dynamical information raises

two questions: 1) how to capture prior knowledge of the temporal variation of the LV; and

2) how to use this information in the segmentation algorithm. These two topics are the

main focus of this chapter.

5.1 Introduction

A typical reasoning for a segmentation problem that is extended to the temporal

dimension is that is becomes a tracking problem. In general terms, the goal of a track-

ing algorithm is to determine the position of a target object throughout time, e.g., for

surveillance purposes [19]. For most applications, the standard framework is a sequential

alternation between receiving a new frame and updating the position of the target object

in that frame. This can be viewed as an online segmentation scheme, in which the contour

of the object is updated every time a new input is provided.

In medical applications, tracking algorithms have been popularly used in several

applications, such as echocardiography [58, 122], microscopy [48, 116], as well as CMR

[168, 190]. However, in CMR segmentation, there is no need for online algorithms, since

the segmentation is only performed after the acquisition has been completed and the whole

sequence is available.

Alternatively, it is possible to use temporal information as prior knowledge of the

relationship between contours in different frames of an MR sequence. We know, for in-

stance, that the LV is smaller in the ES phase (after heart contraction) than in the ED

phase (after heart dilation), or that the segmentation of two consecutive frames should be

similar. This information about the LV dynamics can be used to impose constraints on

the segmentations.

The goal of this chapter is to embed temporal information into the algorithms devel-

oped in the previous chapters, and take advantage of both. Two possibilities are explored:

i) using a vector field-based model [126] of the LV dynamics to impose the expected

contraction-dilation relationship during the ES and ED phases; and ii) using regulariza-

tion over the shape model parameters to impose constraints on their expected evolution

throughout the cardiac cycle.

88



5.2 Background

Deformation mode 1

 𝒙 + 2 𝜆1𝒅1

 𝒙

 𝒙 − 2 𝜆1𝒅1

Deformation mode 2

 𝒙

 𝒙 + 2 𝜆2𝒅2

 𝒙 − 2 𝜆2𝒅2

Figure 5.1: First two deformation modes of a 2D shape model of the lip contour.

The remainder of this chapter is organized as follows. The next section presents an

overview of previous works and their benefits and disadvantages. Sections 5.3-5.4 describe

the two proposed approaches. Section 5.5 describes the experimental setup and Section

5.6 shows and discusses the results. Finally, Section 5.7 concludes the chapter.

5.2 Background

Using temporal information within an ASM-based approach may be accomplished

by either: i) embedding this information in the deformation modes of a high-dimensional

shape model [11, 44, 64, 100]; or ii) combining the ASM with a specific dynamical model

[10,24,30,172]. A brief description of these approaches and the state of the art is presented

next.

5.2.1 High-dimensional Shape Model

As described in the previous chapters, statistical shape models have the ability to

capture the main modes of variation of a particular shape. For instance, a 2D shape model

was used in Chapter 3 to define a 2D contour with N points, x ∈ R2N×1, based on a mean

shape, x, and a linear combinations of the main modes of deformation D ∈ R2N×L,

x = x+Db, (5.1)

where each column of D, say dl ∈ R2N×L, l = 1, . . . , L, represents a specific mode of

deformation, and b are the deformation coefficients. In this case, each mode of deformation

applies a particular displacement to the position of each model point. As an illustrative

example, Fig. 5.1 shows the influence that the first two main modes of deformation have

in the shape model of the lips, obtained from the dataset described in Section 3.7.3.2. In

this example, the first mode changes how wide the mouth is opened, and the second mode

is related to the position of the corners of the lips.

89



5. Segmentation Using Temporal Information

Ex
am

p
le

 1
Ex

am
p

le
 2

Ex
am

p
le

 3
Ex

am
p

le
 4

Figure 5.2: Examples from a training set for a 2D+t shape model in CMR. Each example consists

of a set of T = 20 contours that define the LV border throughout the cardiac cycle (represented

along the horizontal axis).

By analogy, in order to capture the variation of the LV along the cardiac cycle,

one has to consider a higher-dimensional shape model, say x′ ∈ R2NT×1, which is the

concatenation of T 2D contours (one contour for each frame). The training set for this

2D+t model would be composed of examples such as the ones shown in Fig. 5.2, i.e., each

example comprises T contours of the LV border. By performing PCA on a dataset with

these examples, we obtain a shape model that captures the average contours throughout

the cardiac cycle, as well as the most significant modes of variation. Fig. 5.3 illustrates

the mean shape and the first main mode of variation. It is possible to see that this mode

influences how much the LV contracts during the systolic phase.

High-dimensional shape models have been previously used for the segmentation of

2D+t sequences [11,44,64,100]. The downside of this approach is that they require a large

amount of training data, a problem that is typically called the curse of dimensionality

[11, 131]. For instance, the public dataset [11] that was used in the previous chapters has

33 MR sequences, each with T = 20 and an average of S = 6 slices. Consequently, the

training set would be composed of, at most, (33−1)×6 = 192 samples. However, in order

to learn a statistical shape model with N points, a 2NT -by-2NT covariance matrix has

to be estimated from the training data. Assuming N = 40, as in the previous chapters,

this would lead to a 1600-by-1600 covariance matrix being estimated from a 1600-by-192

data matrix, which is not reasonable.

Another consideration that has to be taken into account is the lack of examples to

capture the variability required to have a generalizable model. The inability of shape mod-

els to deal with test data that is not represented in the training set (e.g., a cardiomyopathy

that changes the contractile pattern of the LV) has always been a source of complaint in
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 𝒙 − 2 𝜆1𝒅1

 𝒙

 𝒙 + 2 𝜆1𝒅1
Deformation mode 1

Figure 5.3: First main deformation mode for a 2D+t shape model of the LV in CMR.

the literature, particularly for medical images [160]. Although this is commonly overlooked

for low-dimensional shape models, for high-dimensional models this becomes increasingly

troublesome, which is why few works use high-dimensional shape models [11].

Most works resort to hierarchical ASMs [11,44,100] to overcome the curse of dimen-

sionality. This variation of the traditional ASM divides the contour into several patches

and learns a shape model for each patch. The main advantage is the significant reduction

in the data dimensionality, thus allowing for temporal modes of variation to be learned.

However, separating the contour model into patches leads to a loss of connectivity notion

between patches, which may cause unexpected segmentations to be obtained. Further-

more, the model is also unable to capture the patterns of temporal variation that the

patches might share.

5.2.2 Modeling the LV Dynamics

One of the main contributions to the understanding and modeling of the LV dy-

namics was the development of the tagged-MRI modality. As explained in Chapter 2,

tagged-MRI allows a grid of specific myocardial points to be tracked throughout the car-

diac cycle. With this information, it is possible to extract detailed information about

tissue deformation, which is very difficult using other image modalities due to the lack

of visual landmarks. Furthermore, over the past twenty years, there has been exten-

sive research on electro-mechanical models of the heart [10, 24, 30, 72, 145, 165, 172, 181].

These models mimic the electrical stimulation of a complex network of myocardial fibers

in the cardiac muscle and the resulting motion pattern, which helps understanding and

diagnosing myocardial diseases. These developments, along with advances in the imaging

technology, have fostered the appearance of many works in recent literature that tackle

the problem of identifying pathological motion patterns through the analysis of muscle
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Figure 5.4: LV dynamics on eight frames along the cardiac cycle. Each plot shows the LV contour

in red and the blue arrows depict the displacement from the previous to the current frame.

stress-strain [10, 40, 60, 134, 136, 186]. In the case of the LV segmentation, the focus is on

the deformation pattern associated with the LV contour, shown in Fig. 5.4. Therefore,

there is no need for such complex biological-inspired models.

Previous works have artificially modeled that LV dynamics using different approaches.

For instance, Lynch et al. [107] model the contraction and dilation of the LV contour

through the expected distance map of a level-set framework. The premise is that the dis-

tance of the LV contour to an arbitrary point in space (outside the LV chamber) increases

and decreases as the heart contracts and dilates, respectively. This information is used

to enforce this motion pattern on the segmentations of an MR sequence. Registration-

based and optical flow-based methodologies have also been used to model temporal de-

formations [13, 56, 62, 83, 84, 91, 182]. Instead of using anatomical cues to extract the LV

dynamics, these approaches rely on analyzing the motion of the image (or image features).

Regardless of how this prior knowledge is captured, it is necessary to embed this

knowledge during the segmentation process. The classical tracking approach [42, 164,

168, 190] is to consider the dynamical model as a predictor of the LV position in one

frame based on the segmentation of the previous frame. In other words, the LV dynamics

provides an initialization (or bias) based on the previous frame. This allows replacing

the human initialization in each frame (as was required in the previous chapters) with an

automatic initialization provided by the dynamical model1. Fig. 5.5 shows a scheme based

on this approach, in which the prediction model updates the position of the LV obtained

in a frame f before the automatic segmentation of frame f + 1 begins2. This process is

repeated sequentially until the algorithm reaches the final frame of the MR sequence.

Although a more automated algorithm is desirable, it also has drawbacks. For

instance, the prediction model is unlikely to provide better initializations than a human,

1Except for the first frame, which has no previous information of the LV position
2We adopt the notation f for frame instead of t to avoid confusing it with the iteration of the EM

algorithm.
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Figure 5.5: Schematic representation of an algorithm using the LV dynamics as a prediction

model. The segmentation of a frame f is used obtain an initial guess for frame f + 1 by applying

the prediction model. This process repeats for each new frame.

i.e., the overall segmentation accuracy would be worse with this approach. Furthermore,

it allows the accumulation of errors from one frame to the next when the output of the

automatic segmentation is not accurate, leading to an increase in gross errors.

The drawbacks of tracking approaches are easily avoided by considering algorithms

that segment all the frames concurrently. Given the fact that the whole MR sequence is

available, it is possible to use the dynamical model to impose constraints on the whole

sequence, instead of constraining each frame separately. The simplest approach relies on

temporal smoothing, which forces the segmentations of consecutive frames to be similar

between each other [120]. In this type of approach, the only prior information used is the

assumption that the position of the LV contour changes smoothly over time. Periodicity

has also been considered to improve the robustness of algorithms with weak priors [160].

More complex models, such as the ones presented above, can also be used to impose more

detailed dynamical patterns on the segmentations.

In the particular case of this work, in which a shape model is used to segment, the

LV dynamics are embedded using two different approaches. First, temporal smoothness

will be imposed through the shape model parameters. Instead of imposing small variation

of the contour points’ position directly, the idea is to smooth the variation of the shape
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model parameters throughout time. Second, the LV dynamics will be modeled through

the expected displacement of the contour points explicitly (blue arrows in Fig. 5.4) using

vector fields similar to those obtained with optical flow approaches. The following sections

describe these two approaches in more detail.

5.3 Segmentation of MR Sequences Using Vector Fields

In this section, the goal is to learn a model of the LV dynamics, which corresponds

to estimating the blue arrows depicted in Fig. 5.4. For this purpose, it is important to

know the answer to the following questions: i) is it possible to describe the LV dynamics

using a single model, or is it better to have specific models for specific frames? and ii)

what is the influence of the slice position on the LV dynamics?

Regarding the first question, Fig. 5.4 clearly shows two distinct patterns: the LV

shrinking due to the contraction of the cardiac muscle (systolic phase), and the LV dilating

due to muscle relaxation (diastolic phase). Therefore, at least two different models have

to be considered to describe the patterns of variation of the LV contour throughout the

MR sequence. Furthermore, by looking closely at the length of the arrows, it is possible

to see that it changes in each new frame. This suggests that having a specific models

for each frame could be beneficial. However, in order to learn frame-specific models, the

training data would have to be split into several groups (one for each frame), which would

lead to an insufficient number of samples. Thus, the answer to the first question involves

a trade-off between learning frame-specific dynamical models and having a larger training

set.

Regarding the second question, there is also a trade-off between learning a specific

dynamical model for each slice, which would also require splitting the training data into

several groups, and learning more general dynamical models. But taking into account that

MR volumes have a variable number of slices (recall Chapter 4), the former may not be

the best approach.

A methodology that is able to deal with these issues is to use vector fields (VF)3,

which have been widely used to represent the behavior of dynamical systems [86]. They

model the dynamics of an object as a function of its position.

We propose to use two 3D VFs [126] to describe the LV dynamics during the cardiac

cycle. More specifically, the systolic and diastolic phases of the cardiac cycle are each

modeled using a specific 3D VF. The vectors in the VF are located in a regular 3D

grid, such that the displacement of each point in the LV contour in a specific slice is

obtained through interpolation of the vectors in the grid. This approach has the additional

advantage of avoiding the problems associated to the variable number of slices in MR

volumes, since these fields do not require the contour points to match the grid nodes. An

3Denoted by displacement, velocity or motion fields, depending on the application.
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(a) (b)

Figure 5.6: Vector field of the LV dynamics during: (a) systole and (b) diastole.

example of a middle slice of the VFs is shown in Fig. 5.6.

The following sections describe the VF parametrization, the estimation of these

fields from training data, and how they are combined with the shape model formulation.

5.3.1 Vector Field Parametrization

In this section, the trajectory of each LV contour point throughout the cardiac cycle

is modeled by two VFs. These VFs are assumed to be non-parametric representations of

the velocities, which means it is necessary to discretize them within the data domain. We

adopt the methodology described in [126], which consists of using a 3D grid with nodes

at specific positions within the MR volume space, such that each node has an associated

velocity vector. Since the LV corresponds to a very small fraction of the total image, it is

beneficial to place the VF grid in a ROI concentric with the LV, as shown in Fig. 5.7. The

velocity of a point in a generic position, which does not necessarily match the position of

a node in the grid, is then obtained through tri-linear interpolation.

Formally, let V : R3 7→ R3 be a specific 3D VF, defined on a grid of N nodes. The

vector V =
[
v>1 , . . . ,v

>
N

]> ∈ R3N denotes the collection of the all the velocity vectors in

the grid, where vn ∈ R3 is the vector associated with the n-th node. For a specific position

x̃ ∈ R3 within the image domain, the corresponding velocity vector, V (x̃) ∈ R3, is given

by

V (x̃) =
N∑
n=1

φn(x̃)vn

= Φ(x̃)V , (5.2)

where Φ(x̃) ∈ R3×3N is a sparse matrix that determines the contribution of each node in
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Figure 5.7: 2D view of the region of interested within which the VF grid (represented by the red

dots) is located.

the grid to the computation of V (x̃), such that

Φ(x̃) =


φ1(x̃) 0 0 . . . φN (x̃) 0 0

0 φ1(x̃) 0 . . . 0 φN (x̃) 0

0 0 φ1(x̃) . . . 0 0 φN (x̃)

 . (5.3)

In the tri-linear interpolation scheme, only the eight closest grid nodes contribute, i.e., at

most only eight terms of {φ1(x̃), . . . , φN (x̃)} are non-zero, and they satisfy the constraints

0 ≤ φn(x̃) ≤ 1 (5.4)
N∑
n=1

φn(x̃) = 1. (5.5)

5.3.2 Estimation of the Vector Field

The two VFs used to describe the LV motion are estimated from a training data.

This data consists of sequences of 20 contours along the cardiac cycle, for different slice

positions (depending on the number of slices in each volume). Each sequence is divided

in two phases: the systolic phase, in which the LV contracts, and the diastolic phase,

in which the LV dilates. The frames of each phase are identifying by measuring the LV

volume difference between consecutive frames: if the volume reduces, those frames belong

to the systolic phase (approximately frames 1 to 8); if the volumes increases, then they

belong to the diastolic phase (approximately frames 9 to 20). The goal of each VF is to

model the trajectory of each contour point in the corresponding cardiac phase.
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Consider one particular VF (the following procedure is valid for both VFs, but use

different training trajectories). Let us assume we are given a set of K independent trajecto-

ries from a training set, such that the k-th trajectory is given by X k = {x̃k(1), . . . , x̃k(T )},
where x̃(f) ∈ R3 denotes the position of a point at a specific frame f = 1, . . . , T . With-

out loss of generality, the trajectories are assumed to be all sampled at the same frames

and the same number of times. The VF describes the trajectory of a point through the

following dynamical model [126]

x̃(f) = x̃(f − 1) + V
(
x̃(f − 1)

)
+w

= x̃(f − 1) + Φ
(
x̃(f − 1)

)
V +w, (5.6)

where w ∼ N (0, σI) is white noise with Gaussian distribution.

The joint probability distribution of the trajectories in the training set, {X 1, . . . ,XK},
and the VF, V , is given by

p
(
X 1, . . . ,XK ,V

)
= p
(
X 1, . . . ,XK

∣∣∣V )p(V )
=

K∏
k=1

p
(
X k
∣∣∣V )p(V ). (5.7)

The first term in the product is the likelihood of trajectory X k, and the second term

corresponds to the prior probability of the coefficients of the VF. The model defined in

(5.6) allows each of the likelihood terms to be factorized, since the position in a frame f

only depends on the position in f − 1, leading to

p
(
X k
∣∣∣V ) = p

(
x̃(1)

) T∏
f=2

p
(
x̃(f)

∣∣∣x̃(f − 1),V
)
, (5.8)

where p
(
x̃(1)

)
is a constant, and

p
(
x̃(f)

∣∣∣x̃(f − 1),V
)

= N
(
x̃(f)

∣∣∣x̃(f − 1) + Φ
(
x̃(f − 1)

)
V ;σ2I

)
. (5.9)

Regarding the prior, p(V ), the formulation described in [126] uses a Gaussian prior

that acts as a smoothness regularizer. This is accomplished by penalizing the difference

between the velocity vectors of neighboring nodes. This leads to VFs in which all the

vectors are pointing predominantly in the same direction. Here, the field is also expected

to be smooth in the sense that its vectors should predominantly point either inwards or

outwards, as shown in Fig. 5.6. In order to achieve the desired regularization effect, we

adopt a prior term that penalizes large deviations in the radial and tangential components

of the velocity vectors, with respect to a central point, c. Formally, let pn be the position

of the n-th node, and rn the corresponding normalized radial direction,

rn =
pn − c
‖pn − c‖

. (5.10)
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The prior acts on transformed velocity vectors, v′n ∈ R2, n = 1, . . . , N , which corresponds

to the radial and tangential components of vn, obtained by

v′n = Rnvn, (5.11)

where Rn ∈ R2×3 is a transformation matrix that extracts the length of the radial and

tangential components of the velocity vector, vn, in the n-th grid node, given by

Rn =

rn
∣∣∣∣∣


0 −1 0

1 0 0

0 0 0

 rn

>

. (5.12)

This transformation can be performed for the whole VF by

V ′ =


R1 0 · · · 0

0 R2
...

...
. . . 0

0 · · · 0 RN




v1

v2
...

vN


= RV . (5.13)

The goal of the regularization is to penalize the squared difference between all pair

of nodes (m,n) encoded in the neighborhood set N .∑
(m,n)∈N

∥∥v′m − v′n∥∥2 =
∑

(m,n)∈N

(v′m − v′n)>(v′m − v′n). (5.14)

Combining (5.14) with (5.11) leads to∑
(m,n)∈N

(Rmvm −Rnvn)>(Rmvm −Rnvn). (5.15)

The neighborhood set N is based on a 6-connected neighborhood given by the 3D

grid of the VF. The difference between a pair of neighboring nodes, v′m − v′n, may be

compactly written in matrix notation for all the pairs in the grid as


v′1 − v′2
v′2 − v′3

...

 =



1 0 −1 0 . . . 0

0 1 0 −1 0 . . . 0

0 0 1 0 −1 0 . . . 0

0 0 0 1 0 −1 0 . . . 0
...


V ′ = ∆RV , (5.16)

where each two lines of ∆ encode the difference between a specific pair of nodes. Thus,

the sum in (5.14) may be rewritten as

(∆RV )>(∆RV ) = V >R>∆>∆RV . (5.17)
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This regularization effect is obtained using a Gaussian prior probability for V , with zero

mean and covariance Λ, such that Λ−1 = αR>∆>∆R, where α is a parameter that allows

the strength of the prior to be tuned (larger values of α lead to more regularized fields).

Thus, the prior term can be written as

p
(
V
)
∝ exp

{
−1

2
V >Λ−1V

}
∝ exp

{
−α

2
V >R>∆>∆RV

}
. (5.18)

Combining (5.7) with (5.8) and (5.18), the maximum posterior estimate of the VF

is given by

V ? = arg max
V

log p
(
X 1, . . . ,XK ,V

)
= arg min

V

1

σ2

K∑
k=1

T∑
f=2

∥∥∥x̃k(f)− x̃k(f − 1)−Φ
(
x̃k(f − 1)

)
V
∥∥∥2 + αV >R>∆>∆RV .

(5.19)

The solution of (5.19) is obtained through the computation of the derivative of the objec-

tive function with respect to V , which leads to the following linear equationαV >R>∆>∆R+
1

σ2

K∑
k=1

T∑
f=2

Φ>
(
x̃k(f − 1)

)
Φ
(
x̃k(f − 1)

)V ? =

=
1

σ2

K∑
k=1

T∑
f=2

Φ>
(
x̃k(f − 1)

)(
x̃k(f)− x̃k(f − 1)

)
. (5.20)

Note that since the trajectories are coplanar with the volume slices, the third com-

ponent of the VFs is always going to be zero. Examples of the trajectories are shown in

Fig. 5.8, and the corresponding VFs are learned using the procedure described above for

a grid of 20 × 20 × 8. Fig. 5.6 shows the 4th slice of the VF for the systolic and for the

diastolic phases.

5.3.3 Segmentation of the LV with Vector Fields

The VFs learned using the procedure described in the previous section model the

LV dynamics along the cardiac cycle. In order to use this information in the segmentation

process, we take advantage of the EM-RASM formulation described in Chapters 3 and 4.

Temporal information is added both to the 2D and to the 3D formulation of EM-RASM,

using a similar rational. In this section, we only describe the VF approach for the 2D

setting for the sake of readability, since the notation is simpler.

Recalling Chapter 3, the shape model parameters in iteration t, Θ̂(t), which include

the transformation parameters, a and t, and the deformation coefficients, b, were updated

by maximizing an auxiliary function,

Θ̂(t+1) = arg max
Θ

Q
(
Θ; Θ̂(t)

)
, (5.21)
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beginning

end

trajectory

Figure 5.8: Examples of the trajectories of LV contour points. The top row shows the systolic

phase and the bottom shows the diastolic phase.

This led to a weighted least squares minimization problem, in which the goal is to find the

shape model parameters that minimize the sum of weighted distances between the model

points, x̃i, which depend on the shape model parameters Θ̂(t) through (3.20), and some

observation points, yij , extracted from the images. The weight of each observation point,

wij1 , is given by the likelihood of that point belonging to the LV border (i.e., having label

kij = 1). Thus, the objective function was given by

Θ̂(t+1) = arg min
Θ

N∑
i=1

M i∑
j=1

wij1
∥∥x̃i − yij∥∥2

Σi + p(Θ), (5.22)

where ‖v‖2Σ = v>Σ−1v, Σi is a diagonal covariance matrix associated with the i-th model

point, and p(Θ) is the prior probability of the model parameters.

In this chapter, each variable explicitly depends on the frame, f = 1, . . . , T , of the

MR sequence to which they are associated. The optimization problem in (5.22) is rewritten

as

{Θ̂(1), . . . , Θ̂(T )}(t+1) = arg min
Θ(1),...,Θ(T )

T∑
f=1

N∑
i=1

M i∑
j=1

wij1 (f)
∥∥x̃i(f)− yij(f)

∥∥2
Σi . (5.23)

The goal is to penalize large deviations between the each shape model point, x̃(f), f =

2, . . . , T and its expected position, given by

yiV (f) = x̃i(f − 1) + Vf (x̃i(f − 1)), (5.24)
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where Vf (x̃i(f − 1)) is given by the active VF in frame f (either the systolic VF or the

diastolic VF), using (5.2). This is achieved by adding a new term,

T∑
f=2

N∑
i=1

∥∥x̃i(f)− yiV (f)
∥∥2

Σi , (5.25)

to the objective function in (5.23). This leads to

{Θ̂(1), . . . , Θ̂(T )}(t+1) = arg min
Θ(1),...,Θ(T )

T∑
f=1

N∑
i=1

M i∑
j=1

wij1 (f)
∥∥x̃i(f)− yij(f)

∥∥2
Σi +

+ λV

T∑
f=2

N∑
i=1

∥∥x̃i(f)− x̃i(f − 1)− Vf (x̃i(f − 1))
∥∥2

Σi , (5.26)

where λV is a constant that determines the importance of the VF term.

Notice that Vf (x̃i(f−1)) should also depend on the model parameters, Θ (recall that

x̃i(f − 1) is given by (3.20)). However, this would make the optimization problem much

more complex. Thus, we make the assumption that yiV (f−1) = x̃i(f−1)−Vf (x̃i(f−1)) is

fixed given the current shape model parameters. In practice, this can be seen as considering

new observation points given by the expected LV motion, which are all weighted by λV .

This will introduce a bias in the estimation of the shape model parameters that will make

the segmentations combine the information from the image with temporal dynamics.

The solution of (5.26) is computed by alternating between the minimization with

respect to the transformation parameters, a(f), t(f), f = 1, . . . , T , and the minimiza-

tion with respect to the deformation coefficients, b(f), f = 1, . . . , T , as in the previous

formulation.

Update of the Transformation Parameters The updated transformation parame-

ters in iteration t + 1 of EM-RASM are obtained by computing the derivative of (5.26)

with respect to a(f) and t(f), keeping b(f) constant. The solution for each frame f is

independent, leading to the following linear equation

(
M(f) +MV (f)

)â(f)(t+1)

t̂(f)(t+1)

 = c(f) + cV (f) (5.27)

where M(f) and c(f) are, as in the previous formulation (see (3.34)), given by

M(f) =
N∑
i=1

M i∑
j=1

wij1 (f)

Xi>(f)Σi−1Xi(f) Xi>(f)Σi−1

Σi−1Xi(f) Σi−1

 , (5.28)

c(f) =

N∑
i=1

M i∑
j=1

wij1 (f)

Xi>(f)Σi−1yij(f)

Σi−1yij(f)

 , (5.29)
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and

MV (f) =λV

N∑
i=1

Xi>(f)Σi−1Xi(f) Xi>(f)Σi−1

Σi−1Xi(f) Σi−1

 , (5.30)

cV (f) =λV

N∑
i=1

Xi>(f)Σi−1yiV (f)

Σi−1yiV (f)

 . (5.31)

Notice that this solution only differs from the one in (3.34) is the summation over the

”new” observation points, yiV (f), weighted by λV .

Update of the Deformation Parameters The deformation parameters, b(f), f =

1, . . . , T , are updated by computing the derivative of (5.26) with respect to each b(f). As

in the case of the transformation parameters, the solution to this minimization problem

is very similar to (3.35), except for the additional summation over the VF observation

points, yiV (f), (
N(f) +NV (f)

)
b̂(f)(t+1) = d(f) + dV (f), (5.32)

with

N(f) =
N∑
i=1

M i∑
j=1

wij1 (f)Di>Â>(f)(t+1)Σ
i−1Â(f)(t+1)D

i, (5.33)

NV (f) =λV

N∑
i=1

Di>Â>(f)(t+1)Σ
i−1Â(f)(t+1)D

i, (5.34)

d(f) =
N∑
i=1

M i∑
j=1

wij1 D
i>Â>(f)(t+1)Σ

i−1
(
yij(f)− Â(f)(t+1)x

i − t̂(f)(t+1)

)
, (5.35)

dV (f) =λV

N∑
i=1

Di>Â>(f)(t+1)Σ
i−1
(
yiV (f)− Â(f)(t+1)x

i − t̂(f)(t+1)

)
. (5.36)

The new update equations for the shape model parameters have embedded prior infor-

mation about the LV motion, which is expressed in terms of the expected displacement

between consecutive frames, provided by the VF.

5.4 Segmentation of MR Sequences Using Temporal Regu-

larization

A different approach to embed temporal information in the LV segmentation is

explored in this section. The goal is to use the expected variation shape model parameters

throughout the cardiac cycle (shown in Fig. 5.9) to describe the displacements depicted in

Fig. 5.4, which is an indirect way of capturing the LV dynamics contrary to the approach

described in the previous section.
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As in the case of the VFs, the approach proposed in this section can be combined

with both the 2D and the 3D formulations of EM-RASM. To keep the notation simpler

and improve readability, we only detail the combination with the 2D approach, but the

same rational is used for the 3D setting.

Recal the equation of the 2D shape model (see (3.2)), in which the contour of LV is

given by

x̃ = Tθ(x+Db), (5.37)

where b ∈ RL are the deformation coefficients, and Tθ(·) is a similarity transformation that

scales, rotates, and translates the contour based on parameters θ = {a = [a1, a2]
> , t =

[t1, t2]
>}.
As in the previous section, let us explicitly associate the shape model parameters

with a specific frame, f = 1, . . . , T , by defining them as a(f), t(f) b(f). In this approach,

we assume that the LV motion is entirely described by the variation of the shape model

parameters a(f) and t(f) of the global transformation, i.e., that there is no correlation

between the variation of the deformation coefficients b(f) and the LV dynamics. This

assumption is reasonable given the fact that the deformation coefficients, b(f), are only

related with local variation of the contour shape, and not the overall motion of the LV.

The ground truth contours of a training set can be used to analyze the variation of

the shape model parameters throughout time. By fitting the shape model to the contours of

each frame in the training set, the corresponding shape model parameters can be extracted.

There are two possibilities to analyze the variation of the parameters: i) by com-

paring with the first frame; and ii) by comparing with the previous frame. These two

possibilities are depicted in Fig. 5.9 (a) and (b), respectively. Fig. 5.9 shows the scale of

the shape model, given by ‖a(f)‖, which approximately corresponds to a1(f), since a2(f)

is almost zero in all cases 4. This also means that the rotation, given by arctan (a2a1 ) is

approximately zero. Regarding the first possibility, the figure shows

scale: a1(f)/a1(1)

translation: t(f)− t(1)
, f = 1, . . . , T, (5.38)

while for the second possibility the figure shows

scale: a1(f)/a1(f − 1)

translation: t(f)− t(f − 1)
, f = 2, . . . , T, (5.39)

with T = 20.

The periodic behavior of contraction followed by dilation that is characteristic of

the LV is very clear for the scale shown in Fig. 5.9 (top row). Regarding parameter t(f),

the only noticeable pattern is related to t1(f), which shows that the LV tends to move left

4The highest value across all the training set is |a2| = 1.6× 10−4.
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(a) (b)

Figure 5.9: Variation of the global transformation parameters of the shape model throughout

the cardiac cycle: (a) relative to the first frame; (b) relative to the previous frame. The top row

shows the scale, and the other rows show the two coordinates of the translation. Each plot shows

the mean value (line) and the standard deviation (region) observed in the training set.

while contracting and return when dilating. Other than that, the only strong evidence is

the fact that the difference between consecutive frames is small.

The dependencies depicted in Fig. 5.9 allow the LV dynamics to be modeled through
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5.4 Segmentation of MR Sequences Using Temporal Regularization

constraints on the shape model parameters. The following section describes how the pa-

rameter variation given by the second possibility is taken into account during the segmen-

tation process.

5.4.1 MAP Formulation With Informative Priors

In order to embed the parameter variation during the segmentation process, we take

advantage of the EM-RASM algorithm proposed in Chapter 3. The idea of the MAP for-

mulation of the algorithm, described in Section 3.4.2, is to maximize the joint probability

distribution of the observations extracted from the image, Y , their corresponding labels,

K, and the set of model parameters Θ (see (3.38)). In this case, since the whole MR

sequence is being segmented simultaneously, the time dependency of these variables has

to be considered. Thus, for each frame f = 1, . . . , T in the sequence, the corresponding

variables are denoted by Y (f), K(f) and Θ(f), respectively.

Assuming that observations in different frames are statistically independent (and

the same for their labels), then the log joint probability for this new formulation is defined

as

P
(
Y (1), . . . ,Y (T ),K(1), . . . ,K(T ),Θ(1), . . . ,Θ(T )

)
=

=
T∑
f=1

log p
(
Y (f),K(f)

∣∣∣Θ(f)
)

+ log p
(
Θ(1), . . . ,Θ(T )

)
. (5.40)

This equation includes the sum over all the likelihood terms, p
(
Y (f),K(f)

∣∣Θ(f)
)
, which

are used in the ML formulation, and prior term for the model parameters, p
(
Θ(1), . . . ,Θ(T )

)
,

where Θ(f) = {a(f), t(f), b(f),p(f)}, where p(f) is the probability of the observation

models (recall Section 3.4).

In Chapter 3, the model parameters were assumed to be independent between each

other and across all the frames (although the latter part was assumed implicitly by seg-

menting each frame individually). Now, only the former holds, i.e.,

p
(
Θ(1), . . . ,Θ(T )

)
=

= p
(
a(1), . . . ,a(T )

)
p
(
t(1), . . . , t(T )

)
p
(
b(1), . . . , b(T )

)
p
(
p(1), . . . ,p(T )

)
. (5.41)

Furthermore, p(a(f)) and p(t(f)) were assumed to be defined as the non-informative

Jeffreys’ priors. In this chapter, these prior terms will be used to embed the LV dynamics

through the expected parameter variation presented above.

Parameter a(f) The scale and rotation parameters, a(f), f = 1, . . . , T , are modeled

by a multivariate Gaussian prior probability given by

p
(
a(1) . . . ,a(T )

)
= N

([
a>(1), . . . ,a>(T )

]>∣∣∣∣0,Λa) , (5.42)
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where Λa is a covariance matrix that accounts for the dependencies between neighboring

frames, such that

p
(
a(1), . . . ,a(T )

)
∝ exp

(
− λa

2

T∑
f=2

‖a(f)−Hfa(f − 1)‖2
)
, (5.43)

where λa is a constant parameter that is used to tune the weight of the prior, and

Hf =

hf 0

0 1

 (5.44)

is the update matrix, where hf is a constant, learned from a training set, given by the

average value of a(f)
a(f−1) for each frame f = 2, . . . , T . This coefficient is related to the curve

shown for the second possibility discussed previously (see (5.39)), shown in the top row

of Fig. 5.9 (b). In practice, the prior (5.43) expresses two ideas: i) that the expected

value of a1(f) is given by hfa1(f − 1); and ii) that a2(f) is a static parameter, i.e., it is

not supposed to change significantly throughout the cardiac cycle. This prior intrinsically

models the dynamical pattern that the LV exhibits during the cardiac cycle by penalizing

large deviations from expected parameter variation.

Parameter t(f) Similarly to a(f), the translation parameters, t(f), f = 1, . . . , T , are

assumed to follow a prior probability defined by

p
(
t(1), . . . , t(T )

)
= N

([
t>(1), . . . , t>(T )

]>∣∣∣∣0,Λt)

∝ exp

−λt
2

T∑
f=2

‖t(f)− t(f − 1)‖2
 , (5.45)

where λt defines the weight of this prior. In this case, translation coefficient was assumed

to be similar throughout the cardiac cycle, with no particular dynamical behavior. Al-

though Fig. 5.9 (b) shows that the first coordinate of the translation coefficient, t1(f),

tends to have a characteristic pattern throughout the cardiac cycle, modeling it as a static

parameter does not mean it will lead to poor results. In fact, this prior will lead to a

regularization term in the update equations, as will be shown next, that simply prevents

large differences between the values of t(f) of consecutive frames.

Revisiting the MAP formulation of EM-RASM, the shape model parameters for a

specific sequence are iteratively obtained by performing the following steps.

5.4.1.1 E-step

Let Θ̂(t) = {Θ̂(t)(1), . . . , Θ̂(t)(T )} = {â(f), t̂(f), b̂(f), p̂(f) : f = 1, . . . , T}(t) be the

estimates of the model parameters at iteration t for all the frames in the MR sequence.
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5.4 Segmentation of MR Sequences Using Temporal Regularization

Also, let Y = {Y (1), . . . ,Y (T )} and K = {K(1), . . . ,K(T )} be a set of observations

extracted from all the frames and their corresponding labels, respectively. Given the set

of observations, Y , and the most recent estimates, an auxiliary function Q
(
Θ; Θ̂(t)

)
is

defined as the expected value of the log-joint distribution in (5.40),

Q
(
Θ; Θ̂(t)

)
= EK

[
P
(
Y ,K,Θ

)∣∣∣Y , Θ̂(t)

]
= EK

 T∑
f=1

log p
(
Y (f),K(f)|Θ(f)

)+ log p
(
Θ(1), . . . ,Θ(T )

)
. (5.46)

The first term is the same that appears in the ML formulation. By expanding the

expectation for the two possible values, k = {0, 1}, it leads to an equation similar to (3.28).

The only differences are the additional sum over the T frames and the explicit dependency

of each variable on the frame f .

Regarding the second term - the prior, it has been shown it can be expanded as in

(5.41), leading to

log p
(
Θ(1), . . . ,Θ(T )

)
= log p

(
a(1), . . . ,a(T )

)
+ log p

(
t(1), . . . , t(T )

)
+

+ log p
(
b(1), . . . , b(T )

)
+ log p

(
p(1), . . . ,p(T )

)
. (5.47)

Each term has been previously defined in (5.43), (5.45), (3.45), and (3.46), respectively,

which are summarized here:

log p
(
a(1), . . . ,a(T )

)
= −λa

2

(
T∑
f=2

‖a(f)−Hfa(f − 1)‖2
)

+ ca, (5.48)

log p
(
t(1), . . . , t(T )

)
= −λt

2

 T∑
f=2

‖t(f)− t(f − 1)‖2
+ ct, (5.49)

log p(b(1), . . . , b(T )) =

T∑
f=1

log p(b(f)) = −1

2
b>(f)Σb−1b(f) + cb, (5.50)

log p(p(1), . . . ,p(T )) =
T∑
f=1

log p(p(f)) = cp. (5.51)

Note that this formulation implies that only the transformation parameters a(f) and t(f)

are correlated between neighboring frames. Without the priors for these parameters, this

would be the exact same formulation as in the previous chapters.

5.4.1.2 M-step

In the M-step of the EM algorithm, the idea is to find the model parameters Θ

that maximize the auxiliary function defined in (5.46). The difference with respect to the

previous formulations resides in the new prior terms for the transformation parameters.

107



5. Segmentation Using Temporal Information

Update of the Transformation Parameters As previously, the maximization of

(5.46) is first performed over the transformation parameters, a(f), t(f), f = 1, . . . , T .

The derivatives of the term associated with the likelihood of the observations are the same

as the ones shown in (3.32) and (3.33) (for each frame f). The derivatives of the prior

terms (5.48) and (5.49) are the following

δ

δa(f)

(
log p

(
a(1), . . . ,a(T )

))
=



λaH
>
f+1

(
−Hf+1a(f) + a(f + 1)

)
, if f = 1

λa

(
− a(f) +Hfa(f − 1)

)
, if f = T

λa

(
−
(
H>f+1Hf+1 + I

)
a(f) +

+Hfa(f − 1) +H>f+1a(f + 1)
) , otherwise,

(5.52)

δ

δt(f)

(
log p

(
t(1), . . . , t(T )

))
=


λt

(
− t(f) + t(f + 1)

)
, if f = 1

λt

(
− t(f) + t(f − 1)

)
, if f = T

λt

(
− 2t(f) + t(f − 1) + t(f + 1)

)
, otherwise,

(5.53)

Note that for the extrema of the sequence, since the MR sequence represents one cardiac

cycle, the parameter dependencies could also be considered cyclic, meaning that, for f = 1,

there would be a term related to f = T in place of the f − 1 term, and for f = T , there

would be a term related to f = 1 in place of the f + 1 term.

The update equations for these parameters in a generic iteration t of the EM algo-

rithm can be compactly written in matrix form as




M(1) 0 · · · 0

0 M(2)
. . .

...
...

. . .
. . . 0

0 · · · 0 M(T )

+R





a(1)

t(1)
...

a(T )

t(T )


=


c(1)

...

c(T )

 (5.54)

where M(f) and c(f) correspond to (5.28) and (5.29), respectively, and R ∈ R4T×4T

is the regularization matrix, related to the priors, composed of overlapping blocks along

the diagonal. A generic block element, R(f) ∈ R12×12, corresponding to frame f (and

overlapping with frames f − 1 and f + 1) is obtained from converting (5.52) and (5.53) to
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matrix notation, leading to

R(f) =



λa
(
H>f Hf + I

)
0 −λaH>f 0 0 0

0 2λtI 0 −λtI 0 0

−λaHf 0 λa
(
H>f+1Hf+1 + I

)
0 −λaH>f+1 0

0 −λtI 0 2λtI 0 −λtI

0 0 −λaHf+1 0 λa
(
H>f+2Hf+2 + I

)
0

0 0 0 −λtI 0 2λtI


,

(5.55)

where I is a 2× 2 identity matrix.

Update of the Deformation Parameters The update of the deformation parameters,

b(f), f = 1, . . . , T , remains the same as in the previous formulation (see equation (3.35)),

for each frame f , since there is no new prior information being used that correlates these

parameters in different frames.

Update of the Models Probabilities Regarding the probabilities of the valid and

invalid models, p(f), f = 1, . . . , T , the situation is similar to the deformation coefficients:

the previous update equations, (3.36) and (3.37), hold for each frame f .

The only difference between this new formulation and the previous ones lies in the

update equation for the transformation parameters, which now includes an additional

regularization term, R, that imposes the expected LV dynamics.

5.5 Experimental Setup

The evaluation of the two methods described in this chapter was performed on the

dataset of 33 sequences described in Section 3.6.1, using the volumetric Dice coefficient

(dDice), the average minimum distance (dAV), the volume difference, dVD, and the per-

centage of good segmentations, described in Section 3.6.2.

The manual segmentations provided in the database were used in the training and

test phase using a leave-one-sequence-out cross-validation strategy. This means that, for

each test sequence, the shape model, the vector fields and the prior parameter information

were learned using the remaining 32 sequences. This process is then repeated for each test

sequence.

The two proposed approaches were implement in both the 2D and 3D settings. In

each setting, results are shown for the two approaches proposed in this chapter: VF and

parameter regularization (PR). The results are compared with the previous formulations

that do not use temporal information.
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Table 5.1: Statistical performance of EM-RASM using: (1) no temporal information, (2) VFs,

and (3) PR. The bold values indicate the best result on each column.

Temporal

information

dDice

(%)

dAV

(mm)

dVD

(mL)
% Good

2D

None
84.2

(9.2)

2.6

(1.7)

11.8

(11.4)
89.2

VF
84.5

(8.2)

2.5

(1.5)

12.3

(12.2)
89.7

PR
86.0

(6.9)

2.3

(1.0)

10.2

(8.5)
93.0

3D

None
84.6

(6.8)

2.5

(1.2)

9.2

(9.4)
89.1

VF
84.6

(7.0)

2.5

(1.3)

9.5

(9.5)
90.3

PR
85.3

(7.0)

2.3

(1.2)

9.4

(8.6)
91.5

The shape model was learned using the approaches described in Chapters 3 and 4,

using the same number of deformation modes as before, i.e., L = 10 in the 2D formulation

and L = 10 + 2 (with TDM) in the 3D formulation.

Several tests were performed for each setup in order to determine the best parame-

ters, namely: the weight of the VF observations, λV ∈]0, 1], used in (5.26), and the weight

of the parameter priors, λa, λt ∈]0, 1], used in (5.43) and (5.45), respectively. The param-

eters that led to the best results were the following: λV = 0.25, λa = λt = 0.5 for the 2D

formulation; and λV = 0.5, λa = λt = 0.2 for the 3D formulation.

5.6 Results

This section shows examples of the segmentations obtained and presents statistical

results of the accuracy of each combination of approaches.

Table 5.1 summarizes the quantitative results obtained using the proposed ap-

proaches. It is possible to see that the statistical results are similar across all formulations.

However, the best overall results are obtained using PR, both in the 2D and the 3D setup.

It is unclear from the results in the table if there is any real benefit in using VFs

as a way to introduce temporal information. But taking a closer look at the results for

each individual volume, shown in Fig. 5.10, it is possible to see that there is indeed a
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Figure 5.10: Quantitative evaluation of all the volumes using the Dice coefficient. The vertical

axis corresponds to different patients and the horizontal axis to different phases of the cardiac

cycle. The colors are defined by the colorbar in the bottom (greener is better).

decrease in poor segmentations using VF, compared to not using temporal information

(compare the amount of red pixels between the first and the second row). Despite this

difference, Table 5.1 shows that, on average, they have similar performances. This suggests

that even though introducing VFs to impose temporal constraints on the segmentations

helps to prevent some mistakes, these constraints also prevent the model from fitting the

LV accurately in some other cases. Regarding the use of regularization, it is reasonable

to conclude that there is a clear benefit in constraining the model parameters with prior
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2D

VF PR

3D

VF PR

Figure 5.11: Examples of segmentations that were significantly improved by using temporal

information. Each column shows a different example and each row corresponds to a different

frame. The GT is shown in green, the segmentations obtained without temporal information in

red and the ones obtained with temporal information in blue. The first two columns show examples

for the 2D formulation and the last two columns for the 3D formulation. For each setup, the left

example shows improvements using the VF approach and the right example using the PR approach.

temporal information. It allows avoiding many gross errors, as shown by the significant

reduction of red pixels in Fig. 5.10, while still allowing the model to fit the LV border

accurately. This is valid for both the 2D and the 3D formulation presented in this thesis.

For a qualitative evaluation of the proposed methods, Fig. 5.11 shows examples in which

the use of temporal information led to an improvement in the quality of the segmentations.

It is also interesting to note that some sequences are poorly segmented in all the

112



5.6 Results

Figure 5.12: Example of a difficult MR sequence. The green contours correspond to the GT

and the red contours correspond to the segmentations obtained with the 3D setup with PR. The

first two rows show a particular slice of the sequence in frames 1,5,9,13 and 17 with and without

segmentations, and the last two rows show the segmentations for the corresponding volumes.

approaches. An example of such a sequence is shown in Fig. 5.12. In this example,

the LV border is barely visible, due to the presence of papillary muscles, particularly in

the systolic phase (third, fourth and fifth image). The corresponding GT segmentations

in these frames (third row) depict an unusual 3D LV shape, in which the area of the

segmentations in the first three frames is significantly larger than in the remaining slices.

This means that it is not possible to rely neither on the image to accurately identify the

LV border, nor on the 3D shape of the LV for guidance. Temporal information, on the

other hand, is also unable to compensate for this sort of behavior in the systolic phase.

Thus, it is impossible for the proposed methodologies to deal with this example, and other

alike.

5.6.1 Comparison With the State of the Art

Statistical results of the proposed segmentations are compared to other state-of-the-

art methods in the boxplots shown in Fig. 5.13. This comparison is based on the reported

results from the following works: [11, 15, 16, 41, 49, 59, 61, 69, 87, 98, 100, 103, 106, 107, 118,

130,131,139,141,160,166,177,185,185,188]. It is important to note the following facts: i)

most of these works use a different dataset, making a direct comparison possibly unfair;
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Figure 5.13: Comparison of the performance of EM-RASM with regularization against other

state of the art approaches. The green line shows the average performance excluding the bad

segmentations (i.e., with dAV > 5 mm) and the magenta line shows the average performance

including all the segmentations.

ii) some of them only analyze specific slices (e.g., only the mid slice [15, 141]), or specific

frames (e.g., only the ES and ED frames [59, 61, 87, 103]); iii) exclude gross errors from

the performance statistics [118]; iv) exclude volumes with misalignments [87]; and v) use

only a subset of the dataset used in this thesis [49, 139]. It should also be noted that

not all the works use both the dDice and the dAV metrics to quantitatively evaluate the

segmentations. In this selections of works, 22 report the dAV metric, while only 13 report

the dDice metric.

Fig. 5.13 shows the results obtained using the proposed EM-RASM with PR (ma-

genta line) and the results using the same algorithm excluding the segmentations with

dAV > 5 mm (green line), i.e., the gross errors, which correspond to excluding 7% of the

segmentations. Comparing the results with the state of the art shows that the performance

of the proposed approach is approximately in the average values report in the literature.

Since these state of the art methods use different approaches to obtain the LV

segmentation, evaluate their approaches on different (and often private) dataset, and that

the reported values have a large variation, it is difficult to make any specific conclusions

about which approaches are more successful and what each approach is lacking.

5.7 Conclusion

Temporal information has the potential to significantly improve the accuracy of

segmentations, by exploiting the correlation between the position of the shape model in

different phases of the cardiac cycle. This is particularly useful in cases where the LV bor-

der is not easily identifiable, because it allows the algorithm to disregard the information

extracted from the image and rely on the expected heart motion.

This chapter considers two different approaches to include dynamical information for
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the LV segmentation: 1) using two VFs to explicitly describe the motion of the LV border

as displacements of each contour point; and 2) using regularization on the shape model

parameters, in which the LV dynamics are described indirectly through changes in these

parameters. Both of these approaches are able to capture the LV dynamics and provide a

powerful means of including temporal information in the segmentation algorithm.

Regarding the VF approach, two 3D models were used: one for the systolic phase

and one for the diastolic phase. These VFs were incorporated in the EM-RASM formula-

tion by introducing an additional term in the optimization problem that consists in also

minimizing the distance between the model points and the their expected position based

on the the corresponding VF. This additional term acts as new observation points, which

are extracted not from the image, but rather from the model position in the previous

frame. In this way, the algorithms combines the information extracted from the image

with a bias from the expected motion given by the VF. Results showed that this approach

has the ability to improve some of the gross errors obtained with the approaches described

in the previous chapters. However, the VF bias also constrains the segmentations in such

a way that it prevents the shape model from accurately fitting the LV border in other

cases. Overall, the average segmentation accuracy using VFs leads to a small reduction

in the standard deviation of the statistical results (in the 2D setting) and also a small

improvement in the percentage of “good” segmentations (in the 3D setting).

The second approach described in this chapter is based on the introduction of prior

information about the expected shape model parameters, namely, in the parameters of

the similarity transformation of the shape model (related to the pose of the LV). This

approach is seamlessly coupled with the MAP formulation described in Chapter 3 that

previously considered these priors to be non-informative (obtained using Jeffreys’ priors).

In this case, instead of using Jeffreys’ priors, Gaussian priors were used, which induce

a correlation between the parameters in consecutive frames. This correlation is learned

from a training set to embed information about the expected LV motion. In this new

formulation, temporal information is naturally introduced in the EM-RASM algorithm,

and leads to new update equations that impose constraints on the similarity between

the shape model parameters in consecutive frames. The results show that this approach

improves the overall segmentation accuracy, and is able to avoid many of the mistakes

obtained using the previous formulations.

The comparison with the state of the art showed that the results obtained with the

proposed approach are within the average of what other methods have accomplished over

the years. However, a more detailed comparison would require using a larger common

dataset. This has been the effort of some research groups (e.g., the Cardiac Altas Project

5 [167]), although it is not yet used as the baseline with which new methods are compared.

For future work, it would be interesting to explore the combination of the two

5http://www.cardiacatlas.org/
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approaches discussed in this chapter, since they explore two different ways of embedding

temporal information. On one hand, the VFs are able to express local deformations of

the LV contours, since the displacements they induce affect not only the pose of the LV

but also the deformation coefficients of the shape model. On the other hand, since the

VFs depend on the position of the center of the LV, they are not able to prevent the

segmentations from drifting way from the LV border. However, the PR approach may be

able to deal with this issue by imposing that the translation parameter should be similar

across all the frames, and to its initial guess.
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6. Conclusions and Future Work

6.1 Conclusions

The problem of automatic segmentation of the LV in CMR data was addressed in

this thesis. The work developed was divided into three subproblems: 1) the segmentation

of the LV in a 2D approach, using an ASM-based methodology (Chapter 3); 2) the seg-

mentation of the LV as a 3D structure, which explored the advantages of the 2D approach

with information about the three-dimensional structure of the LV (Chapter 4); and 3)

the segmentation of MR sequences (2D+t and 3D+t), in which the goal was to include

information about the motion of the LV throughout the cardiac cycle (Chapter 5).

Each of these subproblems faced specific challenges. In Chapter 3, each MR slice

was independently segmented. Therefore, it focused on identifying the location of the

LV border, and preventing other anatomical structures, such as papillary muscles, from

misguiding the segmentation algorithm. A 2D shape model was used for its ability to

impose shape constraints in a simple and flexible framework that has been extensively used

in the literature. The main assumption behind this approach was that a single 2D shape

model would be able to describe the LV contour in any MR image, regardless of which slice

or cardiac phase it corresponded to. Contributions were made to the field by proposing a

new formulation, EM-RASM, for the estimation of the shape model parameters in images

prone to outliers. The results showed that the proposed framework outperformed other

related works and was able to achieve more accurate segmentations. Although the focus

of this contribution was the segmentation of CMR images, the proposed framework is

not limited to this particular application, and the results in other unrelated applications

showed great potential.

In Chapter 4, the goal was to extend the EM-RASM framework to a 3D setting. The

inclusion of the 3D information came at the expense of two additional issues: the variable

number of slices in the MR volumes; and the existence of misaligned slices. These issues

posed new challenges in both the training phase and the test phase of the shape model

pipeline. First, it was necessary to pre-process the training data in order to guarantee

that the shape examples were all characterized by the same number of landmarks and

two remove misalignments before the computation of the shape statistics. Then, a novel

resampling framework for the learned shape model was proposed, to allow the shape model

to segment new MR volumes with a different number of slices, without resorting to the

interpolation of voxel intensities. Finally, the inclusion of specific deformation modes was

explored to deal with misaligned slices in the test volumes. The results showed that the

3D approach was able to improve the accuracy of the 2D method, and in particular to

significantly decrease the variability of the results between slices of the same MR volume.

In Chapter 5, we explored two approaches to embed temporal information into

the segmentation process. The first approach was based on describing the LV dynamics

through VFs. In the proposed methodology, two VFs were used: one for the systolic
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phase, which represented the contraction of the LV, and one for the diastolic phase, to

represent the dilation of the LV. These VFs were added to the EM-RASM framework by

penalizing large deviations from the expected motion pattern. In the second approach,

PR was used to impose temporal constraints to the segmentations. This approach was

easily introduced in the EM-RASM formulation through the prior terms associated with

the shape model parameters. In this case, the priors acted as regularizers that forced the

model parameters to follow the expected variation pattern along the cardiac cycle. These

two approaches were tested in the 2D and 3D settings. Comparing the performance of all

the methodologies proposed in this thesis, using PR was the approach the achieved better

segmentation accuracies.

A comparison with the state of the art showed that the performance of EM-RASM

with PR lies in the average of the results reported in the literature. However, a direct

comparison may not be fair, as each work uses its own dataset and in specific conditions.

Therefore, this comparison only gives an idea of where the proposed approach is place in

the state of the art, but it is not possible to extract any conclusion about why and where

other works perform better or worse.

6.2 Future Work

The main challenge in LV segmentations algorithms lie in accurately determining

the location of the LV border. Even using sophisticated approaches such as EM-RASM,

it is clear that the algorithm is still misguided by papillary muscles and other structures.

In particular, methods that rely on edge detection are bound to struggle with this issue.

Although using additional information from the 3D structure of the LV and its temporal

dynamics helps reduce the number of segmentation failures, as shown in this thesis, it

does not actually solve the problem, only alleviates it. Therefore, it is necessary to focus

on new strategies to address this issue.

Chapter 3 focused on proposing a robust method to estimate the parameters of a

shape model, from observations extracted from the images using a simple technique, and

the remaining chapters are built on top of this approach. This leaves room for improvement

by using robust methods to extract candidate locations of the LV border from the image.

Active appearance models have been a popular trend in the last decade and several works

have reported remarkable results [11, 138]. This indicates that it may be necessary to

model the intensity of the LV as an alternative approach to identify the LV border. More

recently, deep learning approaches have been outperforming many established algorithms

in other application [92]. In CMR, some works have started to explore the potential of

these methods in the segmentation of the LV [14,105,127,189]. Advances in segmentation

performance will greatly rely on these and other approaches to more accurately determine

the location of the LV border in CMR images.
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Finally, it would be advantageous to evaluate the work developed in this thesis using

a larger, public dataset for a fair and informative comparison to be possible. Although

the dataset used in this thesis is available for research purposes, there are not many works

reporting their results on this data. Other dataset have also been made available, mainly

associated with specific challenges, e.g., MICCAI 2009 [3], MICCAI 2011 [2, 167] and

Kaggle 2016 [5], and there is an ongoing effort by the Cardiac Altas Project1 to establish

a dataset for benchmarking. Fostering these initiatives will contribute to better evaluate

and compare different approaches and their advantages and disadvantages.

1http://www.cardiacatlas.org/
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and C. Alberola-López, “Multi-oriented windowed harmonic phase reconstruction

for robust cardiac strain imaging,” Medical image analysis, vol. 29, pp. 1–11, 2016.

[41] J. Cousty, L. Najman, M. Couprie, S. Clément-Guinaudeau, T. Goissen, and

J. Garot, “Segmentation of 4D cardiac MRI: Automated method based on spatio-

temporal watershed cuts,” Image and Vision Computing, vol. 28, no. 8, pp. 1229–

1243, 2010.

[42] D. Cremers, “Dynamical statistical shape priors for level set-based tracking,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1262–

1273, 2006.

[43] D. Cristinacce and T. F. Cootes, “Automatic feature localisation with constrained

local models,” Pattern Recognition, vol. 41, no. 10, pp. 3054–3067, 2008.

[44] C. Davatzikos, X. Tao, and D. Shen, “Hierarchical active shape models, using the

wavelet transform,” IEEE transactions on medical imaging, vol. 22, no. 3, pp. 414–

423, 2003.

[45] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” Journal of the Royal Statistical Society. Series B

(Methodological), pp. 1–38, 1977.

[46] J. Dias and J. Leitão, “Wall position and thickness estimation from sequences of

echocardiographic images,” IEEE Transactions on Medical Imaging, vol. 15, no. 1,

pp. 25–38, 1996.

124



Bibliography

[47] L. R. Dice, “Measures of the amount of ecologic association between species,” Ecol-

ogy, vol. 26, no. 3, pp. 297–302, 1945.

[48] O. Dzyubachyk, W. A. van Cappellen, J. Essers, W. J. Niessen, and E. Meijering,

“Advanced level-set-based cell tracking in time-lapse fluorescence microscopy,” IEEE

transactions on medical imaging, vol. 29, no. 3, pp. 852–867, 2010.

[49] J. Ehrhardt, T. Kepp, A. Schmidt-Richberg, and H. Handels, “Joint multi-object

registration and segmentation of left and right cardiac ventricles in 4D cine MRI,”

in SPIE Medical Imaging. International Society for Optics and Photonics, 2014,

pp. 90 340M–90 340M.

[50] M. A. T. Figueiredo, “Lecture Notes on Bayesian Estimation and Classification,”

http://www.lx.it.pt/∼mtf/learning/Bayes lecture notes.pdf, 2004, accessed: 2017-

03-07.

[51] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Communi-

cations of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[52] R. Fisher, “On the mathematical foundations of theoretical statistics,” Philosophical

Trans. of the Royal Society of London (A), vol. 222, no. 594-604, pp. 309–368, 1922.

[53] A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen, “Automatic con-

struction of multiple-object three-dimensional statistical shape models: Application

to cardiac modeling,” Medical Imaging, IEEE Transactions on, vol. 21, no. 9, pp.

1151–1166, 2002.

[54] D. Fritz, D. Rinck, R. Dillmann, and M. Scheuering, “Segmentation of the left and

right cardiac ventricle using a combined bi-temporal statistical model,” in Medical

Imaging. International Society for Optics and Photonics, 2006, pp. 614 121–614 121.

[55] J. Fu, J. Chai, and S. T. Wong, “Wavelet-based enhancement for detection of left

ventricular myocardial boundaries in magnetic resonance images,” Magnetic reso-

nance imaging, vol. 18, no. 9, pp. 1135–1141, 2000.

[56] B. Gao, W. Liu, L. Wang, Z. Liu, P. Croisille, P. Delachartre, and P. Clarysse,

“Estimation of cardiac motion in cine-MRI sequences by correlation transform opti-

cal flow of monogenic features distance,” Physics in Medicine and Biology, vol. 61,

no. 24, p. 8640, 2016.

[57] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic programming for de-

tecting, tracking, and matching deformable contours,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 17, no. 3, pp. 294–302, 1995.

125

http://www.lx.it.pt/~mtf/learning/Bayes_lecture_notes.pdf


Bibliography

[58] H. Geyer, G. Caracciolo, H. Abe, S. Wilansky, S. Carerj, F. Gentile, H.-J. Nesser,

B. Khandheria, J. Narula, and P. P. Sengupta, “Assessment of myocardial mechanics

using speckle tracking echocardiography: fundamentals and clinical applications,”

Journal of the American Society of Echocardiography, vol. 23, no. 4, pp. 351–369,

2010.

[59] S. Gopal and D. Terzopoulos, “A Unified Statistical/Deterministic Deformable

Model for LV Segmentation in Cardiac MRI,” in Statistical Atlases and Compu-

tational Models of the Heart. Imaging and Modelling Challenges. Springer, 2014,

pp. 180–187.

[60] J. Gorcsan and H. Tanaka, “Echocardiographic assessment of myocardial strain,”

Journal of the American College of Cardiology, vol. 58, no. 14, pp. 1401–1413, 2011.

[61] D. Grosgeorge, C. Petitjean, J. Caudron, J. Fares, and J.-N. Dacher, “Automatic

cardiac ventricle segmentation in MR images: a validation study,” International

journal of computer assisted radiology and surgery, vol. 6, no. 5, pp. 573–581, 2011.

[62] C. Guetter, H. Xue, C. Chefd’Hotel, and J. Guehring, “Efficient symmetric and

inverse-consistent deformable registration through interleaved optimization,” in 2011

IEEE international symposium on biomedical imaging: from nano to macro. IEEE,

2011, pp. 590–593.

[63] G. Hamarneh and T. Gustavsson, “Combining snakes and active shape models for

segmenting the human left ventricle in echocardiographic images,” in Computers in

Cardiology 2000. IEEE, 2000, pp. 115–118.

[64] G. Hamarneh and T. Gustavsson, “Deformable spatio-temporal shape models: ex-

tending active shape models to 2D+ time,” Image and Vision Computing, vol. 22,

no. 6, pp. 461–470, 2004.

[65] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust statistics:

the approach based on influence functions. John Wiley & Sons, 2011, vol. 114.

[66] T. Heimann and H. Meinzer, “Statistical shape models for 3D medical image seg-

mentation: A review,” Medical image analysis, vol. 13, no. 4, pp. 543–563, 2009.

[67] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthog-

onal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[68] H. Hu, H. Liu, Z. Gao, and L. Huang, “Hybrid segmentation of left ventricle in

cardiac MRI using gaussian-mixture model and region restricted dynamic program-

ming,” Magnetic resonance imaging, vol. 31, no. 4, pp. 575–584, 2013.

126



Bibliography

[69] S. Huang, J. Liu, L. C. Lee, S. K. Venkatesh, L. L. San Teo, C. Au, and W. L.

Nowinski, “An image-based comprehensive approach for automatic segmentation of

left ventricle from cardiac short axis cine MR images,” Journal of digital imaging,

vol. 24, no. 4, pp. 598–608, 2011.

[70] P. J. Huber, Robust statistics. Wiley, New York, 1981.

[71] W. G. Hundley, D. A. Bluemke, J. P. Finn, S. D. Flamm, M. A. Fogel, M. G.

Friedrich, V. B. Ho, M. Jerosch-Herold, C. M. Kramer, W. J. Manning et al.,

“ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovas-

cular magnetic resonance: a report of the American College of Cardiology Founda-

tion Task Force on Expert Consensus Documents,” Journal of the American College

of Cardiology, vol. 55, no. 23, pp. 2614–2662, 2010.

[72] P. Hunter, A. McCulloch, and H. Ter Keurs, “Modelling the mechanical properties

of cardiac muscle,” Progress in biophysics and molecular biology, vol. 69, no. 2, pp.

289–331, 1998.

[73] D. P. Huttenlocher and S. Ullman, “Recognizing solid objects by alignment with an

image,” International Journal of Computer Vision, vol. 5, no. 2, pp. 195–212, 1990.

[74] E.-S. H. Ibrahim, “Myocardial tagging by Cardiovascular Magnetic Resonance: evo-

lution of techniques–pulse sequences, analysis algorithms, and applications,” Journal

of Cardiovascular Magnetic Resonance, vol. 13, no. 1, p. 36, 2011.

[75] T. Irony and N. Singpurwalla, “Noninformative priors do not exist: A dialogue
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A. EM-RASM with Edge Segments

Alternatively to relying on edge points to estimate the model parameters, a different

approach was also explored, which relied on edge segments. This new observation model

is described in this appendix, along with the corresponding derivations of the EM-RASM

formulation for edge segments.

A.1 Problem Formulation

We wish the find the shape model parameters that best describe the LV border of a

particular CMR image. Previously, the estimation of the model parameters was based on

a set of edge points extracted from the image (see Fig. A.1 left). Now, instead of look at

individual edge points, the algorithm will rely on edge segments to determine the location

of the LV border (see Fig. A.1 middle).

Given an MR image, edge segments may be extracted using different approaches

[12, 124]. Here, they are obtained by linking the detected edge points using the mutual

favorite pairing method [73], which is the approach used in [124]. This method consists in

successively pairing edge points from neighboring model points if they are mutually the

closest pairs available. To avoid unrelated edge points from being paired, a threshold is

set on the maximum distance allowed between two neighboring edge points in the same

segment. An example of this pairing algorithm is shown in Fig. A.1 (from the left image

to the one in the middle).

Let Y = {Y 1, . . . ,Y P } denote the set of the P segments detected on the image,

such that the i-th segment, Y i ∈ R2M i×1, is given by M i edge points

Y i =

[
yi1
>
, . . . ,yiM

i>
]>

, (A.1)

where yij ∈ R2×1 is the position of the j-th edge point in the i-th segment, Y i (see Fig.

A.1 (middle and right) for an illustration). The idea is to estimate the parameters of a

shape model,

x̃ = Tθ (x+Db) , (A.2)

which include the global transformation parameters, θ = {a, t}, and deformation coeffi-

cients, b, such that the model is as close as possible to the edge segments that belong to

the LV border.

Unfortunately, we do not know which segments are valid (the ones that belong to the

LV border) or invalid (outliers). Therefore, two observation models are considered. These

models are associated to a binary label, ki, that has the value ki = 1 if Y i is valid, and the

value ki = 0 if Y i is an outlier. These two labels occur with probabilities P (ki = 1) = p1

and P (ki = 0) = p0, respectively, such that p0 + p1 = 1.

We assume that edge points in valid segments are generated by the following obser-

vation model

yij = x̃ij + vij , (A.3)
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Y i

y i(j-1)

y ij

y i(j+1)

 𝑥i(j-1)

 𝑥ij

 𝑥i(j+1)

Figure A.1: Detection of edge segments in a CMR image: (left) detection of edge points along

lines orthogonal to the contour model; (middle) edge points linked to form edge strokes; (right)

zoom on a particular stroke.

where x̃ij is the position of the corresponding shape model point (i.e., the contour point

to which yij is associated), and vij ∼ N (0,Σij) is a zero mean white Gaussian noise with

diagonal covariance matrix Σij . This means that the probability of a specific segment,

Y i, is given by

p
(
Y i
∣∣ki=1,Θ

)
=

M i∏
j=1

p
(
yij
∣∣ki=1,Θ

)
=

M i∏
j=1

N
(
yij ; x̃ij ,Σij

)
, (A.4)

where Θ = {a, t, b, p0, p1} is the set of all the model parameters. On the other hand, if

Y i is an outlier (i.e., ki = 0), then we assume that it follows a uniform distribution

p
(
Y i
∣∣ki=0,Θ

)
=

M i∏
j=1

p
(
yij
∣∣ki=0,Θ

)
,

=
M i∏
j=1

U(Vx̃ij ), (A.5)

within a region Vx̃ij in the vicinity of x̃ij .

Denoting the set of labels associated to Y as K = {k1, . . . , kP } be the set of the cor-

responding labels, then the goal of the proposed algorithm is to find the model parameters,

Θ, that maximize the following log-joint probability distribution

P(Y ,K,Θ) = log p(Y ,K,Θ)

= log p (Y |K,Θ) + log p(K) + log p(Θ). (A.6)

Assuming conditional independence between segments, the above equation can be factor-

ized as follows

P(Y ,K,Θ) =
P∑
i=1

log p
(
Y i
∣∣ki,Θ)+ log p(ki) + log p(Θ). (A.7)
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A. EM-RASM with Edge Segments

The first term corresponds to the likelihood of the edge segments, the second term is the

probability of the observation model, ki, and the last term corresponds to the priors of

the parameters Θ.

Regarding the prior probability of the model parameters, we make the same as-

sumptions used in Chapters 3 and 4: the prior probability distribution for the deformation

coefficients is assumed to be given by p(b) = N
(
0,Σb

)
, and the prior probabilities for

the other parameters are given by the Jeffreys’ prior, i.e., they do not depend any of the

model parameters, Θ.

A.2 Expectation-Maximization

As previously, the EM algorithm is used to solve this optimization problem, where in

each iteration, t, the parameter estimates, Θ̂(t), are updated by maximizing an auxiliary

function, Q
(
Θ, Θ̂(t)

)
, in a two step procedure described next.

A.2.1 E-step

Let Θ̂(t) denote the current estimate of the model parameters (where Θ̂(0) is the

initial guess). The auxiliary function of the EM algorithm is given by

Q
(
Θ; Θ̂(t)

)
= EK

[
P(Y ,K,Θ)

∣∣∣Y , Θ̂(t)

]
, (A.8)

where EK[·] denotes the expectation over the two observation models. This leads to

Q
(
Θ; Θ̂(t)

)
=

P∑
i=1

wi0
[
log p

(
Y i
∣∣ki=0,Θ

)
+ log p0

]
+ wi1

[
log p

(
Y i
∣∣ki=1,Θ

)
+ log p1

]
+ log p(Θ),

(A.9)

where wi0 and wi1 denote the confidence degree of each segment, such that wi0 + wi1 = 1

and

wi1 = p
(
ki=1

∣∣∣Y i, Θ̂(t)

)
∝ p

(
Y i
∣∣∣ki=1, Θ̂(t)

)
p
(
ki=1

∣∣∣Θ̂(t)

)
∝ p̂1(t)

M i∏
j=1

N
(
yij ; x̃ij ,Σij

)
(A.10)

wi0 = p
(
ki=0

∣∣∣Y i, Θ̂(t)

)
∝ p̂0(t)

M i∏
j=1

U (Vx̃ij ) . (A.11)
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These weights correspond to the probability of ki1 and ki0 being the correct label for segment

Y i, given the current model parameters.

Combining (A.9) with (A.4)-(A.5) and the prior terms yields

Q
(
Θ; Θ̂(t)

)
= c− 1

2
b>Σbb− 1

2

N∑
i=1

wi0 log p0 + wi1

(
log p1 +

M i∑
j=1

eij
>

Σij−1eij
)
, (A.12)

where

eij = yij −A
(
xij +Dijb

)
− t, (A.13)

and c is a constant that does not depend on the model parameters, Θ.

A.2.2 M-step

The model parameters are updated by solving the following optimization problem

Θ̂(t+1) = arg max
Θ

Q
(
Θ; Θ̂(t)

)
, (A.14)

first with respect to the transformation parameters, a, t, then for b, and finally for p0 and

p1.

Update of the Transformation Parameters Taking the derivative of (A.12) with

respect to a and t and equating to zero leads to the following linear system

P∑
i=1

wi1

M i∑
j=1

Xij>Σij−1Xij Xij>Σij−1

Σij−1Xij Σij−1

â(t+1)

t̂(t+1)

 =
P∑
i=1

wi1

M i∑
j=1

Xij>Σij−1yij

Σij−1yij


(A.15)

where

Xij =

xij1 −xij2
xij2 xij1

 ,
xij1
xij2

 = xij = xij +Dij b̂(t)

Update of the Deformation Coefficients The update of the deformation coefficients,

b̂(t+1), is obtained by taking the derivative of (A.12) with respect to b,[
Σb−1 +

P∑
i=1

wi1
M i∑
j=1
Dij>Â>(t+1)Σ

ij−1Â(t+1)D
ij

]
b̂(t+1) =

=

P∑
i=1

wi1

M i∑
j=1

[
Dij>Â>(t+1)Σ

ij−1
(
yij − Â(t+1)x

ij − t̂(t+1)

)]
, (A.16)

where

Â(t+1) =

â1(t+1) −â2(t+1)

â2(t+1) â1(t+1)


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A. EM-RASM with Edge Segments

Table A.1: Statistical performance of 2D EM-RASM using edge points or edge segments as

observations

EM-RASM

with

Dice

(%)

AV

(mm)

VD

(mL)
% Good

Edge

Points

84.2

(9.2)

2.6

(1.7)

11.8

(11.4)
89.2

Edge

Segments

83.1

(8.0)

2.8

(2.2)

16.7

(23.2)
88.9

Update of the Model Probabilities The observation model probabilities, p̂0(t), p̂1(t),

are updated by taking the derivative of (A.12) with respect to p̂1(t) (recall that p̂0(t) =

1− p̂1(t)), which leads to

p̂1(t+1) =
1

P

P∑
i=1

wi1 (A.17)

p̂0(t+1) =1− p̂0(t+1). (A.18)

The update equations in this formulation are similar to the ones obtained in the

approach described in Chapter 3. However, in this case, the EM weights, wi1, are now

associated to edge segments, instead of individual edge points. Consequently, all the

points in a specific edge will equally contribute to the estimation of the parameters.

A.3 Results

The experimental setup used to evaluate the approach using edge segments is the

same as the one described in Chapter 3 for edge points.

Fig. A.2 shows an example depicting the detected edge segments (colored dotted

lines), the current model (red contour) and the corresponding EM weights. It is possible

to see that the valid segments have a much higher probability than the outliers.

Table A.1 shows the performance of the proposed method in the database used in

this thesis. It also shows the performance achieved by the 2D EM-RASM method based

on points. The performance of the algorithm using edge segments is slightly worse than

using edge points.
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A.3 Results

0.98 0.83 0.79 0.08 0.03 0.02

valid segments outliers

Figure A.2: Example of the detected edge segments and their probability. Each colored dotted

line corresponds to an edge segment and the red contour is the current model.

A-7



A. EM-RASM with Edge Segments

A-8



B
EM-RASM With Data Association

Contents

B.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . B-2

B.2 Expectation-Maximization . . . . . . . . . . . . . . . . . . . . . . B-3

B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-5

B-1



B. EM-RASM With Data Association

This appendix explores using data association as an alternative approach to modeling

the presence of outliers for the estimation of a shape model parameters. This concept was

proposed in the context of radar points tracking [18], but has since been used in many

other applications [8, 124, 125, 153]. The methodology proposed here is similar to the one

proposed in [124], which uses data association to improve the accuracy of a Snake model.

In this appendix, instead of a using a Snake model, data association is combined with the

ASM formulation. Details of this approach are described next.

B.1 Problem Formulation

The idea of the proposed approach is to provide robust estimates of the shape

model parameters, for the segmentation of 2D images (although the extension to 3D

is straightforward). Assuming there is a shape model, previously learned from shape

examples of the object of interest, defined by

x̃ = Tθ (x+Db) , (B.1)

the goal is to estimate the parameters Θ = {a, t, b} such that x̃ fits the border of the

object. Let Y = {Y 1, . . . ,Y P } denote a set of edge segments extracted from the image.

The i-th observation, Y i ∈ R2M i×1, is given by M i edge points

Y i =

[
yi1
>
, . . . ,yiM

i>
]>

, (B.2)

where yij(s) ∈ R2 is the j-th edge point in that segment, associated to the model point

x̃ij (recall Fig. A.1 (right) for a illustration of these observations).

Of all the P detected segments, only a subset actually matches the border of the LV.

This is represented by assigning a binary label to each segment, in which the label one is

assigned to valid segments (i.e., if they match the LV border) and zero to outliers. A data

interpretation is defined as a specific combination of these P labels, which means that there

is a total of 2P possible data interpretations. However, not all the data interpretations

are feasible. For instance, if two segments overlap with respect to the shape model (e.g.,

one segment along the endocardium and one along the epicardium), then all the data

interpretations that consider them valid segments have to be disregarded, because they

cannot be simultaneously located at the LV border. This reduces the number of possible

data interpretations.

Let Ii = {0, 1} be the label associated to the i-th segment, such that Ii(s) = 1 means

it is valid, and Ii(s) = 0 means it is an outlier. Similarly to Appendix A, edge segments

are modeled using two different observations models: 1) a valid segment is assumed to
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B.2 Expectation-Maximization

follow

p
(
Y i
∣∣Ii=1,Θ

)
=

M i∏
j=1

p
(
yij
∣∣Ii=1,Θ

)
=

M i∏
j=1

N
(
yij ; x̃ij ,Σij

)
, (B.3)

where Θ = {a, t, b, p0, p1} is the set of all the model parameters, and Σij is the diagonal

covariance matrix associated to x̃ij ; and 2) an outlier is assumed to follow

p
(
Y i
∣∣Ii=0,Θ

)
=

M i∏
j=1

p
(
yij
∣∣Ii=0,Θ

)
,

=

M i∏
j=1

U(Vx̃ij ), (B.4)

within a region Vx̃ij in the vicinity of x̃ij .

The probability of a particular data interpretation, I = {I1, . . . , IP }, is defined as

the product of the probability of each segment given the corresponding labels, which can

be expressed as

p (Y | Θ, I) =

P∏
i=1

[
Ii 1− Ii

]p (Y i
∣∣Ii=1,Θ

)
p
(
Y i
∣∣Ii=0,Θ

)
 , (B.5)

As previously, since the correct label of each segment, I1, . . . , IP , is unknown, we use the

EM algorithm to estimate the model parameters.

B.2 Expectation-Maximization

The EM algorithm allows an estimate of the model parameters, Θ, and the data in-

terpretation, I = {I1, . . . , IP }, to be determined simultaneously. This is achieved through

the maximization of an auxiliary function

Q
(
Θ; Θ̂(t)

)
= EI

[
P(Y , I,Θ)

∣∣∣Y , Θ̂(t)

]
, (B.6)

where EI [·] denotes the expectation over all possible data interpretations, Θ̂(t) is the

parameters estimate at iteration t, and P (Y , I,Θ) is the log-posterior probability, defined

by

P (Y , I,Θ) = log p (Y ,Θ, I) (B.7)

= log p (Y |Θ, I) + log p (I|Θ) + log p (Θ) . (B.8)

The EM algorithm finds the model parameters by iterating between two steps [45]:

1) the E-step, in which the expectation in (B.6) is computed; and 2) the M-step, in which

the model parameters are updated by maximizing the expectation obtained in the E-step.

These steps are explained below.
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B. EM-RASM With Data Association

Figure B.1: Example of data interpretations on an MR image: (left) the detected segments, each

with a different color (the white line corresponds to the current model estimate), and each of the

following images show the most likely interpretations (i.e., with higher probability, wk).

B.2.1 E-step

Given the current estimate of the model parameters, Θ̂(t), at iteration t, the auxiliary

function in (B.6) involves computing the expectation over all the possible data interpre-

tations. Let Ik =
[
I1k , . . . , I

P
k

]
denote the k-th interpretation; then, equation (B.6) can be

expanded as follows

Q
(
Θ; Θ̂(t)

)
=
∑
k

wk

(
log p (Y |Θ, I) + log p (I|Θ) + log p (Θ)

)
, (B.9)

where wk is the conditional probability of Ik, given by

wk = p
(
Ik

∣∣∣Y , Θ̂(t)

)
∝

P∏
i=1

p
(
Y i
∣∣∣Θ̂(t), I

i
k

)
p
(
Ik

∣∣∣Θ̂(t)

)
, (B.10)

such that
∑
k

wk = 1.

In this work, we assume that all the interpretations are equally probable, i.e.,

p
(
Ik

∣∣∣Θ̂(t)

)
is a constant, except for interpretations with overlapping segments, which

are assigned a probability of zero a priori. Figure B.1 shows an example image, depicting

the detected segments (left) and the three interpretations with higher probability.

B.2.2 M-step

In this step, the model parameters are updated by maximizing (B.9) with respect

to the transformation parameters, a and t, and then for b.
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Update of the Transformation Parameters Taking the derivative of (B.9) with

respect to a and t and equating to zero leads to the following linear system

∑
k

wk

P∑
i=1

M i∑
j=1

Xij>Σij−1Xij Xij>Σij−1

Σij−1Xij Σij−1

â(t+1)

t̂(t+1)

 =

=
∑
k

wk

P∑
i=1

M i∑
j=1

Xij>Σij−1yij

Σij−1yij

 (B.11)

where

Xij =

xij1 −xij2
xij2 xij1

 ,
xij1
xij2

 = xij = xij +Dij b̂(t)

Update of the Deformation Coefficients The update of the deformation coefficients,

b̂(t+1), is obtained by taking the derivative of (B.9) with respect to b,[
Σb−1 +

∑
k

wk
P∑
i=1

M i∑
j=1
Dij>Â>(t+1)Σ

ij−1Â(t+1)D
ij

]
b̂(t+1) =

=
∑
k

wk

P∑
i=1

M i∑
j=1

[
Dij>Â>(t+1)Σ

ij−1
(
yij − Â(t+1)x

ij − t̂(t+1)

)]
, (B.12)

where

Â(t+1) =

â1(t+1) −â2(t+1)

â2(t+1) â1(t+1)

 .
The method described above is denoted by Probabilistic Data Association Active

Shape Model (PDAASM). It differs from the EM-RASM proposed in Chapter 3 in the

following: instead of determining the probability of each individual observation belonging

to the object border, it computes the probability of each combination of labels. This has

two potential advantages over the EM-RASM proposed in this chapter. First, it allows

some combinations to be discarded a priori, e.g., a single model point cannot have multiple

valid observations. Second, these combinations compete against each other to receive

higher probabilities in the estimation of the EM weights, i.e., if an observation associated

to a specific model point receives a high probability, the remaining observations associated

to that point will have to receiver low probability. This is different from the EM-RASM

formulation, in which the competition happens between considering each observation point

as valid or invalid, allowing for multiple observations along the same search line to receive

high probability.

B.3 Results

The PDAASM algorithm was evaluated using the same experimental setup used in

Chapter 3.
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Table B.1: Statistical results of the segmentation accuracy using PDAASM and comparison with

EM-RASM.

Dice

(%)

AV

(mm)

VD

(mL)
% Good

EM-RASM
84.2

(9.2)

2.6

(1.7)

11.8

(11.4)
89.2

PDAASM
83.7

(9.3)

2.5

(1.6)

10.9

(14.3)
89.2

Table B.1 shows statistical results of the segmentation accuracy, compared against

the 2D EM-RASM approach. The segmentations obtained with PDAASM were similar to

the ones obtained with EM-RASM. However, in some cases, the probabilities of the data

interpretations, computed in (B.10), were almost binary, i.e., either almost one or almost

zero. In other words, the algorithm was too sure of which were the edge segments it could

trust or not. Therefore, whenever the algorithm was wrong about which segments should

be considered valid, the parameters estimations was essentially based on outliers, leading

to poor segmentations.
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C. LV Segmentation using Dynamic Programming

This chapter proposes a different approach for the segmentation of the LV in CMR,

which does not rely on shape models. It is based on a simple and fast bottom-up strategy,

inspired in [46], that contrasts with the work described throughout this thesis and in most

of the literature.

C.1 Introduction

The proposed approach is based on two main assumptions about the LV border: 1)

that it is approximately circular in each MR slice; and 2) that it is associated to edges in the

image. The segmentation of each MR slice is performed in polar coordinates and involves

the following steps. First, an edge map is built so that its valleys roughly correspond to

location of the LV border. Second, a dynamic programming (DP) algorithm is applied to

determine the optimal path along the edge map, which corresponds to the delineation of

the LV contour.

DP is one of the most common choices for data-driven endocardial/epicardial border

detection. This class of approaches is rooted in the work of Geiger et al. [57] and used in

several works [46, 55, 90, 178, 187]. It searches for the optimal path (i.e., the contour) by

associating the image with a graph and defining a cost to each edge through a cost matrix.

The design of the cost matrix itself is a challenging task and plays a core role in DP-based

approaches, which motivated research on this subject. In [178], a threshold based approach

is presented, in which the optimal threshold is found by computing the mean gray value of

the maximal edge pixels. These pixels are found by generating orthogonal lines radiating

from the epicardial center and collecting, for each line, the gray intensity of the pixel with

highest edge value (i.e., maximal edge) within the epicardial contour. A methodology

termed iterative multigrid dynamic programming (IMDP) is introduced in [46]. Here,

the contours of the LV in ultrasound image sequences are assumed to be one dimensional

non-causal first order Markov random fields. DP is applied in a multigrid fashion, i.e.,

first with a coarse resolution, followed by a refining stage that estimates the segmentation

by searching in a smaller range, using a thinner resolution. To obtain the cost matrix,

they model the intensity values of the tissues surrounding the ventricle border. In [97] a

threshold-based operation is used, where the binary masks (i.e., thresholded images) are

jointly used with the global circular shortest path algorithm (GCSP). It is shown that

an improved method is achieved by combining the advantages of these two techniques.

Fuzzy logic is used in [90] and comprises two stages. The first stage accounts for the pixel

gray values and presence of edges, while the second stage comprises the determination of

cardiac contours based on fuzzy logic with DP. With these two ingredients, a degree to

which each pixel belongs to the cardiac contour is computed, allowing the image to be

represented by a membership degree matrix. The final step comprises a graph search on

the cost matrix to determine the cardiac contour. In [55] histogram equalization followed
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C.2 Proposed Methodology

by wavelet transform are used to build the cost matrix. The branch-and-bound algorithm

is used [187], where the main focus is to reduce the complexity of finding the optimal path

that represents the endocardial border. In [41] the watershed framework is used and a

notion of watershed in edge-weighted graphs is introduced for segmenting spatio-temporal

images. A shortest path algorithm is also used in [82], which averages all the phases over

one cardiac cycle, and contours in each image can be recovered using minimum surface

segmentation.

In this work, we follow the algorithm proposed in [46] for the delineation of the LV

border in ultrasound images. This approach relies on DP to extract the desired boundary

by analyzing the image in polar coordinates. Combining this framework with the cost

matrix based on edges proposed in [110] leads to significant improvements in terms of

computational complexity, without compromising the accuracy of the segmentation. Fi-

nally, an additional step is included that is specific for CMR segmentation, which consists

in automatically updating the information about the center and radius of the expected

segmentation. This allows the algorithm to accurately segment the whole MR volume

without the need for additional user input.

C.2 Proposed Methodology

The goal of the proposed method is to provide a fast and accurate segmentation of

the LV in MR volumes. We address this problem by sequentially analyzing the slices (2D

images) in a given volume. Starting with an initial guess of the location of the LV in the

basal slice, the proposed algorithm aims to determine the location of the endocardium in

that particular slice. This segmentation is then propagated to the next slice as an initial

guess, and the algorithm is applied to this new slice. This procedure is repeated until all

the slices in the volume have been segmented.

Fig. C.1 provides an overview of the proposed approach, illustrating the main steps

that are performed for a given slice of the MR volume. The methodology herein proposed

is based on the following two main stages: (i) conversion of the original image (MR slice)

into an (inverted) edge map, whose valleys are considered as coarse candidate positions

for the endocardium; (ii) computation of the optimal path along the edge map, which

corresponds to a fine estimation of the LV border.

Concerning the first stage, we follow the approach proposed in [110]. Based on

an initial guess of the LV center and radius, this algorithm converts the image to polar

coordinates. Then, a gradient operator is applied along the radial dimension, in order

to extract possible candidates for the location of the LV border. Finally, the resulting

gradient image is transformed into an edge map that penalizes pixels with low gradient.

Typically, edge detection is not a reliable approach in CMR, as shown by the ex-

ample illustrated in Fig. C.2. The left image shows the strongest edge point (highest
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Figure C.1: Overview of the proposed DP methodology applied to each slice of the MR volume,

where c and R denote the coordinates of the center and radius of the LV, respectively.

gradient) along the yellow lines, and it is possible to see that many are outliers (red dots).

Furthermore, in the right image, in which all the edge points (local gradient maxima along

the yellow lines) are shown, some of the edge points located on the LV border (green dots)

are not detected. Therefore, additional information is required to avoid being misguided

by these outliers. The goal of the second stage of the algorithm is precisely to extract a

curve that satisfies specific shape constraints while still being able to follow the valleys of

the edge map (i.e., avoid going through pixels with low gradient). This trade-off between

the shape constraints and the image information allows the algorithm to avoid erroneous

edges related to papillary muscles and other misleading structures. The optimal curve is

then converted to Cartesian coordinates for the segmentation of the LV to be obtained.

Once these two stages are complete, the LV center and radius can be recomputed

from the segmentation. The updated parameters are used to determine if the initial guess

was in agreement with the segmentation or if a new iteration is required. This iterative

process allows the algorithm to recover from poor initial guesses.

The two stages of the proposed approach are described in Sections C.2.1 and C.2.2,

respectively. The update of the LV center and radius in described in C.2.3.

C.2.1 Computation of the edge map

In this stage, the goal is to compute an edge map from the original MR image, such

that its valleys follow the LV border. Since the morphology of the LV is roughly circular,

this step is performed in polar coordinates, as in [46].

In order to obtain a representation of the MR image in polar coordinates, an initial

guess of the LV’s center, denoted by c = [cx, cy]
> ∈ R2, and its size, R ∈ R, have to be

provided. Then, the intensity of a particular pixel (r, θ) in the image in polar coordinates

is obtained by computing

IP(r, θ) = I(x, y), (C.1)
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Figure C.2: Detection of edge points (bright to dark) along radial lines. On the left, only the

strongest edge point in each line is shown, and on the right all the detected edge points are shown.

Green dots belong to the LV border and red dots are outliers.

where the pixel position correspondence is given by

x = cx + r cos(θ), y = cy + r sin(θ). (C.2)

This transformation does not guarantee that x, y take integer values, thus we use bilinear

interpolation to obtain the value of IP(r, θ) (see [169] for details). The pairs (r, θ) for

which IP is defined belong to the domain Dr ×Dθ,

Dr =
{
r1, . . . , rM ∈ R : ri = rmin + (i− 1)∆r, i = 1, . . . ,M

}
(C.3)

Dθ =
{
θ1, . . . , θN ∈ [0, 2π] : θj = (j − 1)∆θ, j = 1, . . . , N

}
, (C.4)

where ∆r = rmax−rmin
M−1 , and ∆θ = 2π

N−1 . The maximum and minimum radii, rmax and rmin,

define the width of the ring within which the LV border is expected to be found. Also

note that θN = 2π = θ1, i.e., the pixels in the left and right borders of IP correspond to

the same positions in the original image.

Once IP(r, θ) is computed, a high-pass filter, H, is applied to obtain the radial

gradient image IG(r, θ). We are only interested in computing the gradient along r, and in

transitions from bright to dark, as those depicted in Fig. C.2. The impulse response of

the high pass filter is given by

H(r) =


1 if 0 < r ≤ T

−1 if − T < r ≤ 0

0 otherwise,

(C.5)

where T is a user defined parameter (in the results section, this parameter was set to

T = 6). The radial gradient image is obtained by applying the convolution operator

IG(r, θ) = IP(r, θ) ? H(r). (C.6)
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(a) (b) (c) (d)

Figure C.3: Conversion of an MR image into an edge map in polar coordinates: (a) Original LV

image, I(x, y); (b) image in polar coordinates, IP(r, θ); (c) image gradient, IG(r, θ); and (d) edge

map, eMAP(r, θ). The yellow line corresponds to the LV segmentation. The green and red lines

correspond to the minimum and maximum radius, respectively, and the blue line and arrow help

illustrate the conversion to polar coordinates.

The gradient image IG(r, θ) takes values in ]−∞,∞[, with: 1) large, positive values

corresponding to edges such as the ones associated with the LV border; and 2) large,

negative values corresponding to edges with the opposite gradient direction (from dark to

bright); and 3) values close to zero indicating the absence of edges. We wish to trans-

form IG(r, θ) into a cost map, such that the first type of edges have zero cost and every

other possibility has a cost of approximately 1. To accomplish this, the sigmoid function

proposed in [110] is adopted:

eMAP(r, θ) =
1

1 + exp
(
λ(IG(r, θ)− k)

) , (C.7)

where k > 0 controls the inflection point, and λ > 0 controls the sharpness of the sigmoid.

In this work, good values for these parameters were empirically determined to be k = 20

and λ = 0.04.

The edge map, eMAP(r, θ) ∈ [0, 1] is now normalized, and its valleys correspond to

rough candidate positions of the LV border. Figure C.3 illustrates the whole pre-processing

stage, from the original MR image, I(x, y), in Cartesian coordinates, depicted in Fig. C.3

(a), to the final edge map, eMAP(r, θ), in polar coordinates, depicted in Fig. C.3 (d), whose

valleys follow the path of the LV border, shown in yellow.

C.2.2 Contour estimation

The second stage of the algorithm aims to perform the delineation of the LV bound-

ary, computed from the output of the previous stage. More specifically, the goal is to find

a curve that follows the valleys of the edge map, eMAP (e.g., the yellow line depicted in

Fig. C.3 (d)).

In the original Cartesian coordinates, a popular approach to address this problem

is the following: find a parametric curve, x̂(s) = (x(s), y(s)), which is a function of the
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curve parameter, 0 ≤ s ≤ 1, such that

x̂ = arg min
x
E(x), (C.8)

where E is a cost function analytically defined as

E(x) =

∫
s
Eint(x(s)) + Eext(x(s)) ds. (C.9)

The first term is an internal energy (i.e., the prior), typically imposing a smoothness

constraint. The second term corresponds to the external potential energy function that

is defined in terms of the image data, e.g., the edge map eMAP defined in (C.7). This

approach is commonly used in deformable contours literature [25,123].

Here, a similar problem is addressed but in discrete polar coordinates. Recalling that

the edge map, eMAP, can be viewed as a M ×N matrix, we wish to determine the curve

r̂ = [r(1), . . . , r(N)]> (i.e., a sequence of radius values), such that r(j) ∈ Dr corresponds

to the LV radius for angle θj (recall (C.3) and (C.4)). Similarly to (C.8), the curve r̂ is

obtained by computing

r̂ = arg minr E(r)

s.t. r(1) = r(N)

r(j) ∈ Dr, j = 1, . . . , N

(C.10)

The constraint r(1) = r(N) is required to guarantee that r̂ is a closed curve in Cartesian

coordinates. In this case, the cost function E(r) is defined as

E(r) =
N∑
j=1

Eint(r(j)) + Eext(r(j)), (C.11)

where the image-related term is given by

Eext(r(j)) = eMAP(r(j), θj), (C.12)

and the prior term,

Eint(r(j)) = d(r(j − 1), r(j)) (C.13)

=


0 if |r(j)− r(j − 1)| = 0

η if |r(j)− r(j − 1)| = ∆r

∞ otherwise

. (C.14)

is used to impose a smoothness constraint on curve r, by penalizing large variations in

consecutive pairs (r(j − 1), r(j)), with Eint(r(1)) = 0.

By replacing (C.12), (C.14) into (C.11), the global cost function can be rewritten as

E(r) = eMAP(r(1), θ1) +

N∑
j=2

eMAP(r(j), θj) + d(r(j − 1), r(j)). (C.15)
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Note that this cost function is a sum of local cost functions. Therefore, the optimal cost

can be recursively computed through DP [22].

Let Ej(ri) denote the optimal cost of reaching a specific position, (ri, θj), in the

image, starting in the first column (θ1). This cost can be recursively computed using the

optimal costs for reaching the positions in the previous column

Ej(ri) = eMAP(ri, θj)+ min
ρ∈Dr

[
d(ρ, ri) + Ej−1(ρ)

]
. (C.16)

However, there is a global constraint, expressed in (C.10), which demands that r(1) =

r(N). In order to satisfy this constraint, the problem defined in (C.10) can be subdivided

into M subproblems: for each subproblem, we choose a different initial value for r(1) ∈ Dr,
and impose that the optimal path starts in this position. This is achieved by changing

the first column of the edge map to eMAP(ri, θ1) = ∞, ∀ri 6= r(1), i = 1, . . . ,M (all the

paths that do not begin in r(1) will have infinite cost). Then, the following two steps are

performed:

1. Forward step: Compute the optimal costs of all the curves that start at θ1 and end at

θN , using (C.16), and, for each local minimization problem (second term in (C.16)),

store the corresponding radii

φ(ri, θj) = arg min
ρ∈Dr

d(ρ, ri) + Ej−1(ρ). (C.17)

2. Backward step: Trace back the optimal path that ends at r(N) = r(1), by using the

radii stored in the previous step

r(N) = r(1) (C.18)

r(τ − 1) = φ(r(τ), θτ ), τ = N, ..., 2 (C.19)

The Algorithm 1 summarizes the process of applying DP to find a candidate LV contour

starting at a specific position, r(1).

This process is repeated for all possible starting point r(1) ∈ Dr. Then, the path with

the lowest global cost (computed using (C.15)) is selected as the proposed segmentation.

Notice that running Algorithm 1 (A1) for all starting positions may be costly, de-

pending on the number of possibilities, M . Alternatively, Bioucas-Dias et al. [46] proposed

to alleviate this by only running A1 two times (2-loop algorithm). They assume that the

optimal path close to j = N/2 is not influenced by the initialization, r(1). Thus, for

whatever starting position they choose in the first run, say r(1) = rmin (blue curve in Fig.

C.4), the optimal value for r(N/2) will always be the same. Under this assumption, they

simply reorder the two halves of the edge map, as illustrated by the colored rectangles in

Fig. C.4 (center), and run A1 a second time, starting at position r′(1) = r(N/2), where

r′ = [r′(1), . . . , r′(N)]> denotes the optimal path on the new (reordered) edge map. To
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Algorithm 1 Determining the best LV contour candidate starting at r(1)

for all ri 6= r(1) do

E1(ri) =∞

end for

forward step

for j = 1 to N do

for i = 1 to M do

compute Ej(ri) using (C.16)

compute φ(ri, θj) using (C.17)

end for

end for

backward step

select ending point r(N) = r(1)

for j = N to 2 do

r(j − 1) = φ(r(j), θj)

end for

obtain the solution for the original edge map, the two halves of r′ are rearranged back to

the original order (red curve in Fig. C.4 (right)). This way, the complexity of the algo-

rithm is reduced, allowing the for very fast segmentations to be obtained, independently

of the choice of M .

Once the optimal (or sub-optimal) path has been computed, the LV segmentation

in the original Cartesian coordinates, denoted by x, is obtained by transforming the co-

ordinates of each point in r as follows

x(j) = c + r(j)
[

cos θj , sin θj
]>
, j = 1, . . . , N. (C.20)

C.2.3 Automatic estimation of the c and r parameters

The algorithm described above provides a path r ∈ RN that defines the contour of

the LV along the edge map, eMAP. However, this path corresponds to a good estimate of

the LV border under the premise that the LV is roughly a circle with a specific center, c,

and radius, R ∈ Dr (recall (C.2) and (C.3)). In most cases, these parameters are provided

by using the segmentation obtained in the previous slice, which may be inaccurate. Con-

sequently, the resulting LV segmentations may not be correct. This section describes how

the estimates of R and c are refined based on the “optimal” path r.

The initial premise that the LV is roughly a circle on the MR slice means that the

path r is expected to be roughly a horizontal line along the edge map, eMAP. Moreover,
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Figure C.4: 2-loop algorithm for LV segmentation using DP. The blue line depicts the solution

of A1 with initial position r(1) = rmin; the red line depicts the solution of A1 on the reordered

edge map with initial position r′(1) = r(N/2); the green dashed line represents the ground truth

segmentation. The yellow and magenta rectangles and black arrows illustrate how the reordering

of the edge map and the optimal path works.

if the initial estimate of the LV radius, r, is accurate, then the straight line should be

located along the middle of the edge map, as shown in Fig. C.5 (a). An example of the

segmentation obtained from inaccurate estimates of R and c is depicted in Fig. C.5 (b).

On one hand, an inaccurate estimate of the center c leads to a sinusoidal curve along the

edge map, instead of a straight line. On the other hand, if the expected radius is smaller

(larger) than the actual LV radius, then the resulting curve is closer to the bottom (top)

part of the edge map. In the extreme case, the segmentation may not be able to follow

the actual LV contour, as shown in the figure, leading to a path that follows the border

of the edge map. Thus, it is necessary to update the estimates of R and c. This can be

achieved through the analysis of the path, r, as follows.

Let r̄ be the average distance of the contour to the center estimate c

r̄ =
1

N

N∑
j=1

r(j), (C.21)

where r(j) is the j-th component of r. The estimate of the expected LV radius is updated

by

R← r̄. (C.22)

Now, let p(j) ∈ R2 be the position of the j-th contour point, associated to r(j) and

θj , in Cartesian coordinates

p(j) = c+ r(j)

cos θj

sin θj

 , (C.23)

and let c be defined as the centroid of those points,

c =
1

N

N∑
j=1

p(j). (C.24)
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(a) (b)

Figure C.5: Examples of the segmentation obtained from (a) an accurate and (b) an inaccurate

estimate of the LV radius, R, and center, c. For each case, we show the original MR slice (top),

the MR slice in polar coordinates (bottom left), and the edge map (bottom right). The red circles

are the initial estimate of the center and radius and the yellow curves show the corresponding

segmentations obtained using the proposed algorithm.

The updated estimate of the LV center is obtained by

c← c. (C.25)

This update scheme allows the path, r, to iteratively converge towards the LV

border even when the initial estimate of its center and radius are inaccurate. Consider

the example of the inaccurate initial estimate depicted in Fig. C.5 (b). Applying three

iterations of the update scheme described above leads to the results shown in Fig. C.6.

In this figure, it is possible to see that, in each iteration, the segmentation becomes more

similar to a straight line in the polar coordinates space (bottom images) and gets closer

to the correct LV segmentation in the original image (top images).

C.3 Results

The proposed method was evaluated on the 33 sequences of the public dataset of

CMR data described in Section 3.6.1. The quantitative evaluation of the segmentation

accuracy is based on the four metrics described in Section 3.6.2. Results are shown for

the following configurations: 1) the algorithm A1 without the automatic update of c and

R described in Section C.2.3, 2) A1 with automatic updates (A1+AU), and 3) the 2-loop

algorithm with automatic updates (2L+AU). The computational performance of these

configurations is compared to demonstrate the advantages of using the 2L algorithm.
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Figure C.6: Updated of the LV center and radius estimates, c and R, and corresponding segmen-

tations. The first column shows the initial center and radius estimate and the following columns

show new iterations of the update scheme. The red circles depict the center and radius estimates

and the yellow curve shows the corresponding segmentation. The red arrows correspond to the

center update.

C.3.1 Computational Performance

The computational complexity of the algorithms, A1 and 2L, depend on two main

parameters: M and N , which determine the size of the edge map. These two parameters

influence the performance of the proposed approaches both in terms of running, and quality

of the segmentations.

Figure C.7 shows the Dice coefficient and time spent per 100 iterations, T , for

different values of M = {20, 30, . . . , 170, 180}, assuming N = 361 fixed, and N =

{91, 181, 361, 541}, assuming M = 120 fixed. It is possible to see that, as expected, A1

depends linearly on the value of M , whereas the complexity of 2L does not depend on M .

Consequently, the time required to run A1 may be significantly larger than that of 2L.

However, in terms of segmentation quality, the difference between these two approaches is

almost negligible. The value of the Dice coefficient reaches a plateau at around M = 100,

with the maximum being achieved at M = 120. Larger values of M only decrease the

speed of the overall algorithm, without improving its accuracy. Regarding the number

of columns in the edge map, N , both algorithms have a similar behavior: the time per

100 iterations increases linearly with N , although at very different scales, while the Dice

coefficient stabilizes for N ≥ 181, with a maximum reached at N = 361. For the following

section, the size of the edge map was set to M = 120 and N = 361.

C.3.2 Segmentation Accuracy

Table C.1 shows the statistical results of the three approaches discussed in this

appendix. Regarding the accuracy of the segmentations, all the approaches have a similar
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Figure C.7: Comparison of the computational performance of A1 and 2L: (left) the Dice coeffi-

cient and (right) the time spent per 100 iterations, T. In the top row, different values of M were

tested, using N = 361 (fixed); in the bottom row, different values of N were tested, using M = 120

(fixed).

performance. Nonetheless, the performance of A1+AU is better than 2L+AU, which in

turn is better than A1. Taking into account the time required to segment each volume,

then the 2L+AU approach is considerably more desirable than the other two. Comparing

these results with the EM-RASM formulation, it is also possible to see that 2L+AU is

faster, although the accuracy of EM-RASM is superior.

The fact that the proposed approach segments the volume slices sequentially influ-

ences that importance of the automatic update of the LV center and radius. When one

of the slices is incorrectly segmented, the error may propagate to the following slices. In

these cases, updating the center and radius estimates allows the algorithm to recover from

segmentation errors. The example shown in Fig. C.8 illustrates this advantage. The figure

shows the segmentation of a particular volume using A1 (top row) and A1+AU (bottom

row). In both cases, the initial guess of the center and radius in the basal slice (left) is

the same. It is possible to see that the A1 algorithm is not able to accurately segment the

LV. Even though the error is not significant, it escalates to meaningless segmentations in

the following slices. By using the automatic update scheme, the A1+AU algorithm is able

to recover from these poorer initial estimates.
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Table C.1: Statistical performance of A1, A1+AU and 2L+AU, and comparison with the EM-

RASM algorithm. Each entry shows the mean value and standard deviation.

Dice

(%)

AV

(mm)

VD

(mL)
% Good

Time per volume

(s)

EM-RASM
84.2

(9.2)

2.6

(1.7)

11.8

(11.4)
89.2 2.6

A1
82.2

(9.1)

2.8

(1.4)

11.5

(12.9)
87.2 11.2

A1+AU
83.5

(9.1)

2.6

(1.3)

13.9

(17.4)
89.7 55.4

2L+AU
82.8

(11.2)

2.7

(1.7)

15.5

(21.0)
88.8 1.5

Fig. C.9 shows the average Dice coefficient obtained using 2L+AU for each of the

33× 20 volumes in the dataset. It is possible to see that the proposed algorithm performs

better during the diastolic phase (approximately frames 1-3 and 12-20) than in the systolic

phase (6-10), which is expected since the edges along the LV border are clearer in these

frames. Most segmentation failures (red pixels in Fig. C.9) were either caused by the

presence of papillary muscles (see bottom right example in Fig. C.10), or because the

segmentation was pulled towards the LV’s outer border (see bottom left examples in Fig.

C.10). These cases are hard to segment using an edge-based approach, since the strongest

edge does not correspond to the desired border.

C.4 Conclusions

A fast methodology for the segmentation of the LV in CMR is presented in this

appendix. This approach is built under the assumption that the LV segmentation in

each slice has approximately a circular shape. Under this assumption, we propose to

transform the original MR slice into an edge map in polar coordinates, whose valleys

roughly follow the LV border. Then, the delineation of the LV contour is obtained using a

DP approach. The results show that this approach is able to achieve good results, although

its accuracy is inferior to the EM-RASM formulation used in this thesis. The proposed

approach is also able to segment a whole volume in 1.5 seconds, i.e., it provides fast and

accurate segmentations that would significantly reduce the time spent by cardiologists in

this laborious task.

The drawback of the proposed algorithm is the fact that it relies on edge detection
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Figure C.8: Comparison between A1 (top row) and A1+AU (bottom row). Each column shows

a slice of the volume, from the basal slice (left) to the apex (right); the red contour is obtained

using the automatic algorithm and the green is the GT. The last column shows a 3D view of the

volume segmentations and the corresponding color-coded Dice coefficient.
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Figure C.9: Discriminated evaluation of the segmentation of each volume in the dataset (33

patients× 20 frames). The colormap indicates the Dice coefficient, in which green pixels correspond

to good segmentation and red to poor segmentations.

to identify the position of the LV border. Although this is a common approach in the

literature, the outer wall of the LV and the presence of papillary muscles may misguide

these algorithms. Therefore, future work should focus on using a more robust approach

to compute the edge map, instead of relying on edge detection only.
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Figure C.10: Examples of segmentations obtained using 2L+AU (in red) and comparison with

the GT (green). Each image shows one slice from a particular patient.
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