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Abstract—In this paper we present and evaluate an algorithm
for tracking vessels in oceanographic airborne image sequences
on the visible spectrum. Such sequences are challenging due to
sun reflections, wakes, wave crests and fast motions, which sig-
nificantly degrade the performance of general purpose tracking
algorithms. The proposed method is based on state-of-the-art
correlation filter tracking complemented with an image segmen-
tation and blob analysis stage. The purpose of this later stage is
to re-center the target in the tracking window to compensate for
drifts in the correlation filter. We evaluate our proposal using
a known benchmark in the field and compare it with general
purpose tracking algorithms. Results show that our method
beats the general purpose state-of-the-art tracking algorithms
in the airborne maritime scenario both in performance and in
computation time.

I. INTRODUCTION

The SEAGULL project [1] developed an intelligent mar-
itime surveillance system using unmanned autonomous vehi-
cles (UAVs) equipped with various types of optical sensors
(visible, infrared, multi- and hyper- spectral). This system
is particularly interesting because it is affordable, easy to
deploy and with few infrastructure requirements, in contrast
to other systems used today. A fleet of fixed wing UAV’s are
equipped with computers running vision algorithms for the
automatic detection of maritime vessels, whose coordinates
are communicated to a coastal ground station via a radio link.
The developed algorithms work in real time on the embedded
hardware and present a low rate of false detections [2].
Nevertheless, the developed methods have difficulties mainly
in the presence of sun reflections, breaking waves and boat
wakes. The focus of our work is the development of a
tracking algorithm more robust to these effects and to perform
comparisons with other state-of-the-art tracking algorithms in
the maritime scenario.

The main contribution of the present paper is the de-
velopment of a new approach to maritime vessel tracking,
combining an adaptive correlation filter [3] with a local re-
detection step consisting of blob analysis for the correction
of tracking offsets. The main idea consists in applying a
detection step on the region of interest (ROI) to correct the
target center when the conditions are favorable, i.e. when
the boat is outside sun glare and boat wake regions (low
background clutter). These conditions are detected at the blob
analysis phase, using a few heuristics applied to the number,

area and location of segmented blobs. Using this approach,
it is possible to maintain the robustness of the correlation
filter tracking, allowing it to keep the track during longer time
spans. We compare the proposed approach with several state-
of-the-art object tracking algorithms, using a data set of video
sequences acquired during the SEAGULL project [1]. This
data set is composed by thousands of annotated frames and a
public release is under preparation to allow further research in
this area.

The paper is organized as follows. In the next section,
Sec. II, we present the current state-of-the-art in general
purpose tracking algorithms and a few existing applications to
maritime scenarios. Then, in Sec. III we present the proposed
approach and its main components: the correlation filter, the
features used, and the blob analysis step. In Sec. IV we
describe the used datasets, the evaluation methods, and the
experiments done to assess the performance of our methods
in comparison to the state-of-the-art. Results are presented in
Sec. V, illustrating the advantages of our methods both in
tracking performance and computation time. Finally, Sec. VI
summarizes the main conclusions of this work and refers to
directions for future research.

II. STATE-OF-THE-ART

Object tracking is one the most important and difficult
tasks in computer vision. According to the Object Tracking
Benchmark (OTB) [4], several aspects make visual tracking a
very challenging task: illumination variation, scale variation,
occlusion, deformation, motion blur, fast motion, in-plane
rotation, out-of-plane rotation, out-of-view, background clut-
ters, and low resolution. Annually, the state-of-the-art tracking
algorithms are presented at the Visual Object Tracking (VOT)
challenge [5]. In the 2015 competition, some of the top
performers were based on correlation filter tracking using
different kinds of approaches. Usually, correlation filters are
designed to produce correlation peaks in the estimated target
location while having low responses in the background. Al-
though effective, the training of these methods was impractical
for online tracking until the proposal of the Minimum Output
Sum of Squared Error (MOSSE) filter [6]. Later develop-
ments extended MOSSE in a number of ways, such as the
introduction of kernel methods by the Kernelized Correlation
Filter (KCF) [3] tracker, and the Discriminative Scale Space



Tracker (DSST) [7]. Both of these methods used multiple
channel HoG features [8] instead of the raw pixels used by
MOSSE. Later, MUlti-Store Tracker (MUSTer) [9] proposed
an approach using short-term and long-term tracking methods,
working in a complementary manner. The correlation filter
tracker (CFT) works as the short-term tracker while the long-
term part is based on key-points and is used to locate the target
when the CFT fails.

In the latest VOT competition, the top correlation filter
trackers were the Spatially Regularized Correlation Filter
(SRDCF) [10] and the DeepSRDCF [11], both from the same
authors. They introduced a spatial regularization component
in the optimization problem to penalize the correlation filter
coefficients farther from the target. Recently, features based
on convolutional neural networks (CNNs) [11] [12] have
shown state-of-the-art results in various visual recognition
tasks including visual tracking. The DeepSRDCF introduces
the use of convolutional neural network multi-channel features
to discriminate the target with the VGG-2048 [13] neural
network used for image classification. More recently, [12] used
multiple layers of a CNN to train multiple correlation filters.
The idea behind this approach is that early layers of CNNs
have higher spatial resolution allowing for precise localization
while the features from deeper layers capture more semantic
information and are robust to significant appearance changes.

In [14], it is proposed the DLT tracker. A stacked denoising
autoencoder is trained offline to learn robust generic image
features. Online tracking is made using the encoder trained
from the previous autoencoder as a feature extractor and an
additional classification layer. One interesting finding is that
the filters in the first layer of the trained feature extractor
resemble the Gabor filters for edge detection.

In [15] the authors propose the Multi-Domain Convolutional
Neural Network (MDNet) tracker, winner of the 2015 VOT
challenge. In this method, a CNN is pre-trained using a
training set of tracking videos. The main aspect of this CNN is
that the last layer is reinitialized at the beginning of each new
video (domain-specific) while the deeper layers are updated
online.

Other methods also present good results in many bench-
marking criteria and are worth mentioning. The STRUCK [16]
method uses a kernelized structured output support vector
machine (SVM) with Haar features and histogram features
for tracking. The MEEM tracker [17] proposes a multi-expert
restoration scheme to address the problem of model drift in
online tracking using a linear SVM. The ASMS tracker [18] is
based on the popular mean-shift object tracking method. The
authors propose various changes to address the problem of
scale estimation while processing frames at a high frequency.

Despite all work on visual tracking, very few methods
address detection and tracking on airborne images of maritime
scenarios. The maritime scenario presents several specific
challenges, the most significant ones due to sun reflections
(illumination variations), waves and wakes originated by the
vessel motion (background clutter), and the fast motion of
the camera due to UAV maneuvers. Given the top-down

perspective of the camera attached to the UAV, other problems
exist, such as the in-plane and out-of-plane rotations. Usually,
these types of rotations are not present in a motionless camera.
The use of long-wave infrared cameras has been proposed to
reduce the effects of sun reflections, waves and wakes. In [19]
the author proposes a method to detect and classify maritime
objects in infrared videos recorded from an autonomous plat-
form. A fusion of three detection methods is made to generate
hypotheses of possible boat locations in the image. The first is
based on a track-before-detect algorithm using spatio-temporal
integrated blob strength, the second exploits stable image
regions and the third is based on tracking salient points of
the image. Next, a two-stage-classification step with support
vector machines (SVMs) is performed to classify the vessels.
In [20] it is proposed an image saliency method and entropy
analysis to detect vessels on long wave infrared images.

When the algorithms have to run on limited computational
resources on board the UAV, additional concerns must be taken
in their development. A recent algorithm for boat detection
[2] uses simple blob analysis, based on spatial and temporal
constraints and is capable of operation in real-time on board
an UAV. In [21] a binary classifier using simple features is
used to classify a target as vessel or background from optical
satellite images. The classifier has a cascade structure which
rejects background clutter in the earlier stages to improve the
computational performance. In [22] a complete system for
maritime coastal surveillance is proposed. The boat detection
is performed using a Haar-like classifier and a temporal filter.
The tracking module uses a nearest neighbor policy with the
Bhattacharyya distance between the HSV value histograms,
allowing for multiple target tracking.

Upon the analysis of the current state-of-the-art, the main
concerns are the computational cost of the approaches that
are usually the top contenders in the visual object tracking
challenge. Furthermore, from our experience in the application
of general purpose tracking methods to maritime scenarios,
we have noticed frequent failures in tracking regions with
sun-reflections, waves and wakes. On longer sequences the
tracking tends to drift, and approaches based on key-points
fail due to the typical low resolution and lack of texture of
the target. In this paper we propose a method that is able to
mitigate many of these problems.

III. METHODOLOGY

The architecture of this system is shown in Fig. 1. The main
components are a correlation filter module and a blob analysis
module.

In this work we use a Kernelized Correlation Filter (KCF),
following the work of [3]. The correlation filter is initialized
by training it with an image patch cropped from the first
frame around the target bounding box (BB), either using
the raw image (gray pixel or RGB) or using different kinds
of features. In the present work we use HoG features [8]
and CNN features [23]. The area around this patch is then
used as the region of interest (ROI) for the detection in the
next frame. The computation of the correlations is performed



Fig. 1. System architecture. The system receives a new frame and it runs the
correlation filter around the previous bounding box (BB) location returning a
updated location of the target BB’. After, the error of this estimation (BB’) is
decreased using blob analysis to detect the vessel and recenter the bounding
box (BB”). The correlation filter is updated with the information at the new
target location.

in the frequency domain where convolutions are replaced
with element-wise multiplications using the Discrete Fourier
Transform (DFT) of the images. The response map, where
the maximum corresponds to the estimated target location, is
obtained using the inverse DFT. This information is used to
update the location of the target in the new image and define
a new bounding box around it (BB’ in Fig. 1). However, due
to clutter and noise, the new target estimated position may
still be offset with respect to the true position. To improve
the target location a blob analysis step is performed. The
image is segmented in its most representative blobs and if a
dominant large blob is present, its centroid and area are used
to update the location and scale of the target, thus defining
a new bounding box (BB” in Fig. 1). Finally, the correlation
filter is updated with the information from a new patch around
the new detection.

In the next sections we will detail the theoretical and
practical aspects of the methods used in our implementation.

A. Correlation Filters

Correlations filters are specially tuned to a particular image
pattern. They are reminiscent to Template Matching techniques
in image processing, where a cropped patch around the target
h is used to represent the filter. The correlation of this template
with the new image x produces a response map y:

y = x ∗ h− (1)

where h− is the reflection in both coordinates of the patch and
∗ is the convolution operator. The location corresponding to
the maximum value of the response map will indicate the new
position of the target. To improve the computational efficiency
of the filter, the convolution is computed in the Fourier
domain. Because we are in a discrete and finite domain, the
convolution must be replaced by the circular convolution (⊗).
This produces some boundary artifacts that can be mitigated
by pre-weighting the patches with a windowing function. The
computations become:

y = x⊗ h− = F−1(x̂� ĥ∗), (2)

The hat symbol represents the discrete Fourier transform of
a vector and the F−1 represents the inverse Discrete Fourier

Transform. The � represents the element-wise multiplication
and superscript ∗ indicates the complex conjugate.

Using a simple cropped patch to represent the filter produces
strong peaks to the target but also responds falsely to the
background. To address this problem, methods have been
proposed to learn filter coefficients h that produce a more
desirable response convolution map y to a given input target
x. Typically y is defined as an isotropic Gaussian function
with a small standard deviation. A simple way to compute
and exact filter is proposed in [24], using the Fourier domain:

ĥ∗ =
ŷ

x̂
(3)

where the division is element-wise. Still, this approach is
not very robust to noise and transformations other than pure
translations, so [24] proposed the ASEF algorithm (Average of
Synthetic Exact Filters) that, as the name suggests, averages
multiple exact filters trained for different transformations of
the target:

ĥ∗ =
∑
i

ŷi
x̂i

(4)

where the xi are transformed image patches of the target,
and yi are the corresponding desired response maps (Gaussian
centered in the location of the target).

One year later, the same author proposed the MOSSE
filter (Minimum Output sum of Squared Error) allows better
performance that ASEF with a smaller number of training
patterns [6]. The MOSSE correlation filter is the solution of:

min
ĥ∗

∑
i

||x̂i � ĥ∗ − ŷi||2, (5)

where i indexes each training sample (image). The solution of
this optimization problem is given by:

ĥ∗ =

∑
i ŷi � x̂∗i∑
i x̂i � x̂∗i

. (6)

This method allowed correlation filters to be trained more
efficiently and more robust to variations in lighting, scale, pose
and non-rigid deformations.

B. Kernelized Correlation Filters

Despite the success of the MOSSE filter, it is only composed
of linear operations on the input signals. Non-linear geometric
or brightness transformations of the target can only be repre-
sented by increasing the training set of images, which make
the method slower. In [3], it was proposed that the correlation
filters can be extended to take advantage of the kernel trick
to allow for non-linear operations. The correlation filter is
formulated as a linear classifier such that the input x is mapped
to the output label as f(x) = 〈~h, ~x〉, where 〈 ·, ·〉 means the dot
product and ~(·) represents the vectorization operator (reshape
a matrix into a vector). Using the Regularized Least Squares
(also known as Ridge Regression) the optimization problem
becomes:

min
~h

∑
j

(y(j)− f(xj))
2 + λ||~h||2, (7)



where xj is a transformation of the input and y(j) the desired
output (scalar), corresponding to the jth entry of ~y, and λ is
a regularization term. The solution is given by:

~h = (XHX + λI)−1XH~y, (8)

where X is a matrix with one sample ~xj per row, XH

means the Hermitian transpose XH = (X∗)T and I is the
identity matrix. The Hermitian transpose is used because the
computations will be performed in the Fourier domain where
values are usually complex.

By using the kernel trick, the performance can be improved
by making the classification on a high-dimensional feature
space. The input data is mapped implicitly to a non-linear
feature space with the function ~ϕ(x), defined by the kernel
as κ(x, x′) = 〈 ~ϕ(x), ~ϕ(x′)〉. Then, the Representer Theo-
rem [25] states that the solution ~h can be expressed by a linear
combination of the inputs:

~h =
∑
j

αj ~ϕ(xj) (9)

and the solution to Eq. (7) using kernel functions is:

~α = (K + λI)−1~y, (10)

where K is the kernel matrix with elements Kmn = κ(xm, xn)
and I is the identity matrix.

If the transformations in xj are circular shifts, the com-
putation of the inverse matrix in Eq. (10) can be avoided
by the introduction of circulant matrices. Let us consider a
one-dimensional vector with a single feature (e.g. pixel value)
u = [u0, u1, ..., un−1] where n is the vector length. The
equations can then be generalized for 2D images with multiple
channels and other multiple channel features as shown in [3].
This approach allows all the translated samples around the
target to be used for training without losing computational
efficiency. A n× n circulant matrix C(u) is obtained from a
n× 1 vector u by concatenating all cyclic shifts of the vector
u:

U = C(u) =


u0 u1 u2 ... un−1
un−1 u0 u1 ... un−2
un−2 un−1 u0 ... un−3

...
...

...
. . .

...
u1 u2 u3 ... u0

 (11)

Circulant matrices have various interesting properties that
will allow the necessary correlation filter computations to
be computationally less expensive. For example, the sum,
products and inverses of circulant matrices are also circulant.
Also, a circulant matrix has the following property:

U = Fdiag(û)FH (12)

i.e. the circulant matrix can be made diagonal with the DFT
matrix F, used to compute the DFT of a vector (F(u) =√
nFu) and the DFT û of the base vector u.
By using this property on Eq. (8) the solution of h can be

expressed in the following form in the Fourier domain

ĥ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
, (13)

where the division is element-wise. The complete derivation
is available in [3]. Eq. (13) allows for better computational
efficiency than the solutions on Eq. (8), being bounded by the
DFT operations that have a cost of O(n log n) while the Ridge
Regression solution has a cost of O(n3) bounded by the matrix
inversion and products. This is an important property of the
system proposed because it allows for real-time computations
with great robustness.

The solution above does not yet include the kernel trick. To
use the circulant matrix method the kernel matrix K has to be
circulant. For that to be true one condition has to be imposed –
given a circulant data C(x), the Kernel matrix K is circulant
if the kernel function satisfies κ(x, x′) = κ(Mx,Mx′) for
any permutation matrix M [3]. Some kernels that satisfy this
condition are the Gaussian kernel and the linear kernel. The
Gaussian kernel is defined for some generic variables xa and
xb as

kxaxbg = e−
1
σ2

(||xa||2+||xb||2−2F−1(x̂a
∗�x̂b)) (14)

and the linear kernel as

kxaxbl = F−1(x̂a
∗ � x̂b). (15)

In this way, Eq. (10) can be written in the Fourier domain as

α̂ =
ŷ

k̂xx + λ
, (16)

where kxx is obtained either using the gaussian kernel (14)
or the linear kernel (15) using the training sample x. Once
again the detailed derivation is presented in [3]. Finally, with
Eqs. 14, 15 and 16 it is possible to train the correlation filter.

Another important aspect of correlation filters is how to
update the filter with the new information acquired with the
new detection. Usually, the running average is the chosen
method. In the Kernelized Correlation Filter the coefficients
α̂ are updated as

α̂t = η
ŷ

k̂xx + λ
+ (1− η)α̂t−1, (17)

where t defines the current step, η is the learning rate, and
the generic variables xa and xb are replaced by x. The target
model is updated as

x̂t = ηx̂+ (1− η)x̂t−1, (18)

where x is the new sample extracted from the current estimated
position of the target.

Given the trained parameter α, the base training samples xt
and the candidate patches for detection z, the detection can be
made with the following confidence response map ȳ:

ȳ = F−1(k̂xtz � α̂) (19)

by finding the location with maximum value in ȳ, where k̂xtz

is the DFT of the kernel defined on Eq. 14 or Eq. 15 with the
generic variables xa and xb replaced by xt and z respectively.



Fig. 2. From left to right, the region of interest x, the desired output as
a 2D Gaussian y and the corresponding correlation filter of the first frame,
assuming the use of raw image pixels as features, obtained using Eq. (16)
and a Gaussian kernel.

Fig. 3. From left to right, the correlation filter α trained and updated
throughout 226 frames, the candidate patch for detection z after 227 frames
since the initialization, and the response map ȳ. Using the trained correlation
filter it is possible to estimate the translation of the target relative to the
previous position.

In Fig. 2 and Fig. 3 it is possible to get a better under-
standing of these mathematical concepts during training and
detection respectively, by analyzing the image patch and the
color maps of the desired output and the obtained correlation
filter.

C. Features

Correlation filters work with any kind of dense features that
maintain the spatial information. Examples of these features
that have shown good performance are raw image pixels,
Histogram of Gradients (HoG), Color Names (CN) [26], and
more recently Convolutional Neural Network (CNN) features.
In this work HoG and CNN are used. When using raw gray
pixels the computations are the ones given in the previous
section, but for multiple channel features such as RGB, HoG or
CNN the kernel computation has a slight difference. For both
the linear and the Gaussian kernel the vectors from different
channels can be simply added together:

kxaxbl = F−1
(∑

c

x̂∗a,c � x̂b,c

)
(20)

kxaxbg = e−
1
σ2

(||xa||2+||xb||2−2F−1(
∑
c x̂

∗
a,c�x̂b,c)), (21)

where c identifies the channels.
The HoG features used are the ones proposed by Felzen-

szwalb et al. [8] and are sometimes called Felzenszwalb HoG
(FHoG) features. These features are composed of 31 channels
where 9 are contrast insensitive, 18 are contrast sensitive
and 4 capture the overall gradient energy in different areas.

Fig. 4. From left to right, original image, one channel of the FHoG features
from a total of 31 and one channel from the CNN features from a total of
256 channels.

For a deeper understanding of the computations required to
obtain this features refer to [8]. Fig. 4 shows an example of
one channel of the resulting 31 channels after processing a
maritime vessel.

Convolutional neural networks can be used as classifiers or
regressors. As usual in machine learning, CNN’s are trained
from a labeled training set in order to produce a desired
output. One example is the classification of images such as
the images from ImageNet [27]. The VGG-Net [23] won
the first and second place in the ImageNet ILSVRC-2014
localization and classification tasks respectively. In the VGG-
Net a preprocessed image is given as input and this image
will go through 19 layers that are composed of convolutional
layers with the rectification (ReLu) non-linearity, max-pooling
and fully connected layers. The last layer gives the confidence
of an image being one of the 1000 different classes. The
appearance of the images is encoded in the neural network
weights and the activations of the convolutional hidden layers
can be used as multiple channel features for the correlation
filter. To extract these features we feed the image to the CNN
and use the activation of selected convolutional hidden layers
as features.

Note that different layers or even different convolutional
neural networks can be used to extract features and the results
can vary with the choice. We use the 8th convolutional layer
of the VGG-Net [23] with 19 layers that outputs 256 two-
dimensional channels (architecture E on the original paper).
In Fig. 4, one of the 256 used channels can be examined.

In all cases, each feature channel has to be multiplied by
a Hanning window to alleviate the boundary effects when
computing the DFT.

The training part of the correlation filter has the following
steps when using the FHoG features:

1: Compute features x of the new training sample
2: Multiply x by a Hanning window
3: Compute k̂xxg = F

(
e−

1
σ2

(2||x||2−2F−1(
∑
c x̂

∗
c�x̂c))

)
4: Update α̂t = η ŷ

k̂xx+λ
+ (1− η)α̂t−1,

5: Update target model x̂t = ηx̂+ (1− ηx̂t−1)

and the detection part of the correlation filter using FHoG
features has the following steps:

1: Compute features z of the test sample
2: Multiply z by a Hanning window



3: Compute k̂xtzg = F
(
e−

1
σ2

(||xt||2+||z||2−2F−1(
∑
c x̂

∗
t,c�ẑc))

)
4: Compute ȳ = F−1(k̂xtzg � α̂)
5: Determine the arguments of the maxima of ȳ

When using FHoG, [3] states that the gaussian kernel has bet-
ter results, as we confirmed experimentally. When testing the
CNN features, our results show that the linear kernel achieves
a better performance than the gaussian kernel. Consequently,
when using CNN features, we changed the algorithms to use
the linear kernels kxxl and kxtzl .

D. Blob Analysis

The results in [2] show interesting properties of a blob
analysis framework in tracking boats in maritime images.
Because the appearance of a boat on a maritime background
has a blob-like appearance, we propose the use of image
segmentation and blob analysis to detect the maritime vessel
in the region of interest (instead of the whole image) and to
correct the correlation filter tracker.

Image Segmentation. Before the detection of the connected
components, usually referred to as blobs, the image patch of
interest has to be segmented. In this setting the images are
usually composed of two main components: i) the target vessel
and ii) the ocean. Thus we adopt a binarization approach via
the Otsu’s method [28] to separate bright and dark parts of
the image that, in principle, will correspond to the boats and
the ocean surface, respectively.

The Otsu’s method finds a threshold that separates the
two peaks of the image histogram from a bimodal image.
In mathematical terms, the algorithm exhaustively searches
for the threshold t that minimizes the intra-class variance
(the variance within the class), defined as a weighted sum
of variances of the two classes:

σ2
ω(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t), (22)

where ω0,1 are the class probabilities separated by the thresh-
old t and σ2

0,1(t) are the class variances. For further details
refer to [28].

The segmented image is then eroded (Fig. 5) to isolate the
vessel from nearby distractors like wakes, life rafts or other
vessels, and also to remove some of the noise originated from
waves and sun reflections.

Blob Detection. The next step is to detect the group of
pixels (blob) that corresponds to the maritime vessel. We use
a method to detect contours in binary images proposed by [29].

Sometimes, the background clutter (waves and wakes) and
the sun reflections can interfere with the segmentation. In
these cases, the blob detection cannot be used to correct the
estimation of the correlation filter because there will be a
high number of different blobs and, when going through sun
reflections, the vessel will not appear as a blob, as seen in
Fig. 5.

To circumvent this problem, a set of heuristics were defined
to determine if the conditions allow for the track correction.
If a) no blob touches the ROI border; b) the number of blobs
is smaller or equal to a defined threshold Tn and c) the blob

Fig. 5. Original image, segmented image and eroded image (left to right).
Three examples shown: a regular case, a case with sun reflections and a case
with irregular wake (top to bottom).

has an area larger than Ts, then the conditions are favorable
to correct the track. The first and second conditions are used
to detect the presence of sun reflections or background clutter
as boat wakes or waves and the third is used to filter some
noise and boat wakes that might go through the two first
filters. Afterwards, the blob is chosen using a nearest-neighbor
approach with the correlation filter estimation and the track is
set to the center of that blob.

To adapt the scale of the target, we set the width and height
of the bounding box to a value St, proportional to the size
of the detected blob unless the size is two times bigger o
two times smaller than the previous value (0.5St−1 < St <
2St−1). The complete set of steps of the proposed method for
one iteration (one frame) is as follows:

1: if first frame then
2: Train correlation filter
3: else
4: Estimate translation with the correlation filter
5: Perform binary image segmentation
6: if no blobs touch the border and the number of blobs is

smaller then the threshold Tn and the blobs are bigger
then a threshold Ts then

7: Determine the blob that is closest to the correlation
filter estimation and set the track to the center of that
blob

8: if 0.5St−1 < St < 2St−1 then
9: Update the bounding box width and height to 1.5St

10: end if
11: end if
12: Update the correlation filter
13: end if



IV. EXPERIMENTS

A. Evaluation Metrics

To perform the evaluation of the proposed method and
compare it to state-of-the-art tracking algorithms, the Object
Tracking Benchmark (OTB) [4] framework was used. This
methodology evaluates the tracking methods by computing
Precision and Success plots of the tracking under two different
initialization strategies denoted Temporal Robustness Evalua-
tion (TRE) and Spatial Robustness Evaluation (SRE).

The Precision plot shows the percentage of frames whose
Euclidean distance between the centers of the detection and the
manually labeled ground truths is lower than a given threshold.
The Precision threshold varies from 0 to 50 pixels with a step
of 1 pixel. The score chosen to rank the trackers is Precision
value for a threshold of 20 pixels as suggested by [4].

The Success plot evaluates the bounding box overlap of
the detection with the ground truth. Mathematically, given a
detected bounding box rd and the ground truth bounding box
rgt the overlap ratio is given by:

S =
|rd ∩ rgt|
|rd ∪ rgt|

, (23)

where ∩ and ∪ represent the intersection and union, respec-
tively, and |.| represents the number of pixels in that region.
Once again, the Success plot shows the percentage of frames
whose bounding box overlap ratio is higher than a given
threshold from ratio values of 0 to 1, where 1 means perfect
match of the detection and ground truth and 0 meaning lost
target. To rank the different algorithms, the area under the
curve (AUC) of each Success plot is used.

The Temporal Robustness Evaluation consists in initializing
the trackers at different frames, not just the first, and running
them until the end of the sequence. Each sequence is evaluated
by initializing in 20 different frames. The initial frames are
chosen by starting with the first frame of the sequence and
stepping through them at a regular interval. The step is
approximately the number of frames of the sequence divided
by 20.

The Spacial Robustness Evaluation consists in introducing
error in the initialization by shifting the bounding box by 10%
of the target size in 8 different directions, and scaling it by
0.8, 0.9, 1.1 and 1.2 of the ground truth size. This results in
12 different initialization.

These evaluations are pertinent because in a real world
scenario the trackers would be initialized with a vessel detector
that is likely to introduce error in the initialization.

B. Data set

The data set used for the evaluation is composed of two
different videos of the visible spectrum, one acquired with
a JAI’s AD-080GE camera and the other with a TASE150
camera. Given the limitations of the framework on evaluating
videos with out-of-view targets, these videos were cut into
smaller sequences. In total, the tracking algorithms run on
8747 manually annotated frames. These smaller sequences

include cases where a vessel goes through regions of sun-
reflections, cases of big and highly irregular wakes, and cases
where the target deploys smaller vessels and life rafts. All
frames have the target in the field-of-view.

These and more annotations can be accessed online1 for
further research and validation of the results presented below.
See Fig. 6 for some examples of frames from the data set.

C. Tested Algorithms

Some of the state-of-the art methods mentioned above that
were available online for testing purposes were evaluated using
the OTB framework. The tested trackers were ASMS [18],
DSST [7], KCF [3], CF2 [30], SRDCF [10], MUSTer [9],
MEEM [17], MDNet [15] and the proposed method either
using HoG features or using CNN features.

V. RESULTS

The implementation of the proposed method was made in
Python and can be accessed online2. To evaluate this method,
the parameters used for the correlation filter and blob analysis
were as follows. The desired output y for the training step is
a M by N gaussian with its peak at the target center:

y(m,n) = e−
(m−M/2)2+(n−N/2)2

2σ2 , (24)

where m = 0, 1, 2, ...,M , n = 0, 1, 2, ..., N , and σ = 0.1 ·
√
a

is the peak width, proportional to target area a. The region
of interest is defined as a square 2.5 times larger than the
target bounding box. The regularization weight λ used was
10−4 and the learning rate η was set to 0.02. When using the
HoG features, the kernel used was the Gaussian kernel, with
a standard deviation of 0.5, while the linear kernel was used
for the CNN features.

The FHoG features were extracted using the Dlib [31]
implementation while the CNN features were extracted using
the Caffe [32] framework.

For the image segmentation method [28] and the blob detec-
tor [29], we use the OpenCV Library [33] implementations. To
adapt the bounding box to the target, we use a value given by
the OpenCV blob detector that is proportional to the blob size.
This variable, called size S, is part of the OpenCV Keypoint
class and is defined as ”diameter of the meaningful keypoint
neighborhood”. To allow for some context to be taken into
account during the correlation filter step, the width and the
height is set to 1.5St. The threshold used for the number
of blobs was Tn = 2 and the minimum size threshold was
Ts = 10.

As can be seen in Fig. 7 and Fig. 8, our method, either
using FHoG or CNN features, shows better results that the
other methods in the airborne maritime scenario. The key
is the blob detection and target re-centering steps, which
allow greater precision, especially with the version using CNN
features, either in the Spatial Robustness Evaluation (SRE)
or in the Temporal Robustness Evaluation (TRE). The FHoG

1http://vislab.isr.ist.utl.pt/seagull-dataset/
2https://github.com/Magnesiam/CFT OTB/



Fig. 6. Frames from the data set with the results, as bounding boxes, of some of the best performing methods: both our methods (CNN as red and HoG
as green), MDNet (black) and CF2 (blue). Two examples are shown. The example on top is a case of success for both our methods given that the track is
still on the target after 4383 frames, when the target leaves the camera’s field of view, even after going through a region with intense sun-reflections multiple
times. The other top performing algorithms lose the target much earlier. The example on the bottom is a case of failure for our method using FHoG features,
where the track gets lost following the wake of another target. Nevertheless, our method using CNN features can overcome this problem given its capability
to better discriminate the target from the wakes.
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Fig. 7. Precision plots for the SRE and TRE from the OTB framework [4]. The values on the legend correspond to the precision for a location error threshold
of 20. Note that the colors represent the ranking and not the different trackers. The same tracker can have different colors in different evaluations depending
on its ranking (e.g. red corresponds to the first place, green to the second place and blue to the third place).
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Fig. 8. Success plots for the SRE and TRE from the OTB framework [4]. The values on the success plots legend correspond to the areas under the curves
(AUC). Note that the colors represent the ranking and not the different trackers. The same tracker can have different colors in different evaluations depending
on its ranking (e.g. red corresponds to the first place, green to the second place and blue to the third place).
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Fig. 9. Performance by computational complexity measured in frames per second (FPS) for the SRE and TRE. Success performance is the area under the
curve obtained from the plots shown in Fig. 8.

version also presents competitive results when compared to the
MDNen (winner of the VOT Challenge 2015) but running with
a frame-rate that is two orders of magnitude faster (Fig. 9).
Furthermore, it has better results around the 10 pixels location
error threshold (Fig. 7). Some trackers that have great results in
general purpose tracking challenges and benchmarks seem not
to generalize well enough for the particular case of airborne
maritime imagery, such as the ASMS and the DSST. The
DSST, even tough being a part of the correlation filter tracking
family, it does not use the kernel trick and the scale space
search does not work well for the rotations present in this
scenario.

In the success rate evaluation there are clearly three top
ranking algorithms, particularly on the spacial robustness
evaluation, as shown in Fig. 8. These are both of our methods
along with MDNet. These methods seem to work well even in
the presence of an erroneous initialization. In our case, it is due

to the blob analysis that corrects the error in the initialization
as soon as the conditions are favorable. In the case of the
MDNet, it is safe to assume that this happens because the
neural network trained offline has encoded the nuances of a
moving target and can converge to its location.

Another important factor to take into account is the compu-
tation complexity. The evaluations of Fig. 9 were made using
an Intel Xeon CPU W3503 at 2.40GHz and a GeForce GTX
750 graphics card. The CNN computations of several methods
were run in parallel in the graphics card. Unfortunately, the
top two methods, ours using CNN features and MDNet, run at
a low frame-rate. Ours, with CNN features, has a mean frame-
rate in the SRE of 2.65 FPS and 2.32 FPS in the TRE and
MDNet has 0.39 FPS and 0.37 FPS respectively. To achieve
these frame-rate they require parts of the computations to run
in a graphics card, otherwise the results would be even slower.
The best performing approach that is suitable to be used in a



real-time system is the method proposed in this work with
the use of FHoG features. In this case, the algorithm shows
a frame-rate of 31.36 FPS in the SRE and 34.98 in the TRE
and does not require the use of a graphics card.

VI. CONCLUSIONS

In this work we have presented and benchmarked a new
algorithm for tracking that performs beyond the state-of-the-
art in maritime scenarios. Some of the problems concerning
the detection and tracking of vessels in airborne oceanographic
imagery, namely sun-reflection, waves, wakes and long-term
tracking, are overcome thanks to a combination of correlation
filters and blob analysis. We present two versions of the
algorithms. The best performing is based on CNN features
and significantly outperforms current state-of-the-art general
purpose trackers. The second version uses HoG features and
attains performances competitive with the current state-of-the-
art, but at a much faster frame-rate, suitable for real-time
operation on airborne systems.

For future work it is proposed the fusion of a detection
module with the tracking step proposed here to allow for
a completely autonomous system. Also, improvements on
the bounding box or target segmentation could increase the
precision and success rate of the algorithm. A multiple target
tracking evaluation is also important but, for a meaningful
evaluation, requires more videos with multiple vessels.
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