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Abstract: This paper concerns the joint multiple model system identification and its switching
model. The problem is formulated in a probabilistic framework, where multiple vector fields are
estimated from data, and a Markov switching model is identified. An Expectation-Maximization
method is employed for the identification task. The present paper focus mainly the Markov
identification and more specifically the M-step of the EM method. For this purpose a natural
gradient algorithm is employed.

1. INTRODUCTION

Identification of dynamical systems is a central and recur-
rent problem in control. The most commonly used tech-
niques are based on least squares or some variant thereof,
where a linear system is fitted to the data so as to minimize
a quadratic criteria. This kind of techniques fail when the
system under consideration is far from being linear. One
such example is the well known Lorenz strange attractor, a
deterministic nonlinear system capable of showing chaotic
behavior. These are the kind of situations intended for the
algorithms presented in this paper.

Coincidentally, the image processing community has al-
ready dealt with problems where linearity assumptions are
not made. One such problem, Nascimento et al. [2009],
is the observation of a set of trajectories of objects in a
video sequence, and then identify vector fields that “best”
describe the observations. Related works are e.g. Pavlovic
et al. [1999], where an hybrid state is estimated from data.
While the former approach deals with the estimation of the
underlying model, the later concerns a filtering problem
given a Markov switched linear model. The present paper
is heavily based on the first formulation for the identifica-
tion of nonlinear dynamical systems.

Our purpose is to identify vector fields that best describe
the observed trajectories of the state. The system is
allowed to switch among a number of models according to
a probabilistic mechanism whose parameters can change
along the state space. The estimation is performed with
a maximum a posteriori criteria and the EM algorithm
(Dempster et al. [1977]) is used for this purpose.

The main contributions of the paper are the extension
of the trajectory estimation to an arbitrarily dimensional
space, the optional use of an irregular grid, and an im-
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proved algorithm for the estimation of the switching prob-
abilities based on the natural gradient.

The paper is organized as follows. Section 2 formulates
the problem more precisely; Section 3 presents the EM-
algorithm used, along with the formulas for vector field
estimation; Section 4 focus on the optimization of switch-
ing probabilities; Section 5 presents an example showing
the Lorenz strange attractor and how it can be described
by two switching vector fields; Finally section 6 draws
conclusions.

2. PROBLEM STATEMENT

The problem under consideration is the one of identifi-
cation of a set of vector fields Tk(x), k ∈ {1, . . . ,K},
and associated transition probabilities bij(x) that best
describe a multiple model switched nonlinear system. The
switching mechanism is governed by a state dependent
hidden Markov model.

The identification procedure is performed offline using a
collection of S recorded trajectories. Each trajectory xs,
s ∈ {1, . . . , S}, is an ordered set of points (xs1, x

s
2, . . . , x

s
Ls

),

where xst ∈ RD.

It shall be assumed that, at each time step, the system
state is described by an hybrid state (xt, kt) where kt
indicates the active model at time t. Each model is
described by a different vector field Tk(x). The active
model kt can change according to a space dependent
Markov chain with transition probabilities bij(x), the
dependency in x meaning that it is more likely to change
the active model in some points than in others. A system
model can then be written as

Pr
{
kt = j|kt−1 = i, xt−1

}
= bij(xt−1) (1)

xt = xt−1 + Tkt(xt−1) + wt (2)

where wt ∼ N (0,Σkt) is a state disturbance and bij(x)
is the transition probability from the vector field Ti to Tj
at position x. Equation (1) computes the active field Tkt
used in equation (2) to find the updated state xt. Figure 1
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Fig. 1. Markov diagram showing the state variable xt and
active model kt updates.

shows the dependencies among the variables during the
update procedure.

The solution to the identification problem is sought in
a probabilistic framework assuming a Bayesian viewpoint
and follows closely the framework developed in Nascimento
et al. [2009].

2.1 Space discretization

First, a region of interest in RD is selected and N nodes
distributed over it generating a (not necessarily regular)
grid gn ∈ RD, n ∈ {1, . . . , N}. Then, for each node n, K
vectors Tnk are estimated corresponding to the K desired
models. The transition matrix bnij associated with that
node is also estimated. After having estimated the vectors
for every node of the grid, the vector field in RD is obtained
by interpolation:

Tk(x) =

N∑
n=1

Tnk φn(x), (3)

where φn(x) is a previously defined interpolation function
satisfying convexity constraints

φn(x) > 0,

N∑
n=1

φn(x) = 1, ∀x ∈ RD. (4)

Transition probabilities are also interpolated from those
estimated at the nodes as follows:

bij(x) =

N∑
n=1

bnijφn(x). (5)

This is a convex combination of stochastic matrices that
ensures the interpolated one to be a valid stochastic
matrix.

Although other interpolation functions could be used, the
following one is considered:

φn(x) ∝ e−
α
2 ‖x−gn‖

2

. (6)

This function gives higher interpolation weight to nodes
gn closer to x. It has the property that φn(x) < 1, even
when x = gn. As a consequence, Tk(gn) 6= Tnk , meaning
that Tnk should only be seen as a parameter vector and not
an element of the vector field.

2.2 Parameter estimation

Parameter estimation aims to find the vector fields and
switching probabilities at each node of the grid from a set
of sampled trajectories in RD.

The model depends on unknown parameters θ = (T ,B),
that include the set of vectors T = {Tnk } for all nodes
and trajectories, and the set of transition matrices B =
{B1, . . . , BN} for the nodes.

Assuming independence, the prior p(θ) becomes

p(θ) = p(T )p(B). (7)

The following additional assumptions are made:

• p(T ) is built from independent distributions p(Tnk )
defined over the set of trajectory models k. For each
individual model k, parameters Tnk are assumed to
be dependent across neighbor nodes according to a
multivariable Gaussian distribution with covariance
matrix Λ. This dependence produces a regularization
effect: in the absence of data, far nodes gather in-
formation from their neighbors, thereby introducing
smoothness into the estimated vector field.

Pairs of neighbor nodes are collected in the set

I =
{

(i, j)
∣∣ ‖gi − gj‖ < dmax, i 6= j

}
. (8)

This set is used to build a sparse matrix ∆ where
each column contains a 1 and a −1 marking the
pairs of neighbor nodes (i, j) ∈ I. Defining Tk =[
T 1
k · · · TNk

]
and computing the product ∆TTT

k , a
matrix is obtained with the vector differences be-
tween all neighbor vectors T ik and T jk . The regular-
ization then amounts to attribute higher probability
to smaller differences:

p(Tk) ∝ e−αTr(TkΛ−1TT
k ), (9)

where
Λ−1 = εI + ∆∆T . (10)

The small additional term εI ensures positive definite-
ness of Λ−1.

• p(B) is set to a constant density in the K − 1
simplex defined by its parameters (although it is not
a noninformative Jeffreys prior, it will be easier to
deal with in the optimization part of the algorithm).

Given these priors and a set of recorded trajectories X =
{x1, . . . , xS} with lengths Ls, the maximum a posteriori

estimate θ̂ of the parameters θ is defined as

θ̂ = arg max
θ
p(θ|X ) = arg max

θ
p(θ)

∑
K
p(X ,K|θ). (11)

Unfortunately, the summation in K is unfeasible since
it requires in the order of KSL additions. To solve this
problem the Expectation-Maximization (EM) algorithm
(Dempster et al. [1977]) is employed on the complete joint
probability p(X ,K, θ).
The optimal estimate can be found by the following
maximization problem:

θ̂ = arg max
θ

(
U(θ, θ̂)− V (θ, θ̂)

)
,

where

V (θ, θ̂)
def
= E

[
log p(K|X , θ)

∣∣X , θ̂] ≤ V (θ̂, θ̂), ∀θ, (12)

and

U(θ, θ̂)
def
= E

[
log p(X ,K, θ)

∣∣X , θ̂] (13)

is what is actually used in the EM-algorithm to estimate

θ̂. The EM method encompasses two steps: first, in the E-

step, given an initial estimate θ̂, U(θ, θ̂) is computed; then,

in the M-step, the previously computed function U(θ, θ̂) is

maximized with respect to θ while keeping θ̂ fixed. The
two steps are then iterated until convergence to a local
maxima is attained.



3. EXPECTATION-MAXIMIZATION ALGORITHM

3.1 E-step

In the E-step part of the algorithm, the function U(θ, θ̂)
is found to be given by

U(θ,θ̂) = C − 1

2

K∑
k=1

Tr(TkΛ
−1TT

k )+

− 1

2

∑
s,t,k

wsk(t)
∥∥∥xst − xst−1 −

N∑
n=1

φn(xst−1)Tnk

∥∥∥2

Σ−1
k

+

+
∑
s,t

K∑
i,j=1

wsij(t) log
( N∑
n=1

bnijφn(xst−1)
)
.

(14)

where the symbols wi and wij are defined by

wsj (t)
def
= Pr

{
kst = j|X , θ̂

}
, (15)

wsij(t)
def
= Pr

{
kst−1 = i, kst = j|x̄s, θ̂

}
, (16)

and calculated using the forward-backward algorithm
(see Rabiner [1990]).

3.2 M-step

In the M-step part of the algorithm, equation (14) is max-
imized with respect to the vector field Tnk and transition
probabilities bnij . The vector field maximization can be
done explicitly. The stationarity points are the solutions
of

∂U(θ, θ̂)

∂Tα
= −Λ−1TT

α − AαTT
αΣ−1

α + Bα = 0, (17)

where

Aα
def
=

S∑
s=1

Ls∑
t=1

wsα(t)Φ(xst−1)Φ(xst−1)T , (18)

Bα
def
=

S∑
s=1

Ls∑
t=1

wsα(t)Φ(xst−1)(xst − xst−1)TΣ−1
α . (19)

Premultiplying (17) by the positive definite matrix Λ
yields the Sylvester equation

(−ΛAα)TT
αΣ−1

α −TT
α + ΛBα = 0, (20)

which can be efficiently solved for Tα using standard
numerical packages.

Regarding the optimization of the transition probabilities,
a natural gradient method is employed. The next section
presents in more detail the algorithm developed.

4. SWITCHING PROBABILITIES

Here, a differential-geometric point of view is applied to
the probability manifold B. General differential-geometric
concepts like the differential and gradient can be consulted
e.g. in Boothby [1986]. The development of these concepts
specifically in the probabilistic framework is known as
information geometry, a term coined by Amari. Standard
references are Amari [1985], Amari and Nagaoka [2000].

Differentiating U(θ, θ̂) with respect to the transition prob-
abilities bnij at every node yields

∂U(θ, θ̂)

∂bγαβ
=

S∑
s=1

Ls∑
t=1

wsαβ(t)
1∑N

n=1 b
n
αβφn(xst−1)

φγ(xst−1).

(21)

Unfortunately, the stationarity condition ∂U(θ, θ̂)/∂bγαβ =
0 doesn’t appear to have an explicit solution. Thus, a
natural gradient based iterative method will be used
instead.

For the optimization, a mixture parametrization of the
transition probabilities is considered where parameters are
the probabilities themselves. Since

∑
j b
n
ij = 1 for any i

and n, only K − 1 parameters are in fact independent.
Therefore, the K-th probability for each (i, n) is obtained
from the remaining ones by

bniK = 1−
K−1∑
j=1

bnij . (22)

For each (i, n), the K−1 probabilities bi-univocally define
a point in the probability manifold B, and the K−1 partial
derivatives in equation (21) define the differential dU of
the function U .

For the iterative procedure, the coordinates (K−1 proba-
bilities) are updated in the direction for which the function
U is more steep, i.e., the direction vni ∈ RK−1 given by

vni = arg max
vn
i

dU(vni ) = arg max
vn
i

K−1∑
j=1

∂U

∂bnij
vnij . (23)

This problem is ill-posed since the vector vni can have
an infinite length. Therefore, it is necessary to include a
constraint in its norm such as ‖vni ‖ = 1. The use of a
norm requires some form of metric structure in the space
B. The direction of greatest ascent can now be found using
the Lagrange multipliers method. For that sake, define the
Lagrange function L with Lagrange multiplier λ:

L = U + 1
2λ
(
1− ‖vni ‖2

)
= U + 1

2λ
(
1− (vni )TGvni

)
. (24)

The stationarity points can be found solving

dL = dU − λ(vni )TG = 0, (25)

and thus

(λvni )T = G−1( dU)T . (26)

The resulting scaled vector λvni is the natural gradient ∇U
defined by the equality

〈∇U,w〉 = dU(w), ∀w. (27)

This means that the gradient vector depends on the
selected metric. If an Euclidean metric is used, then G
is the identity matrix, and the natural gradient is simply
a vector whose components are the partial derivatives of
U . In general, however, that is not the case.

In the present problem, the chosen metric is the Fisher
metric as it is invariant with respect to reparametrization.
The Fisher metric is defined by the inner product

〈v, w〉 =
∑
α,β

vαwβgαβ , (28)

where gαβ are the components of the Fisher information
matrix. Using the K − 1 probabilities as coordinates, the



Fisher information matrix is a (K − 1) × (K − 1) matrix
whose components are given by

gαβ =
δβα
bniα

+
1

1−
∑K−1
k=1 bnik

, (29)

and where δβα is the Kronecker delta. Its inverse G−1 =
[gαβ ]−1 = [gαβ ] can be computed in component notation 1

yielding
gαβ = bniαδ

α
β − bniαbniβ , (30)

or in matrix notation

G−1 =

b
n
i1 0

. . .
0 bni(K−1)

−
 bni1

...
bni(K−1)

 [bni1 · · · bni(K−1)

]
.

(31)
The product of G−1 and ( dU)T present in equation (26)
can be computed alternatively without explicitly building
the matrix G−1. This can be done with the formula

∇U = bni: ◦ ( dU)T − bni:
(
bni: · ( dU)T

)
, (32)

where bni: denotes the column of K−1 probabilities, ◦ is the
element-wise product (also known as Hadamard or Schur
product) and · is the usual dot product.

The gradient method then uses the direction∇U to update
the probabilities bni::

bni: ← bni: + η∇U (33)

The remaining probability bniK is then computed as shown
in (22). The iterative process is repeated for each pair of
models and nodes (i, n).

The natural gradient has remarkable properties Barão
[2009b,a], Barão and Lemos [2008] that makes it a good
choice for these kind of optimization tasks:

• It automatically satisfies the probability non-negativity
constraints. Optimization becomes unconstrained.
• Achieves faster convergence rates for many interesting

problems, since the Fisher information matrix is also
the Hessian of several information measures, turning
the iterations into an asymptotically quasi-Newton
method.

Although not proved to have quadratic convergence in
the problem at hand, the simulations done so far show
it to be much faster than the standard Euclidean gradient
(for which the probability constraints have to be explicitly
taken care of).

5. SIMULATION RESULTS

As an illustrative example, the algorithm was applied
to a Lorenz strange attractor described by the following
differential equations:

ẋ1 = 10(x2 − x1)

ẋ2 = x1(28− x3)− x2

ẋ3 = x1x2 − 8
3x3

This is a 3-dimensional autonomous system that exhibits
chaotic behavior with trajectories resembling a figure
eight in space. Figure 2 shows a few sample trajectories
(x1, x3) generated from several different initial conditions.
Variables are rescaled to the unit interval. The generated

1 Einstein summation convention is not used here.
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Fig. 2. Lorenz strange attractor.
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Fig. 3. Estimated vector fields.

trajectories can loosely be described as rotating a few
turns in one plane, then moving on to rotate in the other
plane, then back again and so on. We will estimate two
vector fields and switching probabilities for the (x1, x3)-
trajectories. Note that, since a projection R3 → R2 is being
applied, a trajectory can intersect itself when observed
from the lower dimensional space.

For the estimation procedure, a regularly spaced 10 ×
10 grid was used. Two vector fields and corresponding
transition probabilities were estimated. Figures 3 and 4
show the results obtained for the vector fields and cor-
responding switching probabilities after 100 iterations of
the EM algorithm. A stochastic simulation based on the
estimated vector fields and switching probabilities is shown
in figure 5. The simulation is performed using equations (1)
and (2) starting from 30 different random initial condi-
tions. It should be emphasized that although the original
systems evolves in R3, the simulated system lives in R2.
Still, it can capture reasonably well the original behavior.
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Fig. 4. Estimated transition probabilities. Each plot repre-
sents one component of the transition matrix bij(x).
Each surface shows how the (i, j)-component changes
in space x.
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Fig. 5. Stochastic simulation based on the estimated vector
fields and estimated switching probabilities.

6. CONCLUSIONS

In this paper an attempt was done to identify a nonlinear
system using switched multiple nonlinear models. Each
nonlinear model tries to capture the nonlinear behavior of
sampled trajectories used for the identification task. This
is accomplished by directly estimating the vector fields
which best explain the observed data using a Bayesian
approach. Simultaneously to the estimation of the vector
fields, a space varying Markov model is identified. The
Markov model generates hidden variables indicating the
active field. The EM-algorithm was used. In the maxi-
mization step of the EM, the transition probabilities of
the Markov model are obtained using a natural gradient
method, which have shown better convergence and speed
properties than standard gradient based methods for op-
timization of probability distributions.
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