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Abstract. Trajectory analysis plays a key role in human activity recog-
nition and video surveillance. This paper proposes a new approach based
on modeling trajectories using a bank of vector (velocity) fields. We as-
sume that each trajectory is generated by one of a set of fields or by the
concatenation of trajectories produced by different fields. The proposed
approach constitutes a space-varying framework for trajectory modeling
and is able to discriminate among different types of motion regimes. Fur-
thermore, the vector fields can be efficiently learned from observed tra-
jectories using an expectation-maximization algorithm. An experiment
with real data illustrates the promising performance of the method.

1 Introduction

Motion analysis is a central block in many computer vision systems, namely
those designed for human activity recognition and video surveillance. When the
camera is close to the subject(s) being observed, a wide variety of cues char-
acterizing human activities can be retrieved, e.g., silhouette, head and hands,
spatio-temporal templates, color histograms, or articulated models. However,
when the camera is far away and has a wide field of view, it is not possible to
obtain a detailed description of the subjects. In this case, only trajectory infor-
mation can be reliably acquired. Motion cues such as velocities and trajectories
are therefore a key source of information.

Different trajectory analysis problems (such as classification and cluster-
ing) have been addressed using pairwise (dis)similarity measures; these include
Euclidean [8] and Hausdorff [11,18] distances, and dynamic time warping [15]).

Another class of methods adopts probabilistic generative models for the tra-
jectories [7,12,14,17], usually of the hidden Markov model (HMM) family. These
approaches have the important advantage of not requiring trajectory align-
ment/registration; moreover, they provide a solid statistical inference framework,
based on which model parameters may be estimated from observed data.
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2 Overall Idea

This paper describes a novel approach for modeling object (e.g., pedestrian) tra-
jectories in video sequences. We assume that the object motion is characterized
by a set of vector fields, which are learned from observed trajectories. The use
of multiple velocity fields aims to describe a variety of behaviors which can be
observed in a scene. The system should be able to select the most appropriate
velocity field for each sequence.

Two models are considered in this paper. The first model (M1) assumes
that each object trajectory is generated by one vector field (we don’t know
which). This leads to a generative model based on a mixture of velocity fields
which is flexible enough to represent many types of trajectories. The second
model (M2) assumes that each trajectory is obtained by the concatenation of
segments, each of them generated by one velocity field. Therefore, switching
between velocity fields is allowed. Furthermore, it is assumed that the switching
mechanism, follows a probabilistic distribution which can be location-dependent.

To illustrate the concept consider two intersecting roads, as depicted in Fig. 1.
Given a set of trajectories (Fig. 1 left) we wish to estimate the vector fields which
describe the trajectory of cars in the image. Fig. 1 (center and right) shows the
expected solution if the problem is addressed using model M2 (which includes
switching). At the intersection, cars have a significant probability of changing
direction, whereas far from it, the switching probability is low.

Fig. 1. Cross road example. Set of trajectories (left) and two vector fields modeling to
the trajectories (center and right).

Both models are flexible enough to represent a wide variety of trajectories
and allow space-varying behaviors without resorting to non-linear dynamical
models which are infamously hard to estimate from observed data.

3 Generative Motion Model

For the sake of simplicity, we assume that objects may move freely in the image
domain. The object position at time t is represented by a vector xt in R2.

Let T = {T1, . . . ,TK}, with Tk : R2 → R2, for k ∈ {1, . . . , K}, be a set of
K vector (velocity) fields. The velocity vector at point x ∈ R2 of the k-th field is
denoted as Tk(x). At each time instant, one of these velocity fields is active, i.e.,
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is driving the motion. Formally, each object trajectory is generated according to

xt = xt−1 + Tkt
(xt−1) + wt, t = 2, ..., L, (1)

where kt ∈ {1, ..., K} is the label of the active field at time t, wt ∼ N (0, σ2
kt

I)
is a realization of white Gaussian noise with zero mean and variance σ2

kt
(which

may be different for each field), and L is the length (number of points) in the
trajectory. The initial position follows some distribution p(x1).

The conditional probability density of a trajectory x = (x1, . . . ,xL), given
the sequence of active models k = {k1, . . . , kL} is

p(x|k, T ) = p(x1)
L∏

t=2

p(xt|xt−1, kt),

where p(xt|xt−1, kt) = N (xt|xt−1 + Tkt(xt−1), σ2
kt

I) is a Gaussian density.
The sequence of active fields k = (k1, . . . , kL) is modeled as a realization of

a first order Markov process, with some initial distribution P (k1), and a space-
varying transition matrix, i.e., P (kt = j|kt−1 = i,xt−1) = Bij(xt−1). This model
allows the switching probability to depend on the location of the object. The
matrix-valued field B can also be seen as a set of K2 fields with values in [0, 1],
under the constraint that

∑
j Bij(x) = 1, for any x and any i. If we want to

forbid switching between vector fields (as in model M1) all we have to do is to
assume that B(x) = I (the identity matrix), for any x.

The joint distribution of a trajectory and the underlying sequence of active
models, is given by

p(x,k|T ,B) = p(x1)P (k1)
L∏

t=2

p(xt|xt−1, kt)P (kt|kt−1,xt−1). (2)

Of course, P (kt|kt−1,xt−1) is a function of B and p(xt|xt−1, kt) is a function
of T ; to keep the notation lighter, we abstain from explicitly including these
dependencies. Finally, a graphical model representation of our generative process
is depicted in Fig. 2.
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Fig. 2. Graphical model of the trajectory generation process.

4 Learning the Fields

In this section we address the problem of learning, from a set of trajectories, the
set of velocity fields T , the field of transition matrices B, and the set of noise
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variances σ = {σ2
1 , ..., σ2

K}. Consider a training set of S independent trajectories
X = {x(1), ...,x(S)}, where x(j) = (x(j)

1 , ...,x(j)
Lj

) is the j-th observed trajectory,
assumed to have length Lj . Naturally, we assume that the corresponding set of
sequences of active fields, K = {k(1), ...,k(S)}, is not observed (it’s hidden).

In this paper, we focus on model M1; i.e., we fix the matrix field B equal to
identity everywhere, B(x) = I, thus it does not have to be estimated. In this case,
all the elements of each label sequence are identical, i.e., k(j) = (k(j), ..., k(j)),
so we represent the active field of each trajectory simply by k(j) ∈ {1, ..., K}.
The missing set of labels is thus K = {k(1), ..., k(S)} ∈ {1, ..., K}S . Finally, we
denote the set of the fields and parameters to estimate as θ = (T , σ).

4.1 Estimation Criterion: Marginal MAP

The fact that the active field labels K are missing suggests the use of an EM
algorithm to find a marginal maximum a posteriori (MMAP) estimate of θ under
some prior p(θ) = p(T )p(B)p(σ); formally,

θ̂ = arg max
θ

p(θ)
S∏

j=1

K∑

k(j)=1

p(x(j),k(j)|θ), (3)

where each factor p(x(j),k(j)|θ) has the form in (2), with k(j) = (k(j), ..., k(j)).
Next, we derive the E and M steps of the EM algorithm for solving (3). For
simplicity, we assume that the initial distributions p(x1) and P (k1) are known.

4.2 The E-step

As is well known, the E-step consists in computing the conditional expectation of
the complete log-likelihood, given the current estimates θ̂ and the observations
X . The complete log-likelihood is given by

log p(X ,K|θ) =
S∑

j=1

log p(x(j),k(j)|θ) (4)

where each p(x(j),k(j)|θ) has the form (2), with k(j) = (k(j), ..., k(j)). The con-
ditional expectation, usually called the Q-function and denoted as Q(θ; θ̂) ≡
E

[
log p(X ,K|θ)

∣∣∣X , θ̂
]
, can thus be written as

Q(θ; θ̂) =
S∑

j=1

Lj∑
t=2

K∑

l=1

ȳ
(j)
l logN (x(j)

t |x(j)
t−1 + Tl(x

(j)
t−1), σ

2
l I) (5)

where ȳ
(j)
l is the posterior probability that the j-th trajectory was generated by

field l, given by

ȳ
(j)
l = P

[
k(j) = l

∣∣∣x(j), θ̂
]

=
p(x(j),k(j) = (l, ..., l)|θ̂)

K∑
m=1

p(x(j),k(j) = (m, ..., m)|θ̂)

. (6)
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4.3 The M-step

In the M-step, the field and parameter estimates are updated according to

θ̂new = arg max
θ

Q(θ; θ̂) + log p(θ). (7)

This section describes this maximization in detail, as well as the adopted priors,
by looking separately at the maximization with respect to T and σ.

Updating σ̂ Adopting flat priors, i.e., looking for the usual maximum likelihood
noise variance estimates, computing the partial derivative of Q(θ; θ̂) with respect
to each component σ2

k of σ, and equating to zero, yields

(σ̂2
k)new =




S∑

j=1

Lj∑
t=2

ȳ
(j)
k ‖x(s)

t − x(s)
t−1 −Tk(x(s)

t−1)‖2






S∑

j=1

Lj∑
t=2

ȳ
(j)
k



−1

,

for k = 1, ..., K.

Updating T̂ Estimating the velocity fields requires some sort of regularization.
Moreover, these fields live in infinite dimensional spaces (if we ignore the discrete
nature of digital images), thus optimization with respect to them constitute a
difficult variational problems. We sidestep this difficulty by adopting a finite
dimensional parametrization, in which each velocity field is written as a linear
combination of basis functions, i.e.,

Tk(x) =
N∑

n=1

t(n)
k φn(x), (8)

where each t(n)
k ∈ R2 and φn(x) : R2 → R, for n = 1, . . . , N , is a set of basis func-

tions (scalar basis fields). Collecting all these vector coefficients in τ k ∈ RN×2,
defined according to τT

k = [t(1)
k , ..., t(N)

k ] and letting Φ(x) = [φ1(x), ..., φN (x)] ∈
RN , we can write

Tk(x) = Φ(x) τ k, (9)

thus estimating Tk becomes equivalent to estimating the coefficient vector τ k.
To encourage smoothness of each velocity field Tk, we adopt a zero mean

Gaussian prior, with a covariance function chosen to assign low probability to
large velocity differences between nearby locations

p(τ k) ∝ exp{− 1
2 α2

τT
k Γ−1τ k}, (10)

where α2 is a global variance factor that allows controlling the “strength” of
the prior. The covariance Γ and the basis functions φi determine the covariance
function of Tk; for details, see [16].
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The term of Q(θ; θ̂) + log p(τ k) which is a function of τ k is (apart from a
1/2 factor) equal to

S∑

j=1

Lj∑
t=2

ȳ
(j)
k ‖x(j)

t − x(j)
t−1 − Φ(x(j)

t−1)τ k‖2 + τT
k Γ−1τ k (11)

Computing the gradient with respect to τ k and equating to zero, leads to a
linear system of equations,

(
Rk +

Γ−1

α2

)
τ k = rk (12)

where

Rk =
S∑

j=1

Lj∑
t=2

ȳ
(j)
k

(
Φ(x(j)

t−1)
)T

Φ(x(j)
t−1) (13)

and

rk =
S∑

j=1

Lj∑
t=2

ȳ
(j)
k

(
Φ(x(j)

t−1)
)T

(x(j)
t − x(j)

t−1). (14)

Notice that since Φ(x(j)
t−1) is 1 × N , matrix Rk is N × N and rk is N × 2

(as is τ k). Solving (12), yields (τ̂ k)new, for k = 1, ..., K, which in turn define
T̂new = (T̂1, ..., T̂K)new.

5 Experimental Results

The proposed algorithm was applied to several synthetic and real data sets.
We present here only an example showing the ability of the proposed method
to separate different types of trajectories, according to their structure, and to
estimate a space-varying model for the trajectories of each group.

Fig. 3 (left, center) shows the trajectories of points of interest in two video
sequences often used in multi-point tracking (rotating disk and golf ball). We ap-
plied the proposed method to a data set containing all the trajectories extracted
from both video sequences. It was assumed that the number of vector fields is
known to be equal to 2. Fig. 4 shows the velocity fields estimates obtained by
the EM algorithm. It is clear that the proposed algorithm successfully separated
the two sets of trajectories and estimated the motion fields explaining each of
them. This approach has also been applied to surveillance videos obtained in a
university campus with success. Those results will be presented in a forthcoming
paper due to lack of space.

6 Conclusions

This paper described probabilistic models for trajectories in video sequences
using multiple velocity fields. Two models were considered: (i) each trajectory is
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Fig. 3. Data set: original velocity fields (left, center) and their superposition (right)

generated by a single velocity field, randomly selected (M1); (ii) switching among
vector fields during the trajectory is allowed (M2). We have described in detail
an EM algorithm to estimate the fields under model M1. A proof-of-concept
experiment with real data was presented, giving evidence of the adequacy of the
proposed approach.

The implementation of the second scenario, which involves the estimation of
a field of stochastic matrices, as well as a comprehensive experimental evaluation
in video surveillance tasks will be presented in a forthcoming paper.
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