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ABSTRACT

This work introduces a new approach to modeling object trajecto-
ries in image sequences. Trajectories performed by natural objects
(e.g., people, animals) typically depend on the position of each
object in the scene and can change in an unpredictable way. De-
spite this diversity, there is often a small number of typical motion
patterns based on which it is possible to explain all the observed
trajectories. To achieve this goal, we model each of these mo-
tion patterns using a motion field and allow objects to switch be-
tween fields in a space-varying, possible probabilistic, way. Our
approach provides a space-dependent motion model which can be
estimated using an expectation-maximization (EM) algorithm. Ex-
periments with both synthetic and real data are presented to illus-
trate the ability of the proposed approach in modeling different
motion patterns.

Keywords: trajectories, vector fields, hidden Markov models, EM
algorithm.

1. INTRODUCTION AND PRIOR WORK

Trajectory analysis has been widely used to model typical motion
patterns and is an important tool in several applications, such as
video surveillance. Different trajectory analysis problems, such
as classification, clustering, and anomaly detection [1], have been
addressed in the past decade.

Many approaches to trajectory analysis problems are based on
(dis)similarity measures between trajectories. The success of this
class of methods depends on the ability to find meaningful and sta-
ble similarity measures between trajectories. Euclidean distances
were proposed in [2] but are only applicable between trajectories
of the same length. The Hausdorff distance, used in [4, 5], is un-
able to distinguish trajectories sharing the same path.

Another class of techniques which has been applied in the con-
text of visual surveillance relies on the alignment of the trajecto-
ries, using techniques such as, e.g., dynamic time warping [6] or
the longest common subsequence [7]. Although those techniques
can handle trajectories with different lengths, they perform poorly
in the presence of noise. To surpass this problem, other alignment-
based techniques, such as circular statistics [8], have been adopted;
in that work, a single trajectory is modeled by a mixtures of Von
Mises distributions. Another promising technique models trajec-
tories using hidden Markov models and compares them using the
cross likelihood.

Some authors argue that spatial distance may be not appropri-
ate to describe the statistical nature of trajectories, since a pair of
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trajectories may be spatially close but correspond to quite differ-
ent motions [10]. Knowledge of the context and structure of the
scene plays an important role in modeling and recognizing activ-
ities. This observation underlies a class of methods which uses
regions of the scene having a particular semantic importance, such
as path intersections [11] or entry and exit points [12].

This paper introduces a novel approach to modeling trajecto-
ries in natural image sequences. We characterize the scene by a set
of underlying motion vector fields. Each trajectory is composed
by a set of consecutive segments, each of which is driven by one
of these motion fields. Model switching is performed based on a
probabilistic mechanism whose parameters depend on the position
of the object. For example, in a traffic scenario trajectory changes
are more probable in intersection (of two roads) than along a street.
The proposed model is flexible enough to represent a wide variety
of trajectories and allows the representation of space-varying be-
haviors as required.

Since we do not know the label of the true motion field at
each instant of time nor the transition instants, we derive the EM
algorithm for model parameter estimation. We propose an efficient
algorithm which is able to estimate the model parameters (motion
fields, switching matrix). Furthermore, this algorithm allows the
use of space-varying vector fields and switching probabilities.

The rest of the paper is organized as follows. Section 2 de-
scribes the statistical model herein proposed. The learning mecha-
nism is described in Section 3. Experimental results are presented
in Section 4. Section 5 concludes the paper.

2. GENERATIVE MOTION MODEL

Let T = {T1, ..., TK}, with Tk : R
2 → R

2, for k ∈ {1, ..., K},
be a set of K vector fields. The velocity vector at point x ∈ R

2

of the k-th field is denoted as Tk(x). At each time instant, one of
these velocity fields is active. Formally, each object trajectory is
generated according to

xt = xt−1 + Tkt(xt−1) + wt, t = 2, ..., L, (1)

where kt ∈ {1, ..., K} is the label of the active field at time
t, wt ∼ N (0, σ2

kt
I) is white Gaussian noise with zero mean

and variance σ2
kt
(which may be different for each field), and L

is the length in the trajectory. The initial position follows some
distribution p(x1). The conditional probability density of a tra-
jectory x = (x1, . . . ,xL), given the sequence of active models
k = {k1, . . . , kL} is thus

p(x|k,T ) = p(x1)

L�
t=2

N (xt|xt−1 + Tkt(xt−1), σ
2
kt

I)� �� �
p(xt|xt−1,kt)

,
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where N (v|μ,C) denotes a Gaussian density of mean μ and co-
variance C, computed at v.

The sequence of active fields k = {k1, . . . , kL} is modeled
as a realization of a first order Markov process, with some ini-
tial distribution P (k1), and a space-varying transition matrix, i.e.,
Bij(xt−1) = P (kt = j|kt−1 = i,xt−1), where B : R

2 →
R

K×K is a field of stochastic matrices. This model allows the
switching probability to depend on the location of the object. The
matrix-valued field B can also be seen as a set of K2 fields with
values in [0, 1], under the constraint that

�
j
Bij(x) = 1, for any

x and any i.
The joint distribution of a trajectory and the underlying se-

quence of active regions, is given by

p(x,k|T , B) = p(x1)P (k1)
L�

t=2

p(xt|xt−1, kt)P (kt|kt−1,xt−1).

(2)
Although not explicitly denoted, P (kt|kt−1,xt−1) is a function
of B, p(xt|xt−1, kt) is a function of T and σkt .

3. LEARNING THE VECTOR FIELDS VIA EM

In this section we address the estimation of the parameter set θ =
{T ,B, σ}, where σ = (σ2

1 , . . . , σ2
K), from a set of observed tra-

jectories X = {x(1), ..., x(S)}, where x(j) = (x
(j)
1 , ..., x

(j)
Lj

) is
the j-th observed trajectory, with length Lj . The sequences of
active fields, K = {k(1), ..., k(S)}, is not observed (i.e. it’s hid-
den/missing).

3.1. Marginal MAP for parameter estimation

As mentioned above, the fact that the active label K are treated as
missing data suggests the use of the EM framework. The marginal
maximum a posteriori (MMAP) estimate of θ is

�θ = arg max
θ

p(θ)

S�
j=1

�
K

p(x(j),k(j)|θ), (3)

where each factor p(x(j), k(j)|θ) has the form given in (2), and
the sum over K has K(

�
j Lj) terms; S is the number of the tra-

jectories used for training.
Next, we will derive the E and M steps of the EM algorithm

for solving (3). For the sake of simplicity, we will assume that the
initial distributions p(x1) and P (k1) are known.

3.2. The E-Step

This step computes the conditional expected value of the complete
log-likelihood given the current estimates of the parameters �θ. The
complete log-likelihood is

log p(X ,K|θ) =
S�

j=1

log p(x(j),k(j)|θ) (4)

where each p(x(j),k(j)|θ) has the form given in (2).
As is common in mixture models, we write the missing la-

bels using binary indicator variables: the active field at time t of
the j-th trajectory k

(j)
t ∈ {1, ..., K} is represented by a binary

vector y
(j)
t = (y

(j)
t,1 , ..., y

(j)
t,K) ∈ {0, 1}K , where y

(j)
t,l = 1 ⇔

k
(j)
t = l. With this notation, the expected value of the complete

log-likelihood Q(θ; �θ) ≡ E

�
log p(X ,K|θ)|X , �θ� becomes

Q(θ; �θ) =

S�
j=1

Lj�
t=2

K�
l=1

ȳ
(j)
t,l logN (x

(j)
t |x(j)

t−1 + Tl(x
(j)
t−1), σ

2
l I)

+
S�

j=1

Lj�
t=2

K�
l=1

K�
g=1

s̄
(j)
t,g,l log Bg,l(x

(j)
t−1).

where ȳ
(j)
t,l = P

�
y
(j)
t,l = 1

���x(j), �θ� and
s̄
(j)
t,g,l = P

�
y
(j)
t−1,g y

(j)
t,l = 1

���x(j), �θ� .

These probabilities are obtained by a slightly modified forward-
backward procedure [13], namely to take into account the fact that
the transition matrix depends on the trajectories.

3.3. The M-Step

In the M-step, the field and parameter estimation are updated as
follows �θnew = arg max

θ
Q(θ; �θ) + log p(θ). (5)

Next, we study this maximization, as well as the adopted priors, by
looking separately at the maximization with respect to each com-
ponent of θ = (T , B, σ).

Updating �σ: adopting flat priors, i.e., looking for usual max-
imum likelihood noise variance estimates, computing the partial
derivative of Q(θ; �θ) with respect to each component σ2

k of σ,
and equating to zero, yields

(�σ2
k)new =

S�
j=1

Lj�
t=2

ȳ
(j)
t,k ‖x(s)

t − x
(s)
t−1 − Tk(x

(s)
t−1)‖

2

S�
j=1

Lj�
t=2

ȳ
(j)
t,k

,

for k = 1, ..., K.
Updating �T : To estimate the motion fields we introduce some

sort of regularization. Moreover, these fields live in infinite dimen-
sional spaces, thus optimization with respect to them would lead to
hard variational problems. To avoid this difficulty we adopt a finite
dimensional parametrization, by representing each motion field as
a linear combination over a common set of basis functions, i.e.,

Tk(x) =
N�

n=1

t
(n)
k φn(x), (6)

where each t
(n)
k ∈ R

2 and φn(x) : R
2 → R, for n = 1, . . . , N ,

is a set of basis fields. Eq. (6) can be written in a compact way

Tk(x) = Φ(x) τ k (7)

where Φ(x) = [φ1(x), ..., φN(x)] and τ T
k = [(t

(1)
k ), ..., (t

(N)
k )].

Thus, estimating the fieldTk becomes equivalent to estimating the
coefficient vector τ k.

To encourage smoothness of each velocity field Tk, we adopt
a zero mean Gaussian prior, with a covariance function chosen to
assign low probability to large velocity differences between nearby
locations

p(τ k) ∝ exp{−
1

2 α2
τ

T
k Γ

−1
τ k}, (8)

where α2 is a global variance factor that allows controlling the
“strength” of the prior (low variance corresponds to a strong prior).
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The covariance Γ and the basis functions φi determine the covari-
ance function of Tk.

The terms ofQ(θ; �θ)+log p(τ k) that depend on τ k are (drop-
ping the 1/2 factor) equal to

S�
j=1

Lj�
t=2

ȳ
(j)
t,k‖x

(j)
t − x

(j)
t−1 − Φ(x

(j)
t−1)τ k‖

2 + τ
T
k Γ

−1
τ k. (9)

Computing the gradient with respect to τ k and equating to zero,
leads to a pair of linear system of equations,�

Rk +
Γ−1

α2

�
τ k = rk (10)

where

Rk =

S�
j=1

Lj�
t=2

ȳ
(t)
t,k

�
Φ(x

(j)
t−1)

�T

Φ(x
(j)
t−1) (11)

and

rk =
S�

j=1

Lj�
t=2

ȳ
(j)
t,k

�
Φ(x

(j)
t−1)

�T

(x
(j)
t − x

(j)
t−1). (12)

Notice that sinceΦ(x
(j)
t−1) is 1×N , matrixRk isN×N and rk is

N × 2 (as is τ k). Solving (10), yields (�τ k)new, for k = 1, ..., K,
which in turn define �Tnew = (�T1, ..., �TK)new.

Updating �B: To address the estimation of the field of stochas-
tic matrices B, we follow the same strategy adopted for the fields
Tk, i.e., we represent this field on a set of scalar basis functions,
ψi(x) : R

2 → R, form = 1, . . . , M ,

B(x) =

M�
m=1

b
(m) ψm(x) (13)

where each “coefficient” b(m) ∈ R
K×K is a stochastic matrix,

i.e., for anym = 1, ..., M , and any p = 1, ..., K,
�K

k=1 b
(m)
p,k = 1.

We must guarantee that this representation preserves the sto-
chastic nature of matrix B(x). A sufficient condition for all the
entries of the expansion to be non-negative is that ψm(x) ≥ 0,
for all x and all m = 1, ..., M . Moreover, since each b(m) is a
stochastic matrix,

1 =
K�

k=1

M�
m=1

b
(m)
p,k ψm(x) =

M�
m=1

ψm(x)
K�

k=1

b
(m)
p,k =

M�
m=1

ψm(x).

In conclusion, B(x), as given by (13), is a stochastic matrix if
the basis functions verify the following conditions: at any point x,
ψi(x) ≥ 0, for allm; and

�M

m=1 ψm(x) = 1. These two condi-
tions are known as partition of unity property and are satisfied by
B-spline basis functions [14], of which bilinear interpolating func-
tions are a particular simple case, which we adopt in this paper.

Using the representation, we change the problem of estimat-
ing B into the problem of estimating a set of stochastic matrices
β = {b(1), ..., b(M)}, by maximizingQ(θ; �θ), under the stochas-
tic constraint. Inserting (13) into (5), and dropping all terms that
do not depend on B (equivalently, on β), the objective function
can be written as

E(β) =
S�

j=1

Lj�
t=2

K�
l=1

K�
g=1

s̄
(j)
t,g,l log

M�
m=1

b
(m)
g,l ψm(x

(j)
t−1), (14)

which should be maximized under the stochastic constraint. The
Lagrangian for this constrained problem is

E(β) +

M�
m=1

K�
p=1

λmp

�
K�

k=1

b
(m)
p,k − 1

	
,

where the λmp are Lagrange multipliers. Since it is not possible
to analytically solve the system of (non-linear) equations resulting
from equating the gradient of this Lagrangian to zero, we surpass
this problem, using the gradient projection (GP) algorithm [15].

Two main issues must be considered for the GP algorithm: (i)
the computation of the gradient of the objective function; and (ii)
the projection onto the constraint set. Concerning (i) it is simple
to compute the partial derivatives of E(β) with respect the b

(m)
gl ,

which are given by

∂E(β)

∂b
(m)
gl

=
S�

j=1

Lj�
t=2

s̄
(j)
t,g,l

ψm(x
(j)
t−1)

B(x
(j)
t−1)

,

Concerning (ii), i.e., the projection of a matrix onto the set of sto-
chastic matrices, this is equivalent to projecting each row of the
matrix onto to the probability simplex; for this purpose, we use a
fast O(K) algorithm which was very recently proposed [16].

In summary, �Bnew is obtained by minimizing E(β) under the
stochastic constraint, using the GP algorithm, with the projection
step carried out by the algorithm described in [16].

4. EXPERIMENTAL RESULTS

Synthetic data:
Fig. 1 shows examples of trajectories synthesized by two fields

corresponding to horizontal (west to east) and vertical (south to
north) motion. An active field is randomly selected at the first in-
stant of time, and the object is placed at one of two regions (which
are obvious in Fig. 1). The object follows the initially selected
field for a while and then may switch to other field. Switching
between models can occur anywhere, but the switching probabil-
ities are not constant: they are higher near the center of the im-
age. This is achieved by letting the transition matrix be equal to
identity everywhere except in a region near the center of the im-
age, where the transition matrix has elements B11 = B22 = 0.8,
B12 = B21 = 0.2.

Figs. 2 shows the vector fields estimates during the EM algo-
rithm. It is clear that, in this experiment, the algorithm produced
excellent estimates of the underlying motion fields, with conver-
gence being attained in less than 10 iterations.

Fig. 3 shows the final estimates for the spatial-dependent tran-
sition matrix. Again, it is clear that our EM algorithm produced
very good estimates of the true switching fieldB.

Natural Images: Flying Birds
Here we present results using natural image sequences used

in the point correspondence literature [17]. The sequence birds2
(382 frames) contains two flocks of birds flying in the same area of
the scene. In this experiment, the feature points are the centroids
of the birds, obtained by simply thresholding the first channel of
the images. The trajectories are obtained using the motion corre-
spondence algorithm proposed in [18]. Fig. 4 shows the results
of the motion estimation (magenta and blue arrows) superimposed
with the trajectories (shown in yellow). First row shows the initial-
ization, bottom row shows the final estimates. Here, the two main
dynamics of the two flocks are correctly estimated. The number of
iterations in the EM are the same as in the synthetic experiment.

5. CONCLUSIONS

We have presented an efficient and robust method for estimating
mixtures of motion (velocity) vector fields from observed trajec-
tories. In our approach, each trajectory is driven by one of a set
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Fig. 1. Synthetic trajectories generated by the model described in the text.
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Fig. 2. Successive estimates of the two motion fields, from the trajectories shown
in Fig. 1 (yellow lines), after 3 (left), and 9 (right) iterations.

of motion fields, with switching between fields controlled by a
space-dependent probabilistic transition mechanism (modeled as
a field of stochastic matrices). We have shown that this approach
allows representing a wide variety of trajectories exhibiting space-
dependent behaviors, without resorting to non-linear dynamical
models (which are very hard to estimate).

We have proposed an EM algorithm to estimated the underly-
ing fields along with the space-dependent switching model. The
estimates are based on finite-dimensional parameterizations of all
the fields, based on which we place a smoothness-inducing Gaussian
prior on the motion fields. Almost all the update equations of the
EM algorithm have simple closed form expressions, with the ex-
ception of the update of the field of stochastic matrices. To solve
this update equation, we have proposed a gradient projection al-
gorithm, based on a state-of-the-art fast algorithm to compute the
projection onto the probability simplex.

Preliminary experiments, using both synthetic and real data,
have shown that the proposed approach is able to model different
motion patterns and that the proposed EM algorithm is able to es-
timate the motion and switching fields from observed trajectories.
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