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Velocity fields play an important role in surveillance since they describe typical motion behaviors of
video objects (e.g., pedestrians) in the scene. This paper presents an algorithm for the alignment of veloc-
ity fields acquired by different cameras, at different time intervals, from different viewpoints. Velocity
fields are aligned using a warping function which maps corresponding points and vectors in both fields.
The warping parameters are estimated by minimizing a non-linear least squares energy. Experimental
tests show that the proposed model is able to compensate significant misalignments, including transla-
tion, rotation and scaling.
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1. Introduction

Video surveillance systems use multiple cameras as a way to
enlarge their field of views and to obtain richer information about
the scene. This strategy requires the ability to align images from
multiple sources and to compensate for global geometric transfor-
mations (Mittal and Huttenlocher, 2000; Foresti et al., 2005; Jwa
et al., 2008; Reilly et al., 2010). This is known as the image registra-
tion problem.

Image registration has been extensively studied in the last dec-
ades (Szeliski, 2006). Most methods align pairs of images by esti-
mating a geometric transformation between their domains.
Typically they adopt one of the following strategies (Szeliski,
2006): either they align sparse sets of points (fiducial points) de-
tected in the images or they consider all image pixels (dense infor-
mation) and align them based on a color constancy hypothesis i.e.,
they assume that the corresponding points in two images have the
same intensity or color (Baker and Matthews, 2004).

While the above algorithms are mostly developed for dealing
with static imagery, this paper considers a different problem in
which we describe the object motion in the scene by velocity fields
and wish to align velocity fields extracted by different cameras from
different viewpoints. Thus, we wish to align geometric information
describing the motion of objects in the scene, a problem that has re-
ceived much less attention than image registration in the literature.

A related problem concerns the use of the image gradient in
image alignment (e.g., see Pluim et al. (2000), Ruiz-Alzola et al.
(2000), Butz and Thiran (2001), Mei and Porikli (2006), Haber
ll rights reserved.
and Modersitzki (2007) and Shams et al., 2007). The gradient direc-
tion and orientation carries important information about rotation
and scaling and has been used to improve alignment algorithms.
In the available literature, several directions have been followed.
Some works try to align edge maps using the gradient magnitude
(Butz and Thiran, 2001), while others try to reduce the influence
of local minima by modifying the cost function (Pluim et al.,
2000) or to provide an initial estimate for the rotation angle using
an histogram of gradient direction (Shams et al., 2007). These
works do not attempt to align vector (gradient) fields but only to
improve the accuracy and robustness of intensity alignment algo-
rithms by using additional information (gradient magnitude or ori-
entation). The alignment of the gradient fields is addressed in
(Ruiz-Alzola et al., 2000; Haber and Modersitzki, 2007) following
two interesting different approaches. The first work extracts a set
of local estimates of motion based on a translation model and it
is therefore tailored to problems in which the rotation of the
images is small. The second work addresses global motion estima-
tion using mutual information applied to the gradient orientation
without using the magnitude.

This paper describes a novel algorithm for the alignment of
velocity fields based on the minimization of the residue energy.
The residue is defined as the difference between transformed
velocities at corresponding points. In this case, the color constancy
hypothesis does not hold, since the points and velocities are mod-
ified by the warping operation. Alignment is performed by solving
a non-linear least squares problem using the recursive Gauss–
Newton algorithm. Although the method proposed in this paper
shares some common aspects with the Lucas–Kanade (LK) algo-
rithm for image alignment, there are three main differences: (i)
the proposed method aligns dynamic information (motion fields)
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Fig. 1. Warping of points and vectors.
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instead of static one (image intensities); (ii) the cost function is
different and (iii) the color constancy hypothesis adopted in the
LK algorithm is not required.

The paper is organized as follows. Section 2 formulates the
problem. Section 3 derives the alignment algorithm. Section 4 pre-
sents experimental results and Section 5 draws some conclusions.

2. Problem formulation

2.1. Alignment model

Let us consider a pair of velocity fields u;v : D! R2, with
D � R2, obtained by a pair of cameras with different viewpoints.
These fields represent the velocity of a point target observed by
the two cameras. Since we know the velocity fields, the target tra-
jectories, xðtÞ; yðtÞ 2 R2, in the two image planes, are described by
the differential equations

_xðtÞ ¼ uðxðtÞÞ; _yðtÞ ¼ vðyðtÞÞ: ð1Þ

We will assume that both trajectories are linked by a warping
function
Fig. 2. Alignment results: pairs of misaligned vector fields (1st an
y ¼ /ðx; hÞ; ð2Þ

where h 2 Rm is a vector of parameters to be estimated and
/ : R2þm ! R2 is a differentiable function.

We wish to find the best warping function (the best h) that
maps trajectories obtained by the first camera onto trajectories
of the second. Since x, y are related by (2) the velocities of the point
target in both images are also related. Computing the derivative of
y with respect to t we obtain, using (2)

vðyÞ ¼ @/
@x
ðx; hÞuðxÞ; ð3Þ

where

@/
@x
¼

@/1
@x1

@/1
@x2

@/2
@x1

@/2
@x2

" #
ð4Þ

is the Jacobian matrix of the warping function and / = [/1/2]T. This
is shown in Fig. 1. Points and velocity vectors are transformed in dif-
ferent ways and must obey conditions (2) and (3). This shows that
corresponding velocities u, v are different since u is multiplied by
the Jacobian matrix.

2.2. Cost functional

Given a warping function /(x,h), we need to define an align-
ment measure, a problem similar to the choice of an image align-
ment measure. There are, however, two important differences.
First, we wish to align velocity fields instead of image intensity.
Second, the color constancy hypothesis is not assumed to hold.
Vectors do not remain invariant under a geometric transformation,
since they are modified according to (3) i.e., they are multiplied by
the Jacobian matrix.

In this paper, the alignment between two velocity vectors fields
at a point x 2 D is assessed by computing the residue vector
d 2nd columns) and 1st fields after alignment (3rd column).
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rðxÞ ¼ vðyÞ � @/
@x
ðx; hÞuðxÞ; ð5Þ

where y = /(x,h). The alignment measure is the l2 norm of the resi-
due, considered as a function of h and given by

EðhÞ ¼
X

x

vðyÞ � @/
@x
ðx; hÞuðxÞ

����
����

2

; ð6Þ

where k�k stands for the Euclidean norm and E is called residue en-
ergy. The sum is performed for all x 2 D and such that the trans-
formed position y = /(x,h) 2 D. This guarantees that both u(x) and
v(y) are defined.

3. Parameter estimation

We wish to find the parameter h that minimizes E. This is a dif-
ficult task since the cost function E is a non-convex function and
may have multiple local minima. To overcome this difficulty, we
will adopt the Gauss–Newton method for non-linear least squares
problems. For that sake, assume that we have an initial estimate h
and allow a small displacement

h! hþ Dh: ð7Þ

The energy becomes,

Eðhþ DhÞ ¼
X

x

vðyþ DyÞ � @/
@x
ðx; hþ DhÞuðxÞ

����
����

2

; ð8Þ
Fig. 3. Attraction region as a function of the rotation angle h and translation amplitud
ê ¼ ½1 0�T (left), ê ¼ 1ffiffi

2
p ½1 1�T (right).
with y + Dy = /(x,h + Dh). Then, we approximate the non-convex
cost function by a quadratic one replacing the functions by the first
order terms of the Taylor series, assuming that Dh is small. This
leads to the system of linear equations (see Appendices A and B)
RDh ¼ r; ð9Þ

R ¼
X

x

X2

i¼1

RiðxÞT RiðxÞ; ð10Þ

r ¼
X

x

X2

i¼1

RiðxÞT riðxÞ; ð11Þ
where
RiðxÞ ¼
dv i

dy
ðyÞ @/

@h
ðx; hÞ � uðxÞT @

2/i

@h@x
ðx; hÞ; ð12Þ

riðxÞ ¼
@/i

@x
ðx; hÞuðxÞ � v iðyÞ: ð13Þ
Eqs. (7) and (9) are recursively applied until convergence is
achieved. The parameter estimate computed at the k-th iteration
will be denoted by h(k). Although this algorithm resembles the Lu-
cas–Kanade method for image alignment, it is remarked that it uses
dynamic information (velocity fields) instead of image intensity and
a different transformation model, given by (3).
e a for both examples. Translation t ¼ aê is performed in two different directions
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4. Results

This section illustrates the performance of the alignment algo-
rithm with synthetic and real data.
4.1. Synthetic data

We will consider synthetic velocity fields and apply a known
geometric transformation. We will then try to compensate the mis-
alignment by using the algorithm proposed in this paper.

Fig. 2 (columns 1 and 2) show two pairs of vector fields to be
aligned. Each field is defined on a uniform grid of 50 � 50 points.
The first field (1st column) was analytically defined and the second
(2nd column) was obtained by applying a rotation with amplitude
a0 = 15� followed by a translation with displacement t0 = [0 5]T.

The fields were aligned by the proposed algorithm assuming
that the warp function is an affine transformation /(x,h) = Ax + t
with parameters A 2 R2�2 and t 2 R2. The alignment algorithm
was initialized with the identity transformation (A(0) = I, t(0) = 0)
and the estimates were iteratively updated until convergence is
achieved. The third column of Fig. 2 shows the original vector field
after the alignment. A comparison between columns 2 and 3 shows
Fig. 4. Alignment experiment using a pair of surveillance cameras operated at different ti
fields 2, 1 (3rd row).
that a very good alignment was achieved by the proposed algo-
rithm in both examples.

The performance of the alignment algorithm can be assessed by
objective quality measures. We will adopt the SNR criterion, de-
fined as follows,

SNR ¼ 10log10

P
xkuðxÞk

2P
xkrðxÞk

2 dB: ð14Þ

The SNR results for the alignment experiments of Fig. 2 are 26.3 dB
and 17.1 dB, respectively, stressing the good performance of the
proposed algorithm in both examples.

An interesting question is concerned with the basin of attrac-
tion of the algorithm and may be phrased as how much can we mis-
align the vector fields and still recover? We assume that the initial
warp function is the identity function. Fig. 3 shows the attraction
(convergence) regions for both vector fields, considering all rota-
tion angles in the range [�90�,90�] and translations up to 25 (i.e.,
half the field support). For the sake of simplicity we assume that
t ¼ bê where ê is the versor that defines the direction of the trans-
lation. Two directions were considered in this experiment and the
attraction regions were computed in both cases (see Fig. 3). In the
first alignment problem, the attraction regions are large compris-
me intervals: pedestrians trajectories (1st row); motion fields 1, 2 (2nd row) aligned
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ing rotations in the range [�45�,45�] and translations in the range
[�15,15]. This means that the algorithm recovers large field defor-
mations. In the second example, the attraction regions are smaller
since the vector fields are zero in most of the domain and there is
less information available. The attraction region can be increased,
in both examples, by performing multiple initializations.

4.2. Pedestrian motion

Motion fields have been recently used to characterize pedes-
trian activities in video sequences (Nascimento et al., 2009). This
raises one interesting question. If we have a pair of cameras, is it
possible to align the motion fields extracted by each of them?
The next example addresses this issue. We consider a pair of cam-
eras observing pedestrians motion from two different viewpoints.
We acquired 5186 images with the first camera and 8141 with
the second at a frame rate of 25 fps. Then, we extracted the pedes-
trian trajectories and computed the motion fields associated to
both cameras, using the method described in (Nascimento et al.,
2009). Then we applied the algorithm proposed in this paper to
align both motion fields.

The results are shown in Fig. 4. This first line shows the pedes-
trian trajectories observed by both cameras. Since the images were
acquired at different time instants, is it not possible to establish
correspondence between pedestrian trajectories observed by both
cameras. The trajectories were lowpass filtered using a Gaussian
filter with r = 2 pixel. The second line shows the motion fields ob-
tained for each of the cameras and the third line displays the
aligned motion fields. The first motion field in line 2 is displayed
after the warping in the second column of line 3, and vice versa.
Therefore, the comparison should be made between the 2nd and
3rd lines, along the same columns. The proposed algorithm man-
ages to compensate for the flow misalignment in this example.
The SNR result achieved by the algorithm in this experiment was
6.0 dB, much less that the values obtained by the same algorithm
in the synthetic cases. However, it should be stressed that the field
estimates are noisy, since they were computed from a limited
number of trajectories, associated to different pedestrians in each
image.

5. Conclusion

This paper presents an algorithm for the alignment of velocity
fields using parametric warping functions and a non-linear cost
functional. This algorithm uses the solution of a non-linear optimi-
zation problem which is recursively solved using a Taylor series
expansion. Experimental tests with synthetic and real data show
the ability of the algorithm to recover from significant misalign-
ments of velocity fields. The algorithm can be easily be extended
to include other types of information (e.g., image intensity, color).
Future developments should include the alignment of multiple
motion fields extracted from video data, representing multiple mo-
tion regimes of objects of interest in the scene.
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Appendix A. Minimization of quadratic cost function

First, we will approximate functions vð/ðx; hþ DhÞÞ;
@/
@x ðx; hþ DhÞ by first order terms of their Taylor expansions. In
the first case, this leads to
vð/ðx; hþ DhÞÞ � vð/ðx; hÞÞ þ dv
dy
ð/ðx; hÞÞ @/

@h
ðx; hÞDh; ð15Þ

where

@v
@y
¼

@v1
@y1

@v1
@y2

@v2
@y1

@v2
@y2

2
4

3
5; @/

@h
¼

@/1
@h1

. . . @/1
@hm

@/2
@h1

. . . @/2
@hm

2
4

3
5: ð16Þ

The second function is more difficult to represent since it is a
matrix function and the linearization involves a tensor with three
indices. To keep the notation simple we will separately consider
each component of /(x,h)

/ðx; hÞ ¼
/1ðx; hÞ
/2ðx; hÞ

� �
: ð17Þ

In this case

@/i

@x
ðx; hþ DhÞ � @/i

@x
ðx; hÞ þ @2/i

@h@x
ðx; hÞDh

 !T

; ð18Þ

where

@2/i

@h@x
¼

@2/i
@h1@x1

. . . @2/i
@hm@x1

@2/i
@h1@x2

. . . @2/i
@hm@x2

2
4

3
5: ð19Þ

Let us now replace these expressions in the energy cost func-
tional (8). We obtain

Eðhþ DhÞ ¼
X

x

vðyþ DyÞ � @/
@x
ðx; hþ DhÞuðxÞ

����
����

2

; ð20Þ

Eðhþ DhÞ ¼
X

x

X2

i¼1

v iðyþ DyÞ � @/i

@x
ðx; hþ DhÞuðxÞ

� �2

; ð21Þ

Eðhþ DhÞ ¼
X

x

X2

i¼1

v ið/ðx; hÞÞ þ
dv i

dy
ð/ðx; hÞÞ @/

@h
ðx; hÞDh

�

� @/i

@x
ðx; hÞuðxÞ � uðxÞT @

2/i

@h@x
ðx; hÞDh

!2

: ð22Þ

The energy can now be written as

Eðhþ DhÞ ¼
X

x

X2

i¼1

ðRiðxÞDh� riðxÞÞ2; ð23Þ

where

RiðxÞ ¼
dv i

dy
ðyÞ @/

@h
ðx; hÞ � uðxÞT @

2/i

@h@x
ðx; hÞ; ð24Þ

riðxÞ ¼
@/i

@x
ðx; hÞuðxÞ � v iðyÞ: ð25Þ

A necessary condition for minimizing E is

dE
dDh

¼ 0: ð26Þ

Therefore,

2
X

x

X2

i¼1

RiðxÞTðRiðxÞDh� riðxÞÞ ¼ 0; ð27Þ

X
x

X2

i¼1

RiðxÞT RiðxÞDh ¼
X

x

X2

i¼1

RiðxÞT riðxÞ: ð28Þ

This is a linear system of equations

RDh ¼ r; ð29Þ

where,
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R ¼
X

x

X2

i¼1

RiðxÞT RiðxÞ; ð30Þ

r ¼
X

x

X2

i¼1

RiðxÞT riðxÞ: ð31Þ
Appendix B. Affine transform

The affine transform maps each point x 2 R2 into a point

y ¼ Axþ t; ð32Þ

where A 2 R2�2 is a square matrix and t 2 R2 a translation vector.
The vector of parameters is defined as h = [a11 a12 a21 a21 t1

t2]T and the required derivatives are easily obtained

ð33Þ

@2/1

@h@x
¼ ½I2�2j02�2j02�2�;

@2/2

@h@x
¼ ½02�2jI2�2j02�2�: ð34Þ
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