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Abstract— This paper addresses the problem of controlling
the temperature of an air heating fan with an unknown flow
input rate. This time-varying uncertainty in the dynamics of
the plant significantly reduces the performance of the closed-
loop system, if a single (fixed) non-adaptive controller is used.
Moreover, the average temperature of the air flowing through
the system, that can be seen as an offset on the corresponding
dynamics, is also (slowly) time-varying and highly dependent on
the ambient temperature. Therefore, an alternative approach to
this problem is proposed, by resorting to a novel multiple-model
adaptive control methodology that relies on set-valued observers
to identify the operating region of the plant. The suggested
method is evaluated experimentally, demonstrating a loss of
performance of about 2% when compared to the (unrealizable)
perfect model identification scenario. As a shortcoming, the
computational requirements due to the use of SVOs are con-
siderably larger than the ones needed for an LTI non-adaptive
controller.

I. INTRODUCTION

When dealing with realistic applications, the model of a
system is only known up to some level of precision, due
to uncertain parameters and unmodeled dynamics. In these
circumstances, a non-adaptive controller may not achieve the
desired closed-loop performance, e.g., to guarantee a given
level of attenuation from the exogenous disturbances to the
performance outputs, for the whole range of uncertainty. To
overcome this problem, several solutions have been proposed
in the literature of adaptive control (cf. [1], [2], [3], [4]).

In this paper, we focus our attention on an adaptive
control architecture, referred to as Multiple-Model Adaptive
Control (MMAC). In particular, we take advantage of the
recent advances in the Set-Valued Observers (SVOs) theory
to invalidate models of the plant that are not compatible with
the current input/output sequences, as described in the sequel
– see [5], [6].

The plant considered is a Process Trainer PT326 developed
by Feedback Instruments Ltd. [7] (Fig. 1). The atmospheric
air is drawn by a blower (on the left), and passes through a
heater (À) and a tube (Á) before returning to the atmosphere.
The goal is to regulate the temperature of the air, T (·) –
measured by a thermocouple sensor with output variable y(·)
– using the heater (À) in Fig. 1, with input signal u(·).

The air flow q(·) can be manually manipulated by chang-
ing the throttle opening (θ°) from 10° to 165° (degrees),
and, as shown in the sequel, has a significant impact on the
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dynamic behavior of the system. Minimum and maximum
throttle openings, θmin = 10° and θmax = 165°, correspond
to minimum and maximum flows, respectively. Finally, the
system is also affected by the ambient temperature Ta.
However, this (uncontrollable) variable is only responsible
for generating a (slowly) time-varying offset on the output,
and hence it does not change the incremental dynamics of
the plant.
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Fig. 1: Scheme of air heating system.

The nonlinear model of the system is approximated by
scheduling between several local models, each of which
corresponding to a pre-specified set of values of the throttle
opening. Figure 2 depicts the responses of the system, for
three different throttle openings (30°, 70°, and 130°), to a
square-wave input signal, using a sampling frequency of
1000Hz. The different offsets of the measured variable, y(·),
are related to each operating point, and are (slowly) time-
varying and highly dependent on the ambient temperature,
Ta. Therefore, these offsets should not be used for the
identification of dynamics of the plant.
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Fig. 2: System response to square wave input signal for the
three throttle openings and sample period of 1ms.

A. Main Contributions

The main contributions of this paper are as follows:

• The development of a multiple-model dynamic descrip-
tion for the Process Trainer PT326.

• The implementation of the MMAC/SVO controller for
the plant, generalized to include an unknown plant
offset, and that guarantees the stability of the closed-
loop system.
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• The experimental evaluation of the proposed solution.

In addition to closed-loop stability, the MMAC/SVO con-
troller also provides improved performance when compared
to a single (fixed) non-adaptive controller. Moreover, it is
shown that the deterioration, in terms of performance, when
compared to the (non-realizable) perfect model identification
scheme, is negligible, at least in the scenarios considered in
this paper.

B. Organization of the Paper

This paper is organized as follows. Section II describes the
dynamics of the air heating fan. The SVO-based approach
to MMAC is introduced in Section III, and the experimental
results are presented in IV. Finally, some conclusions regard-
ing the proposed technique are discussed in Section V.

II. DYNAMICS OF THE AIR HEATING FAN

For each operating region, the dynamics of the Process
Trainer PT326, illustrated in Fig. 1, was discretized with a
sampling period of 200 ms, and modeled by the ARMAX
structure described by

y(k) + a1 y(k − 1) + . . .+ ana
y(k − na) =

= b1 u(k − nk) + . . .+ bnb
u(k − nk − nb + 1)+

+ e(k) + c1 e(k − 1) + . . .+ cnc
e(k − nc), (1)

where y(·) is the measured temperature, u(·) is the control
input, i.e., the power delivered to the heater, and e(·) is white
Gaussian process noise. The coefficients ai, bj and cm were
experimentally assessed.

For all the (local) models considered, we used na = nc =
3 and nb = 2. Finally, the delay nk is different for each of
those models. These ARMAX models can be described in
state-space form by

Si :

{

xi(k + 1) = Aix(k) +Biu(k) + Lidi(k)
yi(k) = Cix(k) + ni(k) + bi(k)

,

(2)
where i denotes the index of the local model, bi(k) ∈ R is
the offset of the output variable, and ni(k) and di(k) are the
measurement noise and exogenous disturbances, respectively,
at time k. For each value of the throttle opening, a different
set of matrices Ai, Bi, Ci, and Li, is obtained.

Figure 3a depicts the outputs of three different models
(30°, 70°, and 130°) obtained in simulation, for the throttle
opening sequence 130◦ → 70◦ → 130◦ → 30◦ → 70◦ →
30◦ → 130◦, with changes every 50 s. The measured output
of the plant, obtained with the experimental setup, and using
the same throttle opening sequence, is illustrated in Fig. 3b.

Remark 1: It should be noticed that the overheating of the
tube impacts on the offsets of all models over time. Indeed,
this overheating effect causes a variable offset in each model
that is evident from Fig. 3b. ⋄

III. SVO-BASED MMAC

The large level of uncertainty of the model of the air
heating fan significantly hinders the problem of designing a
single non-adaptive controller for all the admissible models
of the plant. To overcome this issue, several solutions are
proposed in the literature of adaptive control based on a
single plant model (cf. [1], [8], [9], [2], [3]).

In this paper, however, the focus is on a class of adaptive
control architectures, referred to as Multiple-Model Adaptive
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Fig. 3: Simulated (a) and experimental (b) output of the plant.
S1, S2, and S3 were obtained for throttle openings of 30°,
70°, and 130°, respectively.

Control (MMAC)1. In terms of design, the idea behind the
MMAC is to split the (large) set of parametric uncertainty,
Ω, into N (small) subregions, Ωi, i ∈ {1, · · · , N} – see
Fig. 4 for an example where a single uncertain parameter is
considered – and a non-adaptive controller for each of these
subregions is synthesized. In terms of implementation, the
goal is set to identify which region the uncertain parameters,
ρ, belong to, and then connect to the loop the controller
designed for that region.
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Fig. 4: Uncertainty region, Ω, for the parameter ρ, split into
N subsets, Ωi, i = {1, · · · , N}.

Several MMAC architectures have been proposed that
provide stability and/or performance guarantees, as long as
a set of assumptions are met. For instance, [10] uses a
parameter estimator to select a controller, guaranteeing sta-
bility of the closed-loop. Another MMAC approach, referred
to as Robust Multiple-Model Adaptive Control (RMMAC),
which was introduced in [11] and references therein, uses
a bank of Kalman filters for the identification system and a
hypothesis testing strategy to select the controllers. For this
case, although simulation results – see, for instance, [11],
[12] – indicate that high levels of performance are obtained,
the only guarantees that can be provided are in terms of
stability – see [13], [14]. In [15], calibrated forecasts are used
to guarantee the stability of the closed-loop. This approach
was later on extended in [16], to provide stability guarantees
for several MMAC architectures. The theory of unfalsified
control – see [17], [18], [19], [20], [21], among others [22],
[23] – uses the controlled output error to decide whether
the selected controller is delivering the desired performance
or not. Other MMAC approaches increase the number of
uncertainty regions in order to improve performance, when-
ever a given condition is satisfied (cf. [24]). The authors of
[22] use a Lyapunov-based approach to select controllers,
and hence require an in-depth knowledge of the plant. Some
of the assumptions required by these methodologies are often
unnatural or cannot be verified in practice.

The approach adopted in this article is somewhat different
to the above MMAC architectures, although using a line-

1For a list of advantages of MMAC, over other adaptive control archi-
tectures, the reader is referred, for instance, to [4].
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of-thought similar to that of the unfalsified control theory.
Rather than trying to identify the correct region of uncer-
tainty, by hypothesis testing or parameter estimation, the
wrong regions are excluded. In other words, if the time-
evolution of the inputs and outputs of the plant cannot be
explained by a model with uncertain parameter ρ, such that
ρ ∈ Ωi, then region Ωi cannot be the one to which the uncer-
tain parameter belongs. The invalidation of these uncertainty
regions is addressed by using Set-Valued Observers (SVOs),
taking advantage of the recent developments presented in [5],
[6].

In summary, the approach provided in this paper is to use
SVOs to decide which non-adaptive controllers should not
be selected. Similarly to other MMAC architectures, we use
a bank of observers – in our case, SVOs –, each of which
tuned for a pre-specified region of uncertainty.

A. Preliminaries and Notation

The class of systems considered in this paper, typically
referred to as uncertain Linear Parameter-Varying (LPV)
systems, can be described by
{

x(k + 1) = A(k, ρ(k))x(k) +B(k, ρ(k))u(k)
+L(k, ρ(k))d(k)

y(k) = C(k, ρ(k))x(k) +N(k, ρ(k))n(k),
(3)

where x(0) ∈ X(0), x(k) ∈ R
n, d(k) ∈ R

nd , n(k) ∈ R
nn ,

u(k) ∈ R
nu , and y(k) ∈ R

ny , for k ≥ 0. The (time-varying)
vector of parameters, ρ(·), is such that ρ(k) ∈ R

nρ . It is
also assumed that |d(k)| := max

i
|di(k)| ≤ 1, and |n(k)| :=

max
i

|ni(k)| ≤ n̄. At each time, k, the vector of states is

denoted by x(k), and we define X(0) := Set(M0,m0),
where

Set(M,m) := {q : Mq ≤ m} (4)

represents a convex polytope. As an additional constraint, it
is assumed that the matrices of the dynamics depend affinely
on the vector of parameters.

Let X(k + 1) represent the set of possible states at time
k+1, i.e., the state x(k+1) satisfies (3) with x(k) ∈ X(k) if
and only if x(k+1) ∈ X(k+1). The goal of an SVO is to find
X(k+1) based upon (3) and with the additional knowledge
that x(k) ∈ X(k), x(k − 1) ∈ X(k − 1), · · · , x(k − N) ∈
X(k−N), for some finite horizon N . We further require that,
for all x ∈ X(k + 1), there exists x⋆ ∈ X(k) such that, for
x(k) = x⋆, the observations are compatible with (3). In other
words, we want X(k + 1) to be the smallest set containing
all the solutions to (3). A procedure for discrete time-varying
linear systems was introduced in [25], and extensions to
uncertain plants were presented in [5] and [6].

For plants with uncertainties, the set X(k + 1) is, in
general, non-convex, even if X(k) is convex. Thus, it cannot
be represented by a linear inequality as in (4). The approach
suggested in [5] is to overbound this set by a convex

polytope, X̂(k + 1), therefore adding some conservatism to
the solution. A different method was presented in [6], that
requires a smaller computational effort, while reducing the
conservatism of the solution. Throughout the remainder of
this article, we are going to use the former approach, in order

to compute set-valued state estimates, X̂(k), of dynamic
systems that can be modeled by (3).

Let S denote the set of plausible or admissible models of
the plant to be controlled. We assume that S is a finite set,

with cardinality NS , and that each Si ∈ S can be described
by

Si :

{
xi(k + 1) = A(k, ρ(k))xi(k) +B(k, ρ(k))u(k)

+L(k, ρ(k))di(k),
yi(k) = C(k, ρ(k))xi(k) +N(k, ρ(k))ni(k),

(5)

for each i ∈ {1, · · · , NS}, with ρ(k) ∈ Ωi for all k ≥ 0,
and using a nomenclature similar to that of (3). Moreover,
for any i, j ∈ {1, · · · , NS}, it is clear that

Si = Sj ⇔ Ωi = Ωj .

Define Wd, Wn, and U , such that di(j) ∈ Wd ⊆ R
nd ,

ni(j) ∈ Wn ⊆ R
nn , and u(j) ∈ U ⊆ R

nu , for all times j.
The initial state of system Si is represented by xi

o := xi(0) ∈
X(0) := Xo ⊆ R

n. The sets Wd, Wn and U are assumed
compact convex polytopes, and we define W := Wd ×Wn.

Definition 1: [26] Let dji = dj(i) and nj
i = nj(i).

Systems S1 and S2 are said to be absolutely (Xo, U,W )-
input distinguishable in N measurements if, for any non-zero

(

x1
o, x

2
o, d

1
0,N−1, d

2
0,N−1, n

1
0,N , n2

0,N , u0,N−1,
)

∈

X2
o ×W 2N

d ×W
2(N+1)
n × UN

there exists k ∈ {0, 1, · · · , N} such that

y1(k) 6= y2(k).

Moreover, two systems are said to be absolutely (Xo, U,W )-
input distinguishable if there exists N ≥ 0 such that
they are absolutely (Xo, U,W )-input distinguishable in N
measurements.

In the definition, we used the short-hand notation v0,N to
denote a concatenation of a sequence of vectors

v0,N := [vT
o , · · · , v

T
N ]T.

Unlike other definitions of distinguishability that can be
found in the literature [27], [28], [29], Definition 1 is
important when we want to guarantee that, regardless of the
input signals, two systems can be distinguished in a given
number of measurements.

B. MMAC/SVO Architecture

Figure 5 depicts the basic Multiple-Model Adaptive Con-
trol (MMAC) architecture adopted in this article, referred to
as MMAC/SVO architecture for time-varying systems, where
NS possible dynamic models for the system were considered.
The main idea in this architecture is to have an SVO, referred
to as Global SVO, which is able to provide set-valued state
estimates for all the admissible time-varying uncertainties
of the plant. Therefore, unless none of the NS families of
models – which assume that the uncertain parameters are
time-varying – is able to describe the dynamics of the actual
plant, the Global SVO does never provide an empty set-
valued estimate of the state. As described in the sequel, this
estimate is used to reinitialize the remaining SVOs when all
the models are invalidated.

Indeed, as stressed in [16], in the case of time-varying
plants a model shall never be disqualified “forever”. In fact,
if the dynamics of the plant drift at a given time instant, then
a previously discarded controller may be the appropriate one
to be used from that moment on.

The block entitled Logic in Fig. 5 is responsible for
selecting the controller connected to the loop, by taking
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Fig. 5: MMAC/SVO architecture for time-varying systems.
Xi is the set-valued state estimate provided by SVO #i.
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Reinitialize
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Fig. 6: Algorithm for the Logic block of the MMAC/SVO
architecture for time-invariant systems.

into account the set-valued estimates of the state of the
system provided by the SVOs. Several approaches can be
used to tackle this decision problem. The one adopted in
this article is depicted in Fig. 6, where h : {2, · · · , NS} →
{1, 2, · · · , NS − 1} is a map satisfying h(n) = n − 1, and
io = NS is the number of controllers. This strategy takes
into account the fact that, if ρ ∈ Ωi, then SVO #i does
never fail, i.e., the set-valued state estimate of the i-th SVO,
X̂i(k), is never empty. On the other hand, if ρ /∈ Ωi, then

it can happen that, for some to, we have X̂i(k) = ∅, for all
k ≥ to.

In summary, the main strategy in the algorithm is to
start by using any controller in the initial set of plausible
controllers, and then remove from the loop controllers whose
corresponding models of the plant have been disqualified.
For the sake of simplicity, the controllers are selected in
a sequential fashion, in this case, i.e., if model #NS is
invalidated, we switch to controller #NS−1, while if model
#NS − 1 is invalidated, we switch to controller #NS − 2,
and so on. However, other algorithms can be used, as long as
the selected controller does never correspond to a previously
falsified (or invalidated) model.

If all but the Global SVO provide empty set-valued state
estimates for the plant, it means that none of the NS models
is able to describe the observed input/output data in the whole
time-range. Thus, we conclude that the dynamics of the plant
have drifted from one region of uncertainty to another, and
hence all the other SVOs should be reinitialized.

In order to ensure closed-loop stability, we posit the
following assumptions.

Assumption 1: Let S be the (finite) set of admissible
models of the plant. If Si ∈ S and Sj ∈ S , with Si 6= Sj ,
then Si and Sj are absolutely (Xo, U,W )-input distinguish-
able in N sampling times.

Assumption 2: Let:

1) the initial state of the plant satisfy x(0) ∈ Xo;
2) the control input sequence satisfy u(j) ∈ U for all

j ≥ 0;
3) the sequence of disturbances satisfy (d(j), n(j)) ∈ W

for all j ≥ 0.

Assumption 3: There exists Tmin > 0 such that, if ρ(k) ∈
Ωj , then there exist time indexes k1 and k2 such that

1) |k2 − k1| ≥ Tmin;
2) k1 ≤ k ≤ k2;
3) ρ(κ) ∈ Ωj for all κ ∈ [k1, k2].

In other words, Assumption 1 is used to guarantee that
the models in S can be distinguished from each other (in
the sense of Definition 1), while Assumption 2 ensures
that the input signals sufficiently excite the system to allow
distinguishability. Finally, Assumption 3 guarantees that the
dynamics of the system to be controlled are sufficiently slow,
so that the identification subsystem in Fig. 5 is able to select
the appropriate model of the plant.

From these assumptions, we can conclude the following
result.

Theorem 1: [30] Consider a dynamic system, Sr, de-
scribed by (3), such that ρ(k) ∈ Ω = Ω1 ∪ · · · ∪ ΩNS

.
Suppose Assumptions 1–3 are satisfied and that controller,
Ci, designed for the region of uncertainty Ωi, asymptotically
stabilizes the system (3) with ρ ∈ Ωi. Then, the closed-loop
system with the MMAC/SVO architecture for time-varying
plants is input/output stable, for sufficiently large Tmin.

This result provides guarantees that the closed-loop system
is stable, for sufficiently slow time-variations of the dynam-
ics. The proof of the theorem (which is fully described in
[30]) can be sketched as follows:

1) Given Assumptions 1 and 2, we can guarantee that, if
the dynamics of the plant remain modeled by the same
LPV description for a sufficiently large time interval,
the SVOs will be able to invalidate all but the “correct”
model of the plant.

2) Assumption 3 ensures that indeed the dynamics of the
system remain in the same region of uncertainty for a
sufficiently large time interval.

3) Since each local controller is guaranteed to asymptoti-
cally stabilize the system for the corresponding region
of uncertainty, and using similar arguments to those in
[16], it can be shown that the closed-loop system is
stable.

C. MMAC/SVO for the Air Heating Fan

The dynamics in (3) can be readily transformed into the
model described by (5), where the offset, bi(·), is modeled as
a low-frequency disturbance, added to the measured output
of the system. The SVOs allow us to define (time-varying)
upper and lower bounds on this disturbance that can aid the
invalidation of the models. However, due to the large level
of uncertainty of this offset, which is highly dependent on
the room temperature, we assume that the aforementioned
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upper and lower bounds correspond to the upper and lower
saturations of the temperature sensor, respectively.

As described in [31], the local non-adaptive controllers for
each region of the dynamics of the system were designed so
as to minimize the H2-norm of the tracking error – see [32]
– and are typically referred to as Linear Quadratic Gaussian
(LQG) controllers.

In order to avoid chattering due to the switching of the
controllers, an integrator is connected to the loop, in between
the controller and the plant – see [33]. In terms of controller
design, it can be assumed that the integrator is part of the
process. Figure 7 depicts the LQG controller (which can be
seen as the combination of a Linear Quadratic Regulator
(LQR), and a Kalman Filter (KF), based on the separation
principle – see [34]), together with the augmented process
(plant and integrator).

-
r

-
x̂a

?

r -

δu-
r -
y

LQG Process with integrator

-
uKalman

Filter
-K

LQR

1

q − 1
Process

Fig. 7: Interconnection between the plant and the LQG
controller.

The augmented process is, therefore, described by

[
x(k + 1)
u(k + 1)

]

︸ ︷︷ ︸

xa(k+1)

=

[
Ai Bi

0 1

]

︸ ︷︷ ︸

Āi

[
x(k)
u(k)

]

︸ ︷︷ ︸

xa(k)

+

[
0
1

]

︸ ︷︷ ︸

B̄i

δu(k)

y(k) = [ Ci 0 ]
︸ ︷︷ ︸

C̄i

[
x(k)
u(k)

] , (6)

where xa is the augmented state, Āi, B̄i, and C̄i are the
augmented matrices, and δu is the incremental command
action from the controller. For the sake of simplicity, the
disturbances are omitted in this description. The design of
the LQG controllers is performed using the quadratic cost
function

J(δu) = lim
N→∞

N−1
∑

k=0

(

e2(k) +R [δu(k)]
2
)

, (7)

where e(k) = r − y(k) is the tracking error and R > 0 is
a weighting matrix. For N → ∞, the discrete-time LQG
controller for model #i is, finally, described by
{

x̂a(k + 1) =
(

Āi − B̄iKi − LiC̄i

)

x̂a(k)− Lie(k)
δu(k) = −Kix̂a(k)

,

(8)
where Li and Ki are the observer and regulator gains,
respectively. An anti-windup block was also designed to
avoid transients caused by saturation of the command input.

Remark 2: In designing these controllers, the offset bi is
regarded as a (low-frequency) disturbance that is naturally
rejected by the inclusion of the integrator at the plant input,
and the plant is considered time-invariant. ⋄

IV. EXPERIMENTAL RESULTS

Using the Process Trainer PT326, a series of tests have
been performed in order to experimentally evaluate the
behavior of the proposed control methodology. We start by

analyzing the behavior of the local controllers, synthesized
as described in Section III-C, followed by the performance
evaluation of the MMAC/SVOs.

Throughout this section, we consider three local models
for the plant, resulting from the throttle openings θ1 = 30°,
θ2 = 70°, and θ3 = 130°. We denote by Si the model of the
system for θ = θi, and by Ci the associated LQG controller.
Each of these models is also considered uncertain, in order to
account for the whole range of acceptable throttle openings.
For further details, the reader is referred to [31].

A. Experimental Evaluation of the Local Controllers

In the following experiments, we consider that the throttle
opening is changed manually every 50 secs, according to
the sequence 130°, 70° and 30°. Moreover, only a single
LQG controller is used in each experiment. The results are
summarized in Fig. 8.

0 50 100 150
6

7

8

9

Time [s]

Experimental reference tracking with different controllers

A
m

p
lit

u
d
e
 [
V

]

 

 

0 50 100 150
0

5

10

Time [s]
A

m
p
lit

u
d
e
 [
V

]

Command action u(k)

0 50 100 150

30

70

130

 

 

Reference

Controller C1

Controller C2

Controller C3

Manual θ

Fig. 8: Experimental closed-loop results for a time-varying
throttle opening, using the three local controllers.

It should be noticed that none of the controllers exhibits
reasonable performance for the whole range of the throttle
opening, which indicates that non-adaptive control strategies
may not be suitable for the problem at hand.

B. Experimental Evaluation of the MMAC/SVOs

Figure 9 illustrates a typical time-sequence of the results
obtained using the MMAC/SVOs method described in this
paper. The throttle opening changes every 70 secs. In this
case, the SVOs take typically less than 10 secs to invalidate
all but the “correct” model of the system. As a consequence,
the tracking error is small, except during the transients
between the switching of the non-adaptive controllers.

The results were also compared, through a series of
experiments, with the so-called Perfect Model IDentification
(PMID) method. In this unrealizable scheme, the appropriate
controller is connected to the loop, by taking advantage of
the information regarding the throttle opening. This method,
of course, cannot be implemented in practice, since such
information is assumed not to be available for the controller,
and hence is used here just for evaluating the results obtained.

As depicted in Fig. 10, the results obtained with the
PMID are similar to those of the MMAC/SVO. In fact, the
tracking error and the control input are comparable, although
the MMAC/SVO shows slightly larger transients during the
changes of the throttle opening. In terms of RMS tracking
error, the results obtained for 7 repetitions of the same ex-
perimental test are: RMSPMID = 1.05, and RMSMMAC/SVO =
1.05. The deterioration, in terms of RMS performance, that
comes from the use of the SVO-based decision subsystem,
is nearly 2%, for the scenario considered.
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Fig. 9: Experimental results for the closed-loop system with
the MMAC/SVOs.
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Fig. 10: Experimental results for the closed-loop system with
the (unrealizable) perfect model identification.

V. CONCLUSIONS

This paper described the application of the Multiple-Model
Adaptive Control methodology using Set-Valued Observers
(MMAC/SVOs) to an air heating fan. The behavior of the
proposed methodology was experimentally evaluated and it
was shown that, at least for the scenarios considered, the
deterioration in terms of RMS performance due to the SVO-
based model selection is around 2%. As a shortcoming,
the computational requirements of the SVOs are typically
large when compared to the ones of a (single) non-adaptive
controller. Nevertheless, for the present case, this did not
jeopardize the practical implementability of the technique.
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