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ABSTRACT

Video cameras monitoring human activities in public spaces
are commonplace in cities worldwide. Such monitoring task is
important for safety and security purposes but is also extremely
challenging. In this paper, we propose a class of algorithms for
far-field human activity recognition, a central task in video surveil-
lance. More specifically, we explore a class of parametric motion
vector fields learned from the trajectories described by people in
real-world scenarios. The work proposed herein is a space de-
pendent framework, in sense that the vector fields depend on the
pedestrian position. Thus, the model is flexible leading to an ex-
pressive description of complex trajectories. Also, a model selec-
tion strategy is addressed to automatically choose the appropriate
number of underlying motion fields presented in the trajectories.
Experimental evaluation is conducted in real settings testifying the
usefulness of the proposed approach for human activity recogni-
tion.

1. INTRODUCTION AND RELATED WORK

Video cameras monitoring human activities in public spaces are
commonplace in cities worldwide. Such monitoring task is impor-
tant for safety and security purposes [1], [7] but is also difficult to
be fulfilled. Human operators are generally employed for this task,
but even the most vigilant humans miss important information that
could ultimately contribute to unfavorable consequences.

Major research efforts are under way to develop security sys-
tems able to report events of interest or even statistics reporting
most common activities in surveillance scenarios. Essential are
methods by which information can be extracted from video data in
order to recognize behaviors or/and detect abnormal events. Such
information (e.g. features extracted from the image) depend on the
surveillance settings, i.e. short range, where the camera is close to
the observed people, thus detailed information of human gestures,
pose, gait can be extracted; or far field where the camera covers a
wide area, thus the system is no longer able to acquire information
with great detail.

This paper explores cutting-edge technique based on the as-
sumption the majority of people activities observed are described
by the performed trajectories. This is particularly relevant if we
consider far-field scenario, which is the presented case. Particu-
larly, this work extends our previous work [4]. In [4] it is addressed
the problem of estimating (i), the velocity fields T (ii) noise vari-
ances Σ and (iii) switching fields B, thus having the set of model
parameters θ = (T ,B,Σ) which explain well all the trajectories
that take place in the scenario. To achieve this, a grid of N × N
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is defined over the image domain. The main hindrance is that the
model parameters (T ,B) have to be estimated at every node in
the grid. With the approach proposed in this paper we can strongly
alleviate the computational effort. The vector fields T do not need
to be estimated grid-wise since they belong to a class of paramet-
ric models allowing a simpler trajectory model estimation and a
drastic reduction of the number of parameters.

Most related work concerning surveillance falls in the cate-
gory of trajectory-modeling. These methods are essentially deter-
ministic based on trajectory comparison. For instance, trajectory
analysis problems have been addressed using similarity measures
to measure the mismatch between trajectories; Euclidean [9] and
Hausdorff [2] are typical examples. Dynamic time warping [3] has
also been proposed.

Another class of approaches assumes that trajectories are pro-
duced by probabilistic generative models e.g. [6], [8], usually
based on the hidden Markov models. These approaches have the
important advantage of not requiring alignment/registration of the
trajectories being compared; moreover, they provide a solid prob-
abilistic inference framework, based on which model parameters
may be obtained from observed data. Our work falls in the latter
class of approach. A space dependent HMM is proposed where
switching probabilities depend not only on the current active field
but also on the pedestrian position. This allows a much better de-
scription os non-stationary trajectories observed in far-field surveil-
lance settings.

The paper is organized as follows. Section 2 describes the gen-
erative model. Section 3 presents the proposed parametric models,
that are the original contribution of the paper. Section 4 explains
how the parametric models are learned using the EM algorithm.
Section 5 presents experimental validation with real data. Section
6 concludes the paper.

2. TRAJECTORY GENERATION

Trajectory generation follows the same generative model as in [4],
that is

xt = xt−1 +Tkt(xt−1) +wt, (1)

where xt is the target position at instant t, kt ∈ {1, ...,K} is
the label of the active field at time t, wt ∼ N (0, σ2

kt
I) is white

Gaussian noise with zero mean and variance σ2
kt

which may be
different for each field. At each time instant, one of these velocity
fields is active, that is, is driving the motion.

Throughout the paper we will adopt the following notation:
Tk(x) denotes the velocity vector at point x ∈ R

2 of the k-th
field, Tk : R2 → R

2, for k ∈ {1, . . . ,K}; T = {T1, . . . ,TK},
denotes the set of K vector fields and σ = {σ2

1 , ..., σ
2
K} the set of

noise variances.

According to the dynamic model (1), we can write the joint
distribution of a trajectory x = (x1, ..,xL) and the underlying
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Table 1. Parametric motion models (R denotes a rotation matrix).

Model Transformation matrix Ax

Translation I (A → identity matrix)

Rigid Body R (A → rotation matrix)

Euclidean similarity sR (A → Euclidean similarity)

Affine A (A → arbitrary)

sequence of active fields k = (k1, ..., kL) as

p(x,k|T ,B,Σ) = p(x1)P (k1)

L∏
t=2

p(xt, kt|xt−1, kt−1)

= p(x1)P (k1)
L∏

t=2

p(xt|xt−1, kt)P (kt|kt−1,xt−1).

(2)

where L is the length of the trajectory x. The first term (in the 2nd

line of (2)) is modeled as a normal distribution, i.e. N (xt|xt−1 +
Tkt(xt−1), σ

2
kt
I); the second term is a first order space dependent

HMM, that is, P (kt = j|kt−1 = i,xt−1) = Bij(xt−1); and
p(x1) is the distribution of the initial position.

Here, P (kt|kt−1,xt−1) is a function of B, p(xt|xt−1, kt) is
a function of T and σkt , and p(xt, kt|xt−1, kt−1) is a function of
T , B, and σkt .

3. A CLASS OF PARAMETRIC MOTION FIELDS

As defined in Section 1, the parameters to be estimated are denoted
as θ = (T ,B,Σ), where T is the set of vector fields, B is the
field of transition matrices, and Σ, is the set of noise variances (we
assume a common diagonal covariance).

In [4] the motion fields T and the matrix B are estimated using
a non-parametric model, i.e., no structure is imposed to the model
variables, instead they are defined at the nodes of a regular grid and
interpolated in other image points using 1st order spline interpola-
tion. The consequence is that each field depends on a large number
(hundreds) of parameters. Here, we assume that the motion fields
are described by parametric models. The number of parameters to
be estimated, is thus much smaller (< 10).

Four parametric motion models are considered. All the models
are expressed by

z = Ax+ t, (3)

where z is the transformed position of x, A is a 2×2 matrix and t
is a 2× 1 translation vector. The difference between these models
are shown in Table 1.

The motion fields are given by

Tk(x) = Akx+ tk k = 1, ...,K (4)

4. LEARNING THE VECTOR FIELDS

We now address the estimation of the models parameters. More
specifically, how to learn the set of velocity fields T , the field of
transition matrices B, and the set of noise variances Σ = {σ2

1 , ..., σ
2
K},

from a set of observed trajectories. To accomplish this, we will
assume to have a training set of S independent trajectories X =

{x(1), ...,x(S)}, where x(j) = (x
(j)
1 , ...,x

(j)
Lj

) is the j-th observed

trajectory, assumed to have length Lj . Naturally, we assume that

the corresponding set of sequences of active fields, K = {k(1), ...,k(S)},
is not observed (it is hidden).

4.1. MMAP criterion

Since the active field labels K are missing, this fact suggests the
use of an EM algorithm to find a marginal maximum a posteriori
(MMAP) estimate of θ under some prior p(θ) = p(T )p(B)p(Σ);
formally,

θ̂ = argmax
θ

[∑
K

S∏
j=1

p(x(j),k(j)|θ)
]
p(θ) (5)

where p(θ) is the prior on the parameters. Recall that the sum
over all possible sequences of labels leads to an exponential growth
which can not be directly computed. Instead the EM method will
be used.

The EM algorithm is based on the conditional expectation of
the complete log-likelihood

log p(X ,K|θ) =
S∑

j=1

log p(x(j),k(j)|θ) (6)

where p(x(j),k(j)|θ) is given by (2). As is common in deal-
ing with missing labels, we use binary indicator variables, de-

fined as follows: each label k
(j)
t ∈ {1, ...,K} (the active field

at time t of trajectory j) is represented by a binary vector y
(j)
t =

(y
(j)
t,1 , ..., y

(j)
t,K) ∈ {0, 1}K , where y

(j)
t,l = 1 ⇔ k

(j)
t = l. With

this notation, the complete log-likelihood becomes

L = log p(X ,K|θ)

= C +

S∑
j=1

Lj∑
t=2

K∑
l=1

y
(j)
t,l logN (x

(j)
t |x(j)

t−1 +Tl(x
(j)
t−1), σ

2
l I)

+

S∑
j=1

Lj∑
t=2

K∑
l=1

K∑
g=1

y
(j)
t−1,g y

(j)
t,l logBg,l(x

(j)
t−1),

(7)

where C =
∑S

j=1 log p(x
(j)
1 ) + logP (k

(s)
1 ) is a constant.

4.2. The EM algorithm

The E-step aims at computing the conditional expectation of the
complete log-likelihood given in (7), given the current estimates

of the parameters θ̂, i.e., Q(θ; θ̂) ≡ E

[
L|X , θ̂

]
. This leads

to the computation of the conditional expectations with respect

of missing binary indicators y
(j)
t,l and product switching indica-

tors y
(j)
t−1,g y

(j)
t,l . These probabilities are obtained by a modified

forward-backward procedure, recall that the transition matrix is
not constant, but depends on the trajectories.

In the M-step, the estimates are updated according to

θ̂new = argmax
θ

Q(θ; θ̂) + log p(θ). (8)

The maximization, as well as the adopted priors, are obtained by
looking separately at the maximization with respect to each com-
ponent of θ = (T ,B,Σ). This study is provided in our previous
work, where we study this maximization in more detail, as well as
the adopted priors.

The update of the B and Σ are the same as in [4]. What is
different is the update of the vector fields T that depend on the
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model being used. After straightforward manipulation, i.e., deriv-
ing in order to A and zeroing the first term in (7), (see also (4)),
the M-step provides the following updates:

1. Translation: A = I, where I is the identity matrix

2. Rigid body: A is a rotation matrix, i.e. a unitary matrix
where A� = A−1 with the constraint, det(A) = 1. The
estimation is A = UV� obtained with through SVD, i.e.
R01 = UDV�

3. Euclidean similarity: A =

[
θ1 θ2
−θ2 θ1

]
where θ is a 2× 1

vector given by θ = (Tr(R11))
−1R�011, where 1 is the

unity vector, and Rij � 1
L−1

∑L
t=2 ωtx̃t−ix

�
t−j

4. Affine model: A = R01(R11)
−1.

5. EXPERIMENTAL EVALUATION

This section considers the application of the proposed model in
a real scenario shown in Fig. 1, with trajectories superimposed
and taken at UPC campus (Barcelona)1. The images were ob-
tained from a remote fixed network camera located at UPC cam-
pus. Thousands of images (≈ 1.3 × 105) were acquired corre-
sponding to 4 hours of recording at approximately frame rate 10
images/sec.2

Before applying the proposed model to estimate a set of mo-
tion fields, we need to extract the trajectories from the video se-
quences by tracking the pedestrians. For that purpose, we used
the Lehigh omnidirectional tracking system to detect regions, fol-
lowed by region association, as in [5]. The trajectories are then
projected onto a view orthogonal to the ground plane to enforce
viewpoint invariance. The total number of the trajectories consid-
ered is 270.

Fig. 1. (Left) Detected trajectories in UPC campus, (right) the

same set of trajectories, but each trajectory has a different color la-

bel according to the trajectory-class (activity). In this scenario the

following classes are considered (see right image): a1 → walk-
ing and stepping down the stairs, (magenta); a2 → walking along,

(yellow); a3 → crossing and stepping down the stairs, (green); a4

→ pass diagonally, (red); a5 → turning the campus (cyan).

To classify human activities, the generative model in (1) can
be cast into a maximum a posteriori classifier. Therefore, we con-
sider a training set {X (a), a = 1, .., A}, where A is the number

of different activities and X (a) is the set of trajectories belong-
ing to the a-th activity. Thus, we estimate A generative models

{θ̂(a)
, a = 1, .., A} using he EM algorithm described in Section

1UPC images were acquired in the scope of the EU project FP6-EU-

IST-045062 URUS - Ubiquitous Networking Robotics in Urban Settings.
2This low frame rate is due to the limitations of the cameras network

and due to the fact that it is not intended to store much data.

Table 2. Parameters initialization for the models.

parameter initialization

number of motion fields K {1, 2, ..., 8}
diagonal noise variances Σ {10−1, 10−2, 10−3, 10−4}
translation t of the vector field T random in [−0.1, 0.11]
transition matrix B bii = 1− K−1

10
, bij = 1− bii

4.2. Finally, given a new trajectory x, the MAP classifier is given
by

â(x) = arg max
a∈{1,...,A}

p(x|θ̂(a)
)P (a) (9)

where P (a) is the prior probability for activity a (we assume equiprob-

able classes), and p(x|θ(a)) is the probability density function of

the trajectory x under the model with parameters θ̂
(a)

.

5.1. Discriminative parameters selection

We now describe the procedure to automatically determine the
number of motion fields. As mentioned above, the framework is
fully described by the triplet θ = (T ,B,Σ). Besides, we also
have to specify the number of motion models K. To accomplish
this, the underlying assumption is that, K is estimated assuming
that the model is going to be used for a specific task: activity recog-
nition. Particularly, pedestrian motion is characterized by trajecto-
ries which are modeled by vector fields. The idea, is thus, to select
the generative model that achieves the best classification perfor-
mance. This reasoning is also applied for the remaining param-
eters in θ. Thus, the parameter selection is discriminative since
their choice will lead to the best classification accuracy.
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Fig. 2. (a) Classification accuracy for different number of motion

fields. Top row: Translation (left) Rigid Body (right) models. Bot-

tom row: Euclidean similarities (left), affine (right) models.

We used a training set that contains approximately 35% of
the trajectories for training, and 65% for test. From the training
set, 10% was used to estimate the model parameters θ and the
remaining to estimate the model order by cross validation.

Table 2 details how the model parameters are varied to per-
form the model selection. For each value of K, we consider sev-
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Table 3. Classification results of the parametric models for the five activities: a1 → walking and stepping down the stairs, a2 → walking
along, a3 → crossing and stepping down the stairs, a4 → pass diagonally, a5 → turning the campus.

Translation
a1 a2 a3 a4 a5

a1 70.59% 13.23% 16.18% 0% 0%

a2 10.42% 82.3% 0% 7.28% 0%

a3 9.62% 3.85% 80.77% 3.85% 1.91%

a4 1.19% 3.57% 2.38% 89.29% 3.57%

a5 0% 0% 0% 0% 100%

Rigid Body
a1 a2 a3 a4 a5

a1 77.94% 16.18% 5.88% 0% 0%

a2 7.29% 89.58 0% 3.13% 0%

a3 19.23% 1.92% 73.08% 5.77 0%

a4 1.19% 0% 0% 97.62% 1.19%

a5 0% 0% 0% 0% 100%
Euclidean Similarities

a1 a2 a3 a4 a5

a1 92.65% 2.94% 4.41% 0% 0%

a2 23.96% 65.63% 0% 1.04% 9.37%

a3 13.46 0% 84.62% 1.92% 0%

a4 0% 0% 0% 97.62% 2.38%

a5 0% 0% 0% 0% 100%

Affine model
a1 a2 a3 a4 a5

a1 75% 17.65% 7.35% 0% 0%

a2 5.21% 92.71% 1.04% 0% 1.04%

a3 23.08% 3.85% 67.31% 1.91% 3.85%

a4 2.38% 4.76% 1.19% 89.29% 2.38

a5 0% 0% 0% 0% 100%

eral noise variances (see 2nd line). This table also shows how we
set the initial values for the diagonal (bii) and non-diagonal (bij)
entries of the transition matrix allowing all kinds of transitions be-
tween vector fields at all space positions. The vector field T is
randomly initialized in the interval [−0.1, 0.1]. Therefore, a ve-
locity is randomly chosen and it is equal for every nodes in the
grid.

Using the above setup we performed, for each parametric model,
128 configurations of the EM (each of them with 4 different EM
initializations) to find the most appropriate number of motion fields.
Thus, a total of 128× 4 = 512 runs of the EM are performed.

Fig. 2 shows the performance of each parametric model with
the variation of the number of motion models K. From this fig-
ure, we conclude that for larger values of K the performance of
the translation and rigid body models improves. More specifically,
to achieve the highest performance, it is required to have K = 7
(translation) and K = 6, 7 (rigid body). Concerning the Euclidean
similarity and Affine models, we conclude that, now the best per-
formances are reached for lower values, i.e., K = 3,K = 4. This
is expected, since the simpler is the parametric model, the higher is
the number of motion fields required to represent the pedestrian’s
trajectories. Although not shown, the noise variances (see 2nd line
in Table 2) that lead to the best accuracy for all models is Σ = 0.1
for all the parametric models.

5.2. Human activity classification

This section presents statistical evaluation of the method concern-
ing the classification of the activities. A independent test set is
used for this purpose. The model parameters as well as the model
order are set to the values that provided best discriminative classi-
fication, i.e. (K = 6 for the translation and rigid body models, and
K = 4 for Euclidean and affine). The best value for the diagonal
noise variances is Σ = 0.1 for all models. Also, we run 4 different
initializations of the EM varying the parameter T.

The classification results are reported in Table 3, where the
mean values (over the 4 EM estimates) are shown. From this ta-
ble we see that all the parametric models provide quite remarkable
accuracy for surveillance application. More than, trying to select
the best model, the most important conclusion is that the class of
parametric models herein proposed is a useful framework for clas-
sifying pedestrian’s activities performed in far-field settings.

6. CONCLUSIONS

This paper presented a novel approach to recognize activities from
pedestrian’s trajectories. The framework is based on a class of
parametric motion models based on space-varying vector fields.
This approach allows representing a wide variety of trajectories
exhibiting space dependent behaviors. Also, it avoids a non-linear
dynamical model based representation, making the proposal sim-
pler. Experiments testify the usefulness of the approach, where
the main idea to bare in mind is that complex trajectories can be
modeled/classified using simpler parametric models depending on
small set of parameters (< 10).
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