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Abstract

In this dissertation, we present an example of an application to control a non-
linear system using the multiple models approach. The system has variable
dynamics, where a model can represent each dynamic. For each model a
controller is designed. As the system dynamics is externally manipulated, and
therefore it cannot be directly measured, we use of a supervisor to detect the
dynamic changes.

To control a nonlinear system, we first must identify some characteristics
that enable us to create a model. As a nonlinear system has various incremen-
tal dynamics depending on the operating point, we can identify a set of local
models, where each model corresponds to a specific operating point. With the
multiple models obtained from system identification, we can design a controller
formed by the patching of local controllers, each one designed for a correspon-
ding local model. The supervisor detects which model is similar to the behavior
of the current system and chooses the corresponding controller. In order to
ensure stability, a dwell time switching logic is used. The model offsets are
also estimated during the experiments. An original supervisor algorithm that
tackles the presence of unknown offsets is purposed and demonstrated exper-
imentally.

After the controllers and supervisor design, we implement an autonomous
system capable of following a reference, even when the dynamic changes. We
also implement adaptive control to this system, which enables the update of the
models and controllers when the currently observed behavior does not match
any of the known models.

Keywords

Nonlinear system; Multiple model; Multiple controllers; Supervisor; System
identification; Offset estimation.
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Resumo

Nesta dissertação, apresentamos um exemplo de uma aplicação para contro-
lar um sistema não-linear usando o método de modelos múltiplos. O sistema
tem uma dinâmica variável, onde cada dinâmica pode ser representada por
um modelo. Para cada modelo é projectado um controlador. Como a dinâmica
do sistema é manipulada externamente, e portanto não pode ser medida di-
rectamente, é usado um supervisor para detectar as mudanças na dinâmica.

Para controlar um sistema não-linear, primeiro devemos identificar algumas
características que nos permitiram criar um modelo. Como um sistema não-
linear tem várias dinâmicas incrementais dependentes do ponto de funciona-
mento, é identificado um conjunto de modelos, onde cada modelo corresponde
a um ponto de funcionamento específico. Com os modelos múltiplos obtidos a
partir da identificação do sistema, podemos projectar um controlador formado
pelo agrupamento de controladores locais, em que cada um corresponde a um
modelo local. O supervisor detecta qual o modelo mais semelhante ao com-
portamento actual do sistema e escolhe o controlador correspondente. Os
offsets do modelo também são estimados durante as experiências. Um algo-
ritmo original que aborda a presença de offsets desconhecidos é proposto e
demostrado experimentalmente.

Depois de projectar os controladores e o supervisor, implementamos um
sistema autónomo capaz de seguir uma referência, mesmo quando a dinâmica
altera. Também aplicamos controlo adaptativo a este sistema, o que permite
a actualização dos modelos e dos controladores quando o comportamento
actual do sistema não corresponde a nenhum dos modelos conhecidos.

Palavras Chave

Sistema não-linear; Modelos múltiplos; Controladores múltiplos; Supervisor;
Identificação de sistemas; Estimação de offsets.
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Chapter 1

Introduction

1.1 Motivation

Control systems are becoming more and more important nowadays, where
the demand for systems with more accurate, robust and faster performance is
growing more exigent day by day. Primary systems that previously assisted in
simple tasks now have become rather advanced, capable and essential tools,
indispensable in every area from industry to medicine and economy. Moreover,
we can project these systems to be autonomous, thereby implying a diversity
of ways to improve system performance.

A system can have one or more actuators and sensors. The actuators and
sensors are associated to the inputs and outputs of the system. Correspon-
ding data enable the system to be modeled and, afterwards, its performance
can to be predicted and controlled. As the knowledge about control systems is
expanding, a higher number of solutions are presented. When studying control
systems, we need to overcome many obstacles like uncertainty, nonlinearity,
time variation and complexity, which lead to several approaches and design
methods. Still, in order to have a reliable and quality outcome, there is a trade-
off when choosing how many approaches we use and the complexity of the so-
lution. If we choose a simple approach, the performance of the system model
can be underestimated and, thereby, unable to simulate the essential dynamic
of the system. If the approach is too complex, in addition to having an overes-
timated performance leading to an undesirable outcome, the manipulation of a
complex system itself is difficult for both designer and user.

Almost every system can be considered as nonlinear, even if they seem
really simple. Most of the times, there is a nonlinear behavior in these sys-
tems, whether in systems where the dynamic can change abruptly or in simple
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systems that seem close to being linear. Examples as a solar power plant [1],
patient anesthesia [2] and flight control [3], among others, all have a part of its
dynamic as nonlinear that must not be ignored and all need to be controlled.

In this project, we study the nonlinearity of a system and how we can con-
trol it, based on some reliable approaches. To identify a nonlinear system, a
possible approach to use is local model identification for further construction of
the global model. In this class of methods, different local models are identified
to represent the system dynamics around representative operating points and
then interpolate the local models when the system works around other points.
Then, we design a local controller for each local model and a supervisor to
identify the current model and activate the corresponding local controller. We
perform some real experiments on how the number of models influences the
controlled system performance and we also do some simulations with adaptive
control.

1.2 Formulation of the Problem

To identify a nonlinear system, a possible approach to use is local model identi-
fication for further construction of the global model. In this class of methods, dif-
ferent local models are identified to represent the system dynamics around re-
presentative operating points that are then interpolated when the system works
around other points.

The system to be identified is the Process Trainer PT 326 from Feedback
Instruments Ltd., linked to the computer through a PCI-MIO-16E-4 data acqui-
sition board, consisting in a laboratory scale air heating system. In the system
in study, the air passes through a tube where it is heated and its temperature
measured. The airflow can be changed through the manipulation of a throttle
opening.

Nonparametric and parametric identification are used to compute the sys-
tem model, after the analysis of some system characteristics. As we are deal-
ing with a nonlinear system, instead of one, we may consider its approxima-
tion by multiple models. Each model, named as local model, corresponds to
a specific operating point, around which the nonlinear system has a specific
dynamic.

With the models obtained, we are able to design a controller in order to
make that system perform as desired. The question to design a controller able
to control the nonlinear system is then raised. In this work, we try to answer
that question by using multiple controllers. Each controller is designed for a
unique local model and a switch circuit will choose which controller to use.

2



Because the system dynamics depends on an unknown variable, the flow
that can be manipulated but cannot be directly measured, a supervisor must be
used to estimate the current model. Therefore, we intend to have a controller
switch manipulated by the supervisor, in order to increase the performance.

The methodology used to design local controllers is the Linear Quadratic
Gaussian (LQG) controller. A Local Model Network (LMN) is also designed to
help to adjust the LQG controllers and supervisor parameters.

1.3 State of the Art

With the objective of studying, stabilizing and predicting the behavior of a large
variety of systems, researchers try to create new ways and methods to over-
come the problems encountered. Some introductory bibliography of these
studies and researches can be found in [4, 5, 6, 7].

Unlike linear systems, nonlinear systems are more difficult to deal with.
Sometimes, we can choose a region of the nonlinear system that works as a
linear system. In other cases, this way may be ineffective and we must deal with
the systems nonlinearity. In [8, 9, 10, 4, 11], some approaches are presented
to deal with nonlinear systems.

As mentioned before, one of the approaches for nonlinear systems is the
use of multiple local models [12, 11, 2, 13]. Various approaches to identify
systems take place in [4, 6, 7], where we can find the parametric and non-
parametric identifications. Some studies on the Process Trainer PT 326 can be
seen in [14, 15]. Still, no studies concerning the use of multiple dynamics or
different flows of this specific system were found.

There is a wide research on the design of controllers for modeled systems,
which can be found in [6, 7]. Some bibliography on the controller we use, the
LQG, is also in [16, 17, 18].

The use of adaptive control to achieve better performances on the controlled
systems has gained interest lately [19, 20]. The application of multiple models
with adaptive models can be a useful approach with vast applications in control
systems, as in [1, 21].

1.4 Main Contributions

Based on the importance of the utility of nonlinear systems on a vast number
of situations, the interest on improving the known approaches, like multiple
models, increase. In this thesis, we have as an objective to control a real
nonlinear system using the multiple model approach.
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First, we present some characteristics of the system such as noise, hys-
teresis and nonlinear behavior and then we present how to obtain each local
model. We present a method to group the models into a global model, in order
to simulate the system behavior. Moreover, we compute multiple controllers
to compensate the multiple models and we design a supervisor to detect the
current model.

The supervisor is based on two supervisors, where one compares the sys-
tem transients with the estimated models transients, named transient supervi-
sor. The other supervisor, named as offset supervisor, calculates the distance,
or offset, from the current system to the estimated models. Moreover, an origi-
nal method to estimate the offset for the estimated models is presented.

In addition, we demonstrate an example where we apply adaptive control,
with the performance achieved using the method mentioned before. The per-
formance is then tested when some models are missing.

1.5 Dissertation Outline

The dissertation is structured in the following chapters. After the introduction
chapter, where we introduce the problem and some contributions of this work,
we have chapter 2 where we present the equipment and its characteristics.

First, we present the theoretical mathematical model, as well as some so-
lutions for starting issues relating the sensor measurements. Then, we use
nonparametric and parametric identification to compute local models and, in
the last section, we present the offset estimation algorithm.

In the chapter 3 we propose to design local controllers with the Linear
Quadratic Gaussian (LQG) method and the supervisor to be a combination
of two supervisors, each comparing different characteristics of the system dy-
namic. After the design of the controllers, experiments are done to compare
the performance of the system with multiple controllers to a single one. More-
over, we do some experiments to compare the performance of the system when
using the supervisors individually and together.

In chapter 4 we present a brief implementation of Adaptive Control, where
we use the Recursive Least Squares (RLS) algorithm to estimate the cur-
rent model parameters. Simulations on the system performance are done and
analyzed when using less estimated models. The conclusion and future work
suggestions are given in Chapter 5.
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Chapter 2

Identification

2.1 Equipment

The plant considered in this project is an air heating system (figure 2.1). The air
atmosphere is drawn by a blower (on the left), passes through a heater (À) and
a tube (Á) before returning to the atmosphere. The process consists in heating
the air at a starting point u and measure its temperature T at a terminal point y
with a thermocouple sensor.

The airflow q can be manually manipulated by changing the throttle opening
(θ°) from 10° to 165° (degrees), which has an effect on system dynamic behav-
ior. A minimum throttle opening (θmin = 10°) corresponds to minimum flow and
a maximum throttle opening (θmax = 165°) to maximum flow.

2.1.1 Equipment Description

Specifications from the PT 326 manual [15] informs that both input and output
voltage have ranges from 0V to 10V (volts). The scale for the output tempera-
ture goes from 0°C to 80°C, but the controlled air temperature range is only from
30°C to 60°C. Furthermore, the air velocity v is indicated as being from 1 ft.s−1

to 10 ft.s−1, equivalent to values of vmin = 0.3048m.s−1 to vmax = 3.048m.s−1

in SI units. Finally, the range of the heat power goes from 15W to 80W (which
will be important for further analysis).

In figure 2.1 we indicate the distance from the heater to the sensor as l =

0.279m and the diameter of the tube as d = 0.046m. The tube has the form of
a cylinder, where the section can be calculated with A = πd2

4 = 16.6× 10−4m2.
Therefore, we are able to calculate the airflow q = Av, which means its range
goes from qmin = 0.507× 10−3m3.s−1 to qmax = 5.07× 10−3m3.s−1.
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Figure 2.1: Scheme of air heating system used on the experiment.

We have also the air characteristics in the atmosphere, like the room tem-
perature Ta, the air density ρ and the air specific heat capacity c that was not
measured.

2.1.2 Process Physical Model

The heat process in analysis can be divided in two parts, as figure 2.1 shows.
Part À is similar to the oil heating in a solar collector field, where the exchange
of energy can be described by

CA∆x
[
T (x, t+ ∆t)−T (x, t)

]
= Cq∆t

[
T (x, t)−T (x+ ∆x, t)

]
+P (t)∆t , (2.1)

where C = cpρ is the heat capacity of the air, the temperature at the heater exit
is T , the flow of air inside the tube is represented by q and P is the power of the
heat injected in the system. The space and time variables are represented as x
(in meters) and t (in seconds). Appendix A shows how to get to equation (2.1).

To analyze the process for different flows, we use a low order transfer func-
tion. We assume ∆x = lV as a constant and then we can express the air
volume heated as V = AlV , also we have the input power P (t) = Kuu(t)

where u(t) is the input voltage and Ku is the gain.
Having ∆x constant, the temperature T (x, t) no longer depends on x and

can be written as T (t). Dividing equation (2.1) by ∆t and making ∆t → 0 we
get the following equation in [W ]

CV
∂

∂t
T (t) = Cq

[
Ta(t)− T (t)

]
+Kuu(t) . (2.2)

Assuming negligible the heat losses and that τ = Al
q is the delay from the

heater to the sensor, in part Á the temperature at y is the same as T delayed
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by τ seconds, or rather
y(t) = T (t− τ) . (2.3)

Applying the Laplace transform to equations (2.2) and (2.3) and dividing the
first by CV we can get tosT (s) =

q

V

[
Ta(s)− T (s)

]
+
Ku

CV
U(s)

Y (s) = e−sτ T (s)
. (2.4)

Putting together the two equations in (2.4) and assuming Ta(s) = 0 we have

Y (s) =

Ku
Cq e

−sAlq

V
q s+ 1

U(s) =
Ke−sτ

Tps+ 1
U(s) . (2.5)

This is the transfer function of a heating and ventilation system. The dynamic
process is affected by the airflow q in the way that, when it increases, the gain
K, time constant Tp and delay τ decreases. Opposite to the time constant Tp,
we have the bandwidth LB which increases with the airflow.

In our situation, Ta is non-zero, but we can assume it is constant during the
process, which generate an offset on the output, but without influencing the
incremental dynamic of the system.

2.1.3 Experimental Preparation

All experiments were performed at room temperature between 25°C and 30°C,
since greater variations can influence directly the measured values, thereby
changing the system behavior and a model misidentification.

Each experiment consists in the generation of an input signal to be sent
to the heater and the data acquisition of the temperature measured by the
sensor. In the beginning, the system must be turned on and kept at constant
flow (θ = 40°) and an input of 5V for 30 minutes, as a warm up, to drive the
system temperature to a required condition.

There is also an overheating problem if the system works with high temper-
atures for too long and data acquired in these conditions are undesirable. To
avoid the waiting time for the system to cool down, we start by having most
experiments happening in low temperatures.

Moreover, we encountered an irregular perturbation in the signal that is
shown in figure 2.2, where we can see six look-like peaks without a regular
period. These peaks can greatly corrupt the noise characteristics, such as
mean, variance and autocorrelation. Since it seems a nonlinear perturbation,
it can extend to some errors in identification analysis, especially in parametric
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Figure 2.2: Stationary signal for maximum flow and input at 0V .

identification, whereas it is expected linear noise.
An issue coming from this problem could be when using a lower sample

frequency, where bad samples belonging to the peaks could be collected, in-
fluencing subsequent analysis. Figure 2.3 shows how this problem may be
overcome with a median filter.

To prevent this situation we need to filter the signal for any further data
acquisition. Section 2.1.4 have more information about the filter used.

2.1.4 Filter Design

As saw in section 2.1.3, we are facing nonlinear perturbations, which must be
filtered to avoid errors in the upcoming identification. We can guess a nonlinear
filter could be better than a linear filter, but we try both to figure out which one is
better in terms of outlier rejection as well as less delay induced. The expected
signal (the one to be compared), is a signal without peaks, computed by a
median filter.

We try a linear low-pass filter in the form Hc(s) = 1
Tcs+1 with the cutoff

frequency ωc = 1
Tc

. Our objective is to find the cutoff frequency that better
fits the expected signal, with the lowest possible delay. Therefore, we have a
system with the real output signal as the input, Yc(s) and the output is the signal
expected, Y (s), and we have the input-output relation Y (s) = Hc(s)Yc(s).

For the nonlinear filter, we use a moving median filter with windows of size
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Figure 2.3: The real signal (blue), signal resampled with sample frequency of
100Hz (red), and signal filtered by moving median with order 5 resampled with
sample frequency of 100Hz (green), for maximum flow.

3, 5 and 7, each one corresponding to a delay of 1, 2 and 3 samples. Then,
we compute the error between the expected signal and each filtered signal to
obtain figure 2.4, where we can compare this errors. Based on the result, we
can conclude that the moving median filter with a window of 5 samples is the
best choice, and will be used from now on.

We can also look to the Fourier transform in figure 2.5 where we can iden-
tify that every multiple of 100Hz highlights in the entire spectrum for the non-
filtered signal and disappears for the filtered signal. Also 50Hz and 150Hz

appears that could correspond to electrical grid frequency.
The 50Hz noise does not have much effect on the signal as the perturba-

tion mentioned before, and to avoid more delay, we stop here. If necessary,
for upcoming analysis, the signal can be filtered with a low-pass filter with a
convenient cutoff frequency depending on the bandwidth of the system.

2.1.5 Sensor Characteristics

Before proceeding to identification we need to analyze some characteristics
about the temperature sensor, such as noise and the relation between the elec-
tric voltage and the temperature measured.

Using the temperature scale from the equipment and evaluating the output
voltage, we can obtain the sensor voltage-temperature relation. The result, as
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Figure 2.4: Error of low-pass filtered and moving median filtered signals for
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Figure 2.5: Spectrum of unfiltered and filtered signal using the Fourier trans-
form for maximum flow.

displayed in figure 2.6, shows that this relation is nonlinear (blue1). However,
we can have a linear approximation (green) from 30°C to 50°C, that is within

1 The blue signal is computed with the ‘pchip.m’ function in Matlab.
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the controlled temperature range denoted by the manufacturer, which means
that only experiments with output values above 3V can be used.

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

Relation of temperature with output voltage

Amplitude [V]

T
e

m
p

e
ra

tu
re

 [o
C

]

 

 

Measured points

Pchip function

Linear fit

Figure 2.6: Relation between voltage and temperature at the output.

To know how the output signal is affected by noise, we analyze the station-
ary signal in time domain and the autocorrelation, for minimum and maximum
throttle opening. Figure 2.7 shows this two signals, where we can notice that
the left scale (blue) is higher than the right scale (green), having the signal an
higher variance for minimum flow.

Performing the histogram and autocorrelation for the two signals, we get
figures 2.8 and 2.9. Analyzing the histogram and autocorrelation for both sig-
nals, we can state that we are dealing with correlated noise, thus excluding the
presence of white noise. In addition, the standard deviation is 124.7mV and
16.5mV for minimum and maximum flows respectively.

2.2 System Identification

To be able to control a system, we need a model that represents its dynamic.
We model the global nonlinear system by modeling the dynamic of each local
model, corresponding to a certain regime of values for the throttle opening, and
then by patching them together.
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Figure 2.7: Noise signal for minimum (blue) and maximum (green) flows.
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Figure 2.8: Histograms of noise to minimum and maximum flows.

2.2.1 Modelling the Global System

To know which are the values of throttle openings that we need to choose
to proceed to identification analysis, we first need to know how the throttle
opening affects the flow, or more precisely, how it affects the process dynamic.
For that we input a ramp signal with positive and negative slope, to know the
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Figure 2.9: Autocorrelation of noise to minimum and maximum flows for the
first 20 samples.

temperature hysteresis effect, that is shown in figure 2.10.
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Figure 2.10: Temperature hysteresis for a throttle opening of 130°.

Here we can see the differences in the heating and cooling processes that
can be explained by the different conditions that each one goes. The cooling
process depends on the heat transferred from the heater and from the heated
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equipment to the air in the tube, while the heating process only depends on the
first (and that is why the output is lower for the same input voltage). However,
this effect seems too small and to simplify, is not taken into account.

Then, we injected at the input a ramp signal to know the static characteristic
for throttle openings starting at 10°, every 10°, to 150° and including 165°, as
shown in figure 2.11. We can observe that, for small flows, the output increases
to higher values until it saturates (due to equipment restriction), and for large
flows, the dynamic have slight changes. Based on the static characteristic we
chose the input range between 0.5V and 2.5V , since a higher input leads to
output saturation and around 0V there is also a saturation due to the minimum
temperature (and is less controllable).

0 2 4 6 8 10
3

4

5

6

7

8

9

10

Static characteristic of temperature

Input voltage [V]

O
u

tp
u

t 
v
o

lt
a

g
e

 [
V

]

 

 
10º

20º

30º

40º

50º

60º

70º

80º

90º

100º

110º

120º

130º

140º

150º

165

Figure 2.11: Static characteristic of temperature for sixteen throttle openings
(the order of the legend corresponds to the order of signals at 0V ).

Also on figure 2.11, we can notice that, for the input of 0V , the different
outputs are decreasing with the increasing of the throttle opening (or flow).
This happens because the minimum heat power input is 15W , which means
the air is being heated even for input at 0V , and the output values follows the
relation of gain K in equation (2.5).

After choosing the input range, we generate a squared wave signal, be-
tween 0.5V and 2.5V , to inject in the system and estimate the model, to
match equation (2.5), using the Prediction-Error Minimization (‘pem.m’) method
from Matlab System Identification tool (Ident) [4]. Figure 2.12 represents the
computed values for each throttle opening, and based on the results, we can
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choose how many models will cover the global system, including which throttle
openings will be used to identification.
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Figure 2.12: System parameters for each throttle opening, according with
equation (2.5).

Analyzing the three graphics in figure 2.12, we can identify that every pa-
rameter values decreases when the flow increases, as expected from equa-
tion (2.5). We can also verify that for higher flows, the parameters differ less
than for smaller flows, which means that small throttle openings have greater
differences from their neighbor than higher throttle openings. Based on this
and for identification purposes, we choose three throttle openings in a way that
better covers the global system that are 30°, 70° and 130°.

To perform identification, nonparametric and parametric methods imple-
mented in Ident were used. That allow us to get the bandwidth and the local
model for each throttle opening (θ°) of the process, each to be represented by
a discrete transfer function, as figure 2.13 shows.

u(k) yi(k)Bi(q)
Ai(q)

- -

Figure 2.13: Model of system to be identified.
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2.2.2 Nonparametric Identification

This section aims at identifying the main aspects of the system such as band-
width, gain and delay to find the appropriate sample frequency for the paramet-
ric identification. For this purpose we used spectral analysis and correlation
analysis in order to obtain the frequency and time responses [5].

Since the system is stable in open loop, the design and identification of a
closed loop system is discarded for simplicity. The purpose is then to achieve
a discrete model with the behavior equivalent to the real system.

A sample frequency of 1000Hz is applied to the input of the heating system
and the responses of the system temperature are observed, for the three flows
considered. Figure 2.14 shows the response of the three chosen throttle open-
ings for the same square wave input signal. We can observe that, for the same
input, each output signal has a different offset, which is known as the operating
point.
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Figure 2.14: System response to square wave input signal for the three throttle
openings and sample period of 1ms.

For further analysis, the average of each signal is subtracted, to eliminate
the offset. The time response (correlation analysis) is calculated from a set
of samples containing a step example within the square signal, as illustrated
in the figure 2.15. The frequency response (spectral analysis) is calculated
for the square input signal with the method Spectral Analysis Estimates with
Frequency Dependent Resolution for 6000 frequencies (figure 2.16).
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Figure 2.15: System step response obtained by correlation analysis.
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Figure 2.16: System frequency response obtained by spectral analysis.

From the observation of figures 2.15 and 2.16, we can check once again the
differences and the relationship between the results and the variation of airflow,
i.e., when increasing airflow, bandwidth increases and the time constant, gain
and delay decrease. This influence of the airflow is the reason why the global
system cannot be considered linear.
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Table 2.1 presents the values of the delay, gain and bandwidth, plus the
sampling frequency which is explained below.

The delay is calculated as the time interval from the time 0 s (time of initiation
of the step) until the start of the system response. Figure 2.17 is a close view of
the initial part of the step response unit (figure 2.15) to assist the measurement
of the delay.
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Figure 2.17: System step response zoom from figure 2.15.

The gain is calculated by dividing the amplitude of the output signal, of the
square wave response, by the input signal amplitude (figure 2.14).

The frequency where the response decays 3 dB (figure 2.16) is the band-
width and from it we can estimate the appropriate sample frequency (fs) for the
system parametric identification. First we calculate the frequency of the band-
width fLB = LB(rad.s−1)

2π Hz. Then a practical rule used is that the sampling
frequency should be about 10 to 30 times the bandwidth (−3 dB) of the system
under analysis [6], which means that

10 fLB ≤ fs ≤ 30 fLB . (2.6)

All the values mentioned before are shown in table 2.12. The last column
presents a range of sampling frequencies appropriate for each throttle opening
degree, to later proceed to the parametric identification.

2 The symbol ∼ means the value is approximated and could not be precisely mea-
sured.

18



Table 2.1: Values of delay, gain, bandwidth and corresponding frequency and
in the last column the range to the sampling frequency.

θ° Delay[ms] Gain LB[rad.s−1] fLB [Hz] 10fLB ≤ fs ≤ 30fLB

30 ∼ 0.25 0.84 1.581 0.252 2.52 ≤ fs ≤ 7.55

70 ∼ 0.15 0.57 2.057 0.327 3.27 ≤ fs ≤ 9.82

130 ∼ 0.10 0.40 2.369 0.377 3.77 ≤ fs ≤ 11.31

The range for choosing a sampling frequency suitable to operate in the
global system is 3.77Hz ≤ fs ≤ 7.55Hz corresponding to a sample period of
0.13 s ≤ hs ≤ 0.27 s. However, we try different sampling periods hs to verify
what is really the best one.

Being the maximum bandwidth LBmax = 2.37 rad.s−1, we can put, after the
moving median filter, a low-pass filter with the cutoff frequency a decade above
the bandwidth, i.e., fLP = 30 rad.s−1 > 23.7 rad.s−1 = 10LBmax.

We can measure the flows that we are dealing with for more information,
knowing q = Al

τ and using A and l mentioned in section 2.1 and the delay
obtained, we have q30o ≈ 1.85 × 10−3m3.s−1, q70o ≈ 3.09 × 10−3m3.s−1 and
q130o ≈ 4.63 × 10−3m3.s−1, which values are within the flow range presented
also in section 2.1.

2.2.3 Sample Frequency Analysis

Knowing the bandwidth for each throttle opening, we can apply a PRBS signal
with a sample period of 1ms to the input, where the band B of the signal is
lower than the lowest time constant, B = 0.4 < LBmax

−1 = 2.37−1 = 0.42.
With both input and output, we can estimate the ARMAX model, with orders
[na nb nc nk] such that

y(k) + a1 y(k − 1) + . . .+ ana y(k − na) =

= b1 u(k − nk) + b2 u(k − nk − 1) + . . .+ bnb u(k − nk − nb + 1) +

+ e(k) + c1 e(k − 1) + . . .+ cnc e(k − nc) , (2.7)

where y(ξ) and u(ξ) are the output and input samples obtained for the system
performance, e(ξ) is white Gaussian noise and aξ, bξ and cξ are the model
parameters to estimate.

We resampled the 1ms sample time PRBS signal to different sample rates
[h1, h2, ... , hs, ... , hn] and estimated the parameters of the ARMAX model with
orders [212nks ] for each one. The delay parameter needed to be calculated for
each sample time, as nks = fix

(
delayθ
hs

)
+ 1, i.e., the delay order must be such

that the result delay (hs × nks ) are the closest possible, for different sampling
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periods. An example is, with delay70o = 0.15 s, h1 = 0.1 s and h2 = 0.05 s, the
delay nk would be nk1 = 2 and nk2 = 3, which means a result delay of 0.2 s

and 0.15 s respectively.
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Figure 2.18: Model errors for various sampling periods for each throttle opening
used and sum of errors for each sampling period.

Figure 2.18 presents the results of the errors for each throttle opening (blue,
green and red), and the sum of errors of each sample period (black), where we
can conclude the less error is attain for sampling periods between about 0.15 s

and 0.5 s. This result can be explained for bigger sampling periods, because
even the lower delay achievable can be much higher than the real delay, influ-
encing the parameters estimation, and for smaller sampling periods, because
the orders used [2 1 2nk] may be too low for the model to recognize and esti-
mate the incremental dynamic of the system.

Since this method was not performed to every ARMAX orders nor for every
sampling periods, alone it is not enough to choose a sample time. Neverthe-
less, since this result and the sampling period range obtained in section 2.2.2
are consistent, we can choose thereby the sampling period as 0.2 s, which
means a sampling frequency of 5Hz.

2.2.4 Parametric Identification

For parametric identification of the system the ARMAX structure of equation (4.2)
is also chosen, since it leads to a better model with correlated noise than ARX.
To estimate the best model, a 400 s duration PRBS signal is chosen, where we
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use the first 300 s for parameter estimation and the last 100 s for validation. With
this we intend to approximate the response of the estimated model to the real
system response. The sample time used is 0.2 s for the input and output signal,
while the command signal to the process is kept at 1ms.

Several orders of the ARMAX model [na nb nc nk] were used, limiting na =

nc, and tested several values for na and nb between 1 and 3 (above 3 it can
overestimate the noise) and nk between 0 and 3 (where 3 corresponds to a
delay of 0.6 s).
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Figure 2.19: Model and simulated output to PRBS validation signal, with the
best fit for a throttle opening of 70°.

Table 2.2 presents the model parameters and order corresponding to the
best fitting percentage for each throttle opening degree. The offset is the oper-
ating point around which each model is computed. When analyzing the various
models, some models had best fits than the ones in table 2.2, but they had a
low performance in step response and were discarded. By observation of fig-
ure 2.19, the response of the ’amx3231’ model appears to be a reasonable
approximation of reality.

From table 2.2, we can verify that the order of poles and zeros is respec-
tively 3 and 2, for every throttle opening and only the delay changes.

For the best analysis of each throttle opening, figure 2.20 shows the simu-
lated response to the unit step. We can see that the first 2.5 s are very similar
to the signals in figure 2.15, and the gain and delay values of the estimated
models are also close to the ones in table 2.1.
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Table 2.2: Parameters and percentage of best fits of the ARMAX model, to
each throttle opening used, including the offset.

θ Best fit Order Offset ARMAX Model
(%) [na nb nc nk] b [V ] A(q)y(k) = B(q)u(k − nk) + C(q)e(k)

A(q) = q3 − 1.1310q2 + 0.3862q1 − 0.0596

30° 88.43 [3, 2, 3, 2] 6.54 B(q) = 0.0562q1 + 0.1103

C(q) = q3 − 0.2480q2 + 0.2360q1 + 0.0983

A(q) = q3 − 1.0264q2 + 0.3446q1 − 0.0576

70° 91.23 [3, 2, 3, 1] 5.25 B(q) = 0.0148q2 + 0.1268q1

C(q) = q3 + 0.4755q2 + 0.3112q1 + 0.2060

A(q) = q3 − 0.8513q2 + 0.1953q1 − 0.0247

130° 92.96 [3, 2, 3, 1] 4.32 B(q) = 0.0276q2 + 0.0981q1

C(q) = q3 + 0.5694q2 + 0.4129q1 + 0.2838
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Figure 2.20: Real (from figure 2.15) and simulated step response unit for the
best ARMAX models calculated.

Considering that a fitness value above 88% is a reasonable approximation
and, as such, sufficient to bring a proper system identification, we can assume
that the models obtained are acceptable and can be used for further work.
Moreover, when using the models obtained in table 2.2, we must consider the
offset to have a correct and complete model of the system, for each throt-
tle opening. Furthermore we can change and add models later, if more are
needed.

Comparing both models identified with a sample time of 1ms and 0.2 s in
gain, time constant and delay, we find that they are very similar, achieving the
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objective of having a discrete system model identical to the real continuous
one.

If taken in isolation, these models may not be suitable for control, since the
dynamics for a low throttle opening can be very different from the one a little
below or above, and a controller projected to the first may not work for the
second.

2.3 Controller and Supervisor Design Preparation

In the next sections 2.3.1 and 2.3.2, to complete the system identification, we
convert the obtained ARMAX model to a discrete state space model, in order
to verify controllability and observability characteristics and to design the con-
troller. Furthermore, in order to perform simulations and compare them with to
the real process performance, we design a Local Model Network (LMN).

2.3.1 Discrete State Space Model

The system under study was identified with a ARMAX structure in section 2.2.4
(table 2.2), from where we can obtain a discrete transfer function model for
each value of the throttle opening as

M ⇒ y(k) =
B(q)

A(q)
u(k) =

b1q
n−1 + b2q

n−2 + · · ·+ bn
qn + a1qn−1 + · · ·+ an

u(k) , (2.8)

where M is the model itself. To represent each of models we use Mj with
j = 1, . . . ,m and m = 3. We denote the current model by Mi with index i ∈ M
where M = {1, . . . ,m}. The local models M1, M2 and M3 correspond to the
throttle openings of 30°, 70° and 130°, respectively.

Actually, each of these models have a respective offset b, so the model in
equation (2.8) needs to be rewritten as

M ⇒ y(k) =
B(q)

A(q)
u(k) + b , (2.9)

where each offset b has the values from Offset in table 2.2.
For further work, we need to convert the discrete transfer function from

equation (2.9) to a discrete state space model, to have

M ⇒

 x(k + 1) = A′x(k) +B′u(k)

y(k) = C ′x(k) +D′u(k) + b
, (2.10)

where x ∈ Rn×1 is the state, u(k) ∈ R is the input variable, y(k) ∈ R is the
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measured output and b ∈ R is the offset. The matrices of the state space
model are A′ ∈ Rn×n, B′ ∈ Rn×1, C ′ ∈ R1×n and D′ ∈ R.

Using the canonic realization, each matrix for each state space model can
be determined with

A′ =

[
−a1 −a2 · · · −an−1 −an

In−1 0

]
, B′ =


1

0
...
0

 , (2.11)

where Ij is a j × j identity matrix. The matrices of the output equation are

C ′ =
[
b1 b2 · · · bn

]
, D′ = 0 . (2.12)

Before proceeding to controller design, we check if each model is control-
lable and observable. Being C and O the matrices of controllability and observ-
ability such that

C =
[
B′ A′B′ A′

2
B′ · · · A′

n−1
B′

]
, O =


C ′

C ′A′

C ′A′
2

...
C ′A′

n−1

 , (2.13)

the system is controllable if n columns of C are linearly independent and is
observable if n rows of C are also linearly independent, i.e., rank(C) = n and
rank(C) = n.

The models considered are described in the appendix B. All these models
are controllable and observable.

2.3.2 Local Model Network design

To be able to perform simulations similar to the real process performance, we
need to combine the models obtained in previous work with some weighting
function relative to the respective probabilities of each model. This nonlinear
model is known as Local Model Network (LMN).

Figure 2.21 shows the block diagram of the LMN model, where u is the
command input, in volt [V ], and θ° is the throttle opening, in degree. The
weights wj depend on the throttle opening θ°,Mj are the models early obtained
and bj are the output offsets for each model.

As we discussed in section 2.2.4, each model is obtained for a single throttle
opening, corresponding to a single flow. Based on this, we defined a probabil-
ity function in the throttle opening domain for each model, as shows (a) from
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Figure 2.21: Block diagram of the Local Model Network.
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Figure 2.22: Probability (a) and weight (b) signals depending on the throttle
opening.

figure 2.22.
The probability functions follow the two-sided Gaussian distributionpa(θ) = e

− (θ−µa)2
σab2 , µb < θ ≤ µa < µc

pa(θ) = e
− (θ−µa)2

σac2 , µb < µa ≤ θ < µc

, (2.14)

where µa is the mean of the Gaussian, σab and σac are the left and right stan-
dard deviations, and a, b, c ∈M are different models. The mean values (µ) are
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the degrees of each throttle opening 30°, 70° and 130°. The standard deviations
are computed through the distance from consecutive means divided by 5, i.e.

σab =
|µa − µb|

5
= σba , σac =

|µa − µc|
5

= σca . (2.15)

The weight is computed by normalizing the probability in plot (a), resulting
in plot (b) of figure 2.22, where wj = ||p1, . . . , pm||. Through equation (2.15),
we make sure that the weights have the value of 1 where the probability is 1,
i.e., w1(θ = 30°) = 1.

For completeness, we also add a low-pass filter, (see appendix D) with
λ = 0.95, to the θ variable in order to simulate the manual manipulation effect.
Figure 2.23 shows the throttle opening during the simulation, as well as the
weight function results. The simulated process performance can be seen in
figure 2.24, where we have the simulated output (magenta) with the estimated
models output (blue, green and red).
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Figure 2.23: Throttle opening (black) and weights values (blue, green and red)
during LMN simulation.

The real process performance is shown in figure 2.25, where the throttle
opening θ is manually changed each 50 s in the same order as in figure 2.23.
We can see that the simulation performance comes close to the real one, even
with the low precision of throttle opening manual manipulation.

Despite that, we observe that the overheating of the plant pipe affects the
offsets of all models over time. From this experiment we conclude that, for each
model, there is a variable offset, caused by the overheating effect. Moreover,
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Figure 2.24: Simulated output (magenta) with LMN model and the simulated
throttle opening actuation from figure 2.23. Output simulation for the three
models in blue, green and red.
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Figure 2.25: Real output (magenta) with throttle opening manual manipulation
and output simulation for the three models (blue, green and red).

we may assume that there is a relation between the offsets, which means that
when the offset of model M1 increases, then the offsets of M2 and M3 also
increases.
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We can also observe that, in the last 100 s, where the real output goes from
M1 toM3, the difference between the real output and the corresponding models
is nearly the same. Therefore, this led us to guess that the offset variation is
equal in every model for each instant in time. Section 2.4 presents a method in
order to overcome this problem.

2.4 Estimation of the Offsets

During the experiments with the physical system, we realized that an over-
heating effect induces to an increase of the output temperature, leading the
real output to diverge from the simulated outputs. We think that this effect in-
fluences the output offset for the complete throttle opening range. Therefore,
we need to analyze how the overheating affects each model and how will we
compensate it.

Observing figure 2.25, we focus on how the offset evolves considering the
three models separately. Figure 2.26 presents our opinion, where we observe
a constant increase of each model offset.
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Figure 2.26: Hypothesis of the models offsets (black) respective to the real
output, real output (magenta) with throttle opening manual manipulation and
output simulation for the three models (blue, green and red).

Therefore we confirm that, not only the overheating affects the offsets of
the global system, but also that this influence is similar for the three offsets of
the models. Moreover, we can assume that the distance between the models
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offsets is always constant, even when the overheating happens.
Since the overheating dynamic is slow, we can estimate the offset on-line

[2], with

b̂i(k) =

k∑
j=0

αi(j)βi(j)

k∑
j=0

βi
2(j)

, (2.16)

where i is the current model index and

αi(k) = −Ai(q)
ωi(q)

y(k) +
Bi(q)

ωi(q)
u(k) , βi(k) = −Ai(q)

ωi(q)
u−1(k) , (2.17)

with Ai(q) and Bi(q) the numerator and denominator from the transfer function
in equation (2.9). We make the polynomial ωi(q) = qn, where n is the order
of Ai(q), to have a causal transfer function. The u−1(k) denotes the unit step
function starting at k = 0.

By adding a forgetting factor λb to equation (2.16) we get

b̂i(k) =

k∑
j=0

λk−jb αi(j)βi(j)

k∑
j=0

λk−jb βi
2(j)

, (2.18)

with the value λb = 0.4 chosen. Appendix F shows how to deduce equa-
tion (2.18).

Still, equation (2.18) can only calculate one offset, corresponding to the
current model, and does not calculate the offsets of the three models needed.
However, as we conclude from figure 2.26, the distance between the models
is constant, which means that the variance between the current offset and the
initial offset is equal for the three models.

Therefore, if we know the initial offsets b̄j and the current model index i,
we are able to compute the offsets of the three models preserving the distance
between them. We use the offset values from table 2.2 as the initial offsets b̄j .

Considering this, first we compute the offset variation for the current model
as

∆bi(k) = b̂i(k)− b̄i , (2.19)

where b̄i is the initial offset of the current model Mi. Then, each model offset
is calculated with

bj(k) = b̄j + ∆bi(k) , j = 1, . . . ,m , (2.20)
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being b̄j the initial offsets. We can verify that when j = i, the estimated offset
is simply bi(k) = b̂i(k), but for j 6= i, we have bj(k) = b̄j + b̂i(k) − b̄i, where
b̄j − b̄i is the constant difference between the initial offset of the models.

For example, if we are estimating the offset of the current modelM2, defined
as b̂2(k), we can calculate the offset variation as ∆b2(k) = b̂2(k) − b̄2. We
can obtain the current model offset with b2(k) = b̄2(k) + ∆b2(k), where we
can easily see that b2(k) = b̂2(k). The offsets of the models M1 and M3 are
computed as b1,3(k) = b̄1,3(k) + ∆b2(k), because the offset variation ∆b2(k)

is the same in all the models.
When the current model switches, an abrupt change can happen in the

offset estimation. To avoid this, we apply a low-pass filter (see appendix D)
with λ = 0.98. Both λ and λb were only adjusted after the implementation of
the autonomous system in section 3.3. Further in section 3.3, we study the
influence of λ in the offset estimation.
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Figure 2.27: Real output (magenta) with throttle opening manual manipulation
and output simulation with offset estimation for the three models (blue, green
and red).

Figure 2.27 shows the experiment in figure 2.25 with offset estimation,
where it is possible to see that the model estimations become closer to the
real signal, having a better match during the experiment. More important, the
estimation is accurate when the throttle opening changes to another region.
However, the model estimation presented in figure 2.27 is only reliable if we
know the current model Mi in use.
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Chapter 3

Controller and Supervisor
Design

3.1 Linear Quadratic Gaussian Controller Design

The type of controllers chosen for this project are the Linear Quadratic Gaus-
sian (LQG) controllers. A LQG controller can be obtained with the combination
of a Linear Quadratic Regulator (LQR), and a Kalman filter1 (KF) that can be
individually computed, based on the separation principle [7]. The offset b is
discarded in this section.

In this project we intend to use multiple controllers, which will involve con-
troller shifting that can create switching peaks in the command action. To avoid
that, we chose to put an integrator after the controller switch [22], leading us to
assume the integrator as part of the process, and design the LQG controller to
this new process.

Figure 3.1 represents the LQG controller, where the LQR and the KF are
shown, together with the process augmented with the integrator mentioned.
The switch block will be implemented between the LQG controller and the inte-
grator, on the δu signal (see section 3.3).

The state space model of the process with integrator is obtained from the
process state space in equation (2.10), with b = 0, and the integrator equation
u(k + 1) = u(k) + δu(k) that leads to[

x(k + 1)

u(k + 1)

]
︸ ︷︷ ︸

xa(k+1)

=

[
A′ B′

0 1

]
︸ ︷︷ ︸

Aa

[
x(k)

u(k)

]
︸ ︷︷ ︸
xa(k)

+

[
0

1

]
︸ ︷︷ ︸
Ba

δu(k) , (3.1)

1 Or Linear Quadratic Estimator (LQE)
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with output

y(k) =
[
C ′ 0

]
︸ ︷︷ ︸

Ca

[
x(k)

u(k)

]
, (3.2)

where xa is the augmented state, Aa, Ba, Ca are the augmented matrices and
δu is the incremental command action from LQG controllers.

To design the LQG controller, we assume the plant to be described by the
discrete linear time-invariant system given by equations (3.1) and (3.2), includ-
ing the white Gaussian system noise w and the white Gaussian measurement
noise v, resulting in xa(k + 1) = Aaxa(k) +Baδu(k) + w(k)

y(k) = Caxa(k) + v(k)
. (3.3)

The quadratic cost function to minimize is

J(δu) = lim
N→∞

N−1∑
k=0

(
e2(k) +R [δu(k)]

2
)

, (3.4)

with e(k) = r − y(k) the tracking error and R > 0 a weighting matrix. Since
y2 = xa

TQxa it is concluded that Q = Ca
TCa. We make N → ∞ to have an

infinite-horizon time-invariant LQG problem.
The discrete-time LQG controller is represented by x̂a(k + 1) = Aax̂a(k) +Baδu(k) + L

(
y(k)− r︸ ︷︷ ︸
−e(k)

−Cax̂a(k)
)

δu(k) = −Kx̂a(k)
, (3.5)

where the first equation refers to the KF and the second one to the LQR. The
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observer gain L and regulator gain K are given by L = AaSCa
T (CaSCa

T + V )
−1

K = (Ba
T
PBa +R)

−1
Ba

TPAa
, (3.6)

which are computed by Matlab functions ‘dlqr.m’ and ‘kalman.m’ respectively.
As the LQG controller has a high overshoot, we can apply the procedure

Aa → αAa , Ba → αBa , (3.7)

where α ≥ 1, that constrains the closed loop poles to be inside a circle of radius
1/α. This procedure is only used to calculate the regulator gain K. The values
for the gains obtained are described in appendix C. The matrices S and P are
the solutions of the discrete time algebraic Riccati equation S = Aa

(
S − SCaT (CaSCa

T + V )
−1
CaS

)
Aa

T +W

P = Aa
T
(
P − PBa(Ba

TPBa +R)
−1
Ba

TP
)
Aa +Q

, (3.8)

where W and V are respectively the covariance matrices of noise w and v in
equation (3.3). In order to apply a loop-transfer recovery procedure, we make
W = q2BaBa

T with q a scalar variable that is made to grow.
Solving (3.5), the LQG state space system to be used is

C ⇒

 x̂a(k + 1) =
(
Aa −BaK − LCa

)
x̂a(k)− Le(k)

δu(k) = −Kx̂a(k)
, (3.9)

where we define Ci as the LQG controller designed for model Mi.
If the command goes out of the range between 0V and 10V , it can saturate,

causing an integrator windup effect. We can apply an anti-windup block, as
figure 3.2 shows, with Ksat = 0.5, to compensate only the integrator, since it is
isolated from the rest of the controller.

-δu m+ - r -u

r
�

?
��

�m+−�
6

Anti
Windup

1

q − 1

Ksat

Figure 3.2: Block diagram of the anti-windup implemented to integrator.
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For each model Mi obtained, we compute the respective LQG controller Ci
with equation (3.9). The values used to design each controller are presented
in table 3.1.

Table 3.1: Values for LQG controller design for the three models obtained. The
value α is used for the procedure of (3.7), R calculates the LQR gain, and q
and V calculate the KF gain.

i θ° α R q V

1 30 1.01 6 1 1
2 70 1.02 .5 1 1
3 130 1.005 0.005 1 1

In the experiments shown in figures 3.3, 3.4 and 3.5, we are aiming to
analyze the reference tracking performance of each model Mj , actuated by its
respective LQG controller Cj , where j = 1, . . . ,m. Each figure shows three ex-
periments, each one is the signal corresponding to a controller Ci that matches
model Mi.

Figure 3.3 shows three different simulations with the simulated reference
tracking performance for each model, around the corresponding equilibrium
point, controlled by the respective LQG controller. In figure 3.3 the results of
three different simulations are plotted superimposed. Each of the simulations
is obtained with a set-point that stays near the operating point where each of
the local models is valid. Figure 3.4 shows the respective performance in the
actual physical system. The plot shows the data of three different experiments.

Although we obtained similar results in the output signals, there is an in-
creasing divergence in the command action between figures 3.3 and 3.4. This
difference can be explained by the overheating mentioned before. As the tem-
perature increases, the command action of C1 and C2 must decrease in order
to reach the same output. Moreover, we verify that C3, in this case, is not
affected by the overheating.

For global experiments we choose, for the reference, a square signal with
mean of 7V and an amplitude of 0.4V , where ideally no controller will satu-
rate. Figure 3.5 shows the real reference tracking performance experiments,
as figure 3.4, but this time around the operating point of 7V .

We confirm that the overheating is affecting the command action of C1,
C2 and also of C3 unlike figure 3.4. By this experiment, we state that the
overheating affects the output of every model around the chosen operating
point of 7V .

Moreover, we performed an experiment to find out which controller has the
best performance, when different throttle openings are used. For that, we per-
formed three experiments, each one consisting on using a fixed controller. Dur-
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Figure 3.3: Simulated reference tracking performance around the equilibrium
point of each model.
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Figure 3.4: Real reference tracking performance around the equilibrium point
of each model.

ing each experiment the throttle opening is changed manually, following the
order 130°, 70° and 30° each 50 s. Figure 3.6 presents the three experiments
performed corresponding to the three controllers designed.
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Figure 3.5: Real reference tracking performance around the operating point of
7V .

We observe that one controller has good performance when θ matches the
throttle opening for its corresponding model. The best controller would be C2,
but still, for any controller, the performance decreases whenever θ does not
match the model for which it was designed.
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Figure 3.6: Three experiments where the throttle opening changes and in
which, only one fixed controller is used.
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Since none of the controllers achieved an acceptable performance, we con-
clude that one fixed controller is insufficient to control the system in an extended
operating range. Therefore, we need a controller that matches the model valid
in the current operating region. To use the current model controller Ci, we need
to identify in which operating region the system is actually working, a task per-
formed by the supervisor. Then we select the corresponding controller with the
switch already mentioned. In order to ensure stability, a dwell-time switching
logic is used.

3.2 Supervisor Design

To implement a supervisor able to detect the model that best fits the current
process dynamic behavior, we can deal with two characteristics. First, we can
compute the error between the estimated models output and the measured
plant output, due to distinct offsets. Second, we can compare the performance
of the transient responses between the models and the measured plant out-
put. For each one we designed a supervisor and then we implemented a logic
switch to achieve a better performance.

3.2.1 Offset supervisor

We take advantage of the offset in the system to have faster model detection.
The offset supervisor has the function of calculating which model is ‘closest’ to
the real simulation, which means that we need to compute the error between
the real signal and the simulated signals, where the offsets are included.

The offset supervisor is shown in figure 3.7. First we estimate outputs ŷj
with the command action u and the models Mj , as we did in LMN, adding the
estimated offset bj . After we get the error, by subtracting the estimated outputs
with the real one y, we compute the quadratic error

w(k) = |e|2 = |ŷ(k)− y(k)|2 . (3.10)

The performance signal is defined as

πo(k) = λo πo(k − 1) + (1− λo)w(k) , (3.11)

representing a low-pass filter where λo = 0.6.
The logic switch block finds the performance signal with lower value and

returns its index σo
σo(k) = argmin

j
πo,j(k) , (3.12)
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Figure 3.7: Diagram of supervisor block with offset compensation.

where σo ∈M is the resulting detection of the offset supervisor.
If the supervisor model detection fails and gives an incorrect index i, then

the offset supervisor becomes useless. Further in section 3.2.2, we include the
transient supervisor to rectify the results of the offset supervisor when needed,
to overcome this issue.

3.2.2 Transient supervisor

The offset supervisor detection may fail if the current model identification is not
correct, occurring unpredictable results from that. Because the transient super-
visor does not depend on the current model identification, it is more accurate
than the offset supervisor, but only if the reference changes, and the throttle
opening maintains the same.

We use the transient supervisor for its accurateness if by any chance the
offset detection fails. Here the offset is discarded, which means that bj = 0

for j = 1, . . . ,m, and we focus in comparing the transient responses. We can
foretell that this supervisor will be only useful when a change in the reference
r occurs, because that is when a transient may appear.
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Figure 3.8: Block diagram of the transient supervisor.
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Figure 3.8 shows the transient supervisor process. We compute the errors
ej like in figure 3.7, apart from the offset bj = 0. Then we derive the error

δe(k) = e(k)− e(k − 1) , (3.13)

and filter δe(k) with a low-pass filter (see appendix D) with λ = 0.9, to eliminate
high frequency noise. After we compute the quadratic error vm, the perfor-
mance index is given by

πt(k) = λt πt(k − 1) + v(k) , (3.14)

where λt is a variable forgetting factor [13]. The reason for having a variable
forgetting factor comes with the necessity of forgetting past samples when a
change in r or y is detected. When only y changes, it means that the throttle
opening is switching and when r changes, it means that a transient is about to
happen. In both situations it is useful to forget past values so, we consider that
a change happens if |δr|+ |δy| > δry, with the threshold of δry = 0.05V .

Therefore, when no changes occur, we use λt = 1 and all the past samples
weigh in the performance evaluation. When a change occurs, we use λt = 0.3

to forget past samples, giving more weight to the new ones. Appendix E shows
the implementation of the variable forgetting factor.

The logic switch block is the same as in the offset supervisor

σt(k) = argmin
j

πt,j(k) , (3.15)

where σt ∈ M is the resulting detection of the transient supervisor. In figure
3.9 we analyze the influence of the variation of the threshold δry in the plot 3.9a
and the influence of the variation of λt in the plot 3.9b. The error percentage is
related with the number of failed detections made by the transient supervisor.

From figures in 3.9, we see a possible range of values in which we can
work with for each variable. When we vary the δry, we are looking to for the
threshold that tells when to change λt. On the other hand, when we vary λt,
we are looking for the forgetting factor that tells how many past samples are
used. Later, we could optimize the transient offset estimation by finding the
best values for each variable to achieve the minimal error.

Figure 3.10 shows the result of an experiment that consists in manually
switching to the right controller, after manually changing the throttle opening, in
the same order of figure 2.23. We can observe in figure 3.11 the detections of
the offset and transient supervisors.

As we mentioned before, the offset supervisor switches quickly and the
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Figure 3.9: Influences of the threshold δry (a) and the forgetting factor λt (b) on
the error of the transient supervisor detection.
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Figure 3.10: Reference tracking real output (magenta) with manual throttle
opening and controller switch.

transient supervisor needs a change in the reference to rectify its detection.
We can also note that after the throttle opening changes, the detection of the
transient supervisor fails until the reference changes, only then detecting the
correct index.

Furthermore, we note two outliers in σt, happening when σo = 1 that could
be related to the effect of the overheating in the dynamic. In the first 20 s of
simulation the offset estimation also fails due to unknown initial conditions.

40



0 50 100 150 200 250 300 350
0.5

1

1.5

2

2.5

3

3.5

4

A
m

p
lit

u
d

e
 [

V
]

Time [s]

Supervisors index

 

 

Manual θ and Controller

Offset supervisor σ o

Trasient supervisor σ t

Figure 3.11: Offset and transient supervisors index from the manual switch
controller experiment output in figure 3.10.

3.2.3 Supervisor logic design

Thereafter, we develop a logic circuit to take advantage from both the super-
visors described before. The logic switch for the resulting index σ = f(σo, σt)

follows the SR flip-flop circuit [23]. The SR flip-flop circuit has S and R as in-
puts, Q as output and follows the “set-reset” behavior, where the output Q is
set to 1 if S = 1 and reset to 0 if R = 1. When both S and R are 0 no change
happens and the state where both are 1 must be avoided.

Table 3.2 presents the logic from ∆ry, ∆σo and ∆σt to S and R, from S

and R to Q and then, in the last line, we assign to the supervisor output, σ, the
value of σo or σt according to the logical result of Q. In this case, we choose
∆ry = 1 when |δr| + |δy| > 0.5V , ∆σo = 1 when δσo 6= 0 and ∆σt = 1 when
δσt 6= 0. The supervisor output is defined as σ and is shown in the last line of
the table. The positive logic of ∆ry and ∆σt makes σ = σt and ∆σo makes
σ = σo. In order to avoid both S = 1 and R = 1, we use priorities in the way
that, the highest priority forces lower priorities to 0.

We give priority when ∆ry = 1, setting σ = σt. Then, whenever the offset
supervisor index σo changes (∆σo = 1), we make σ = σo because that is when
the transient detection fails. If no changes are detected neither in ∆ry or in
∆σo, then if ∆σt = 1 we set σ = σt.

The logic mentioned is not sufficient to have a good performance in the su-
pervisor output and we make use of timers. Therefore, we use an on-delay
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Table 3.2: Supervisor logic table to choose the supervisor index to be used.
The ‘x’ means the supervisor output holds its previous value.

∆ry 0 1 0 1 0 1 0 1
∆σt 0 0 1 1 0 0 1 1
∆σo 0 0 0 0 1 1 1 1

SR flip-flop
S 0 1 1 1 0 1 0 1
R 0 0 0 0 1 0 1 0
Q x 1 1 1 0 1 0 1

Supervisors index
σ x σt σt σt σo σt σo σt

timer with 15 samples delay to rectify the transient supervisor outlier, which is
implemented to σ when Q = 1. We make σ = σo last longer with a monostable
timer with 30 samples delay applied to ∆σo. In the end, we apply to σ a monos-
table timer with 10 samples delay. This timer is known as dwell-time and forces
a controller to be active for a minimum period of time, in this case τD = 2 s. In
this case, it also helps to correct the supervisor output.
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Figure 3.12: Offset, transient supervisors index and supervisor output from the
manual switch controller experiment output in figure 3.10.

Figure 3.12 shows the supervisor output. We can observe that most of time
the σ = σo and only in the beginning appears σ = σt delayed. We can also
verify that, in the first 20 s, σo is rectified only after σt.
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3.3 Global Autonomous System and Results

Combining the LQG controllers and supervisor designed, we have an autono-
mous system that is alerted to the changing of the throttle opening, or flow, and
is able to change its controllers in order the have the best performance in the
output.
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Figure 3.13: Block diagram of the global control system.

The complete system is represented in figure 3.13, where the blocks C1

to Cm represent the LQG controllers from figure 3.1 and the Supervisor block
contains the offset and transient supervisors plus the logic circuit. We feedback
the supervisor output, making i = σ, so that the controller Ci becomes Cσ.

Now that we are able use the autonomous system, we can see in figure 3.14
how low-pass filter of the offset estimation influences the system performance.
The error percentage consists on the error between the reference and system
output. Here, we observe that only values of lambda close to 1 causes less
error in the performance, because that is when the offset estimation is more
constant.
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Figure 3.14: Influences of the low-pass filter parameter λ of the offset estima-
tion in the error between the reference and the system output.
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We can also compare the performance of the supervisors designed, first
separately, and then combined. Figure 3.15 presents the experiment results for
reference tracking with the real output signal and the estimated models outputs.
Figure 3.16 presents the real output signal and the supervisor detection index
when using the offset supervisor. The same goes for 3.17 and 3.18 when
using the transient supervisor and with 3.19 and 3.20 when combining both
supervisors.

Figures 3.15, 3.17 and 3.19 shows the same experiment made in figure 3.10,
but now the system is completely autonomous. We can observe that the output
is stable and tracks the reference like in section 3.1. However, the models es-
timation differs between this figures, which lead us to analyze the supervisors
performance.

Analyzing the supervisor index plot in figures 3.16, 3.18 and 3.20, we can
see that the best fit is when both supervisors are used. When the throttle open-
ing changes, the regulation of the supervisor index takes a maximum of 16.6 s

using the transient and 3 s using both supervisors. With the offset supervisor
the same does not happen, where the supervisor index is wrong until 150 s and
from there it is similar to using both supervisor. Moreover, other experiments
made using the offset supervisor shows that its initial detection is random and,
when the first index matches the current model, the supervisor performance
becomes similar to using both supervisors.

We can observe that, after each throttle opening changes, the output per-
formance decreases when using the transient supervisor comparing to when
using both combined supervisors. Furthermore, we can see that when the
throttle opening changes, to the output follow back tracking the reference, it
takes a maximum of 10 s using the transient supervisor and 6 s using both su-
pervisors.

From the supervisors performance analysis, we conclude that using both
supervisors is the best choice. If we have a good supervisor performance,
then we should have a good reference tracking performance.

Moreover, looking just for the results of the experiment using both super-
visors, in figure 3.20, we can see that it takes between 0.4 s to 3 s for the
supervisor to change to the correct model index. Apart from that, there is a
misidentification in the first 30 s, which can happen due to initial conditions of
the supervisors.

In addition, there are some outliers in transient supervisor detection, both
in figures 3.12 and 3.20. We presume there are two reasons for this to happen.
The first reason can be the saturation of the command control that directly
affects the real output transient. The second reason may be a divergence in
the dynamic behavior caused by the overheating effect.
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Figure 3.15: Autonomous reference tracking performance using only the offset
supervisor.
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Figure 3.16: Offset supervisor index and supervisor output from the autono-
mous real process output.
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Figure 3.17: Autonomous reference tracking performance using only the tran-
sient supervisor.
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Figure 3.18: Transient supervisor index and supervisor output from the auto-
nomous real process output.
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Figure 3.19: Autonomous reference tracking performance using both supervi-
sors.
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Figure 3.20: Offset, transient supervisors index and supervisor output for the
autonomous real process output.
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Chapter 4

Adaptive Control

The dynamic of some systems can change over time, which can be caused
by external or internal factors. In the system in study, these factors can be
room temperature change, overheating of the plant pipe or the saturation of
the command action. In these situations, both controller and supervisor may
become inadequate to achieve a good performance of the system.

We use adaptive control to estimate the new dynamic and then update the
controller and supervisor, in order to maintain a good system performance. We
can use the Recursive Least Squares (RLS) with forgetting factor algorithm to
estimate the new dynamic parameters. Then we can design the LQG controller
with the estimated values obtained.

4.1 Recursive Least Squares

The Recursive Least Squares (RLS) is an algorithm that uses past estimated
values to estimate the new model parameters [20]. First we show how to get to
the matrix notation and then we present the algorithm.

Due to the use of the LQG controller, we can consider the noise of the sys-
tem as uncorrelated and, instead of using the ARMAX structure, we represent
the system dynamic with the ARX structure

y(k) + a1 y(k − 1) + . . .+ ana y(k − na) =

= b1 u(k − nk) + . . .+ bnb u(k − nk − nb + 1) + e(k) . (4.1)

To estimate the parameters of the system, we first need to write the model
as

y(k) = ϕT (k − 1)θ(k) + e(k) , (4.2)
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where we define the regressor ϕ as

ϕ(k−1) =
[
−y(k−1) . . . −y(k−na) u(k−nk) . . . u(k−nk−nb+1)

]T
, (4.3)

and the parameters vector is

θ =
[
a1 . . . ana b1 . . . bnb

]T
. (4.4)

The linear least squares cost function is minimized by

J
(
θ(k)

)
=

k∑
i=0

λk−iRLS

[
y(i)− ϕT (i− 1)θ(k)

]
, (4.5)

where λRLS is the forgetting factor. The RLS algorithm is computed with
KRLS(k) =

P (k − 1)ϕ(k − 1)

λRLS + ϕT (k − 1)P (k − 1)ϕ(k − 1)

θ̂(k) = θ̂(k − 1) +KRLS(k)
[
y(k)− ϕT (k − 1)θ̂(k − 1)

]
P (k) = [I −KRLS(k)ϕT (k − 1)]P (k − 1)/λRLS

, (4.6)

where KRLS is a gain vector, P denote the inverse of the autocorrelation matrix
and θ̂ is the estimated parameters vector.

In this project, we initialize θ̂(−1) = θ where θ is the a priori parameters
from ARMAX structure in table 2.2, and P (−1) = 10−4I that means that we
are certain of the initial values. If the initial parameters θ̂(−1) were unknown,
we would rather use P (−1) ≥ 102I. The forgetting factor used is λRLS = 0.99,
in order to have a smooth convergence.

Next, we demonstrate an example of the RLS algorithm performance. In
the simulation of figure 4.1, we have M2 representing the real model and M3

representing the simulated model. The parameters estimation starts at 20 s

and, thenceforth, we update the simulated model every 10 s. In section 4.2 we
explain when we estimate parameters (Ep) and when they are updated (Up).

Figure 4.1 shows the simulation results, where the expected output signal
(green) is the result of the regressor vector times the current estimated param-
eters, yes(k) = ϕT (k − 1)θ̂(k).

We can observe that the RLS algorithm guarantees the convergence of the
simulated model to the real model and it can be implemented in the autono-
mous system.
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Figure 4.1: Example of the performance of the RLS algorithm.

4.2 Adaptive Control Implementation

We can implement Adaptive Control in the system of figure 3.13 of section 3.3
by adding the blocks of figure 4.2. The RLS algorithm must have the current
system output, without the offset, i.e. y− bi, the input and output past values ϕ
and the current model index σ and returns the estimated parameters vector θ̂.

The Update block updates the current model state space matrices Ai and
Ci

1 with the estimated parameters θ̂. The blocks that we can update are the
models of the supervisor M , the estimated offsets b and we can redesign the
LQG controllers C. The RLS algorithm is active when Ep = 1 and update block
is enabled only when Up = 1.

-y − bi
-ϕ

-σ

?

Ep

-θ̂
?

Up

-

-

-

RLS Update b

M

C

Figure 4.2: Diagram block for implementation of Adaptive Control in the system
of figure 3.13.

1 The state space matrixes Bi and Di are constant.
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As we are dealing with a multiple model system, we need to choose when
it is reliable to estimate the new parameters and also, when to update the
supervisor and LQG controllers.

Considering the supervisor index on figure 3.20, we assume that the correct
model identification happens when all three signals of the figure (σo, σt and σ)
are the same. Therefore, this is when we can estimate the new model with the
estimated coefficients and when we make Ep = 1. Still, we anticipate some
corrections of when to make the estimation.

Having the regressor ϕ as a vector with input and output past values, where
its oldest values are y(k − na) and u(k − nk − nb + 1), the maximum delay
corresponds to nϕ = max(na, nk + nb − 1). Therefore, we can only start the
estimation nϕ samples after the correct model identification begins. Based on
the models computed in table 2.2, the maximum delay is nϕ = 3. We choose to
update the parameters, making Up = 1, every 10 s after the estimation begins,
which corresponds to 50 samples, with the sample time of hs = 0.2 s.

However, the update does not happen every time Up = 1 because it also
depends on the parameters of the estimated model. To approve the update,
we need to compute the distance between the original model and the esti-
mated model and then, compare this distance with some thresholds. We use
as distance the Vinnicombe’s variation, defined by the gap metric between two
systems, denoted by δν(Si, Sj). This distance is called the ν-gap metric and
can be computed by the ‘gapmetric.m’ function in Matlab2 [24].

Moreover, we define an upper threshold δup and a lower threshold δlo. The
reason for having an upper threshold δup is to avoid the estimated model to get
too far from its original model and become similar to the next model. If the es-
timated model is slightly different from the original one, we prefer not to update
the parameters, thereby having a lower threshold δlo, to maintain the original
parameters. Summarizing, we only update the estimated model if Up = 1 and
then if δlo < δν(Si, Sj) < δup, where Si denotes the original continuous model
and Sj is the estimated continuous model. Table 4.1 presents the distance
between each original model and the closest one and the values used for the
lower and upper thresholds. We define δνmin = min(δν(Mi,Mi−1),δν(Mi,Mi+1))

and δu = δνmin/2.
We previously state that, after the throttle opening changes, it takes a max-

imum of 3 s to the supervisor output switches to the correct one. Therefore, the
last acceptable estimated parameters that we must use to perform the update
are delayed by 15 samples.

Having the controllers changing during adaptive control simulation, it would

2 The ν-gap is designed to continuous systems. A conversion of the discrete models
to continuous time models is made using the ‘d2c.m’ function of Matlab.
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Table 4.1: Vinnicombe’s variation and ν-gap metric thresholds.

Model δνmin δl δu

1 0.2093 0.01 0.1047
2 0.1225 0.01 0.0612
3 0.1225 0.01 0.0612

be interesting to verify the controllers gains. We can compute the controllers
gains with the controller transfer function converted from the state space model
from 3.9 to

C(q) =
bC1 q

n−1 + bC2 q
n−2 + · · ·+ bCn

qn + aC1 q
n−1 + · · ·+ aCn

. (4.7)

The stationary gain is computed by making q → 1 in (4.7)

C(1) =
bC1 + bC2 + · · ·+ bCn
1 + aC1 + · · ·+ aCn

. (4.8)

In this part of the work, we are not able to change the parameters during
real time experiments. Therefore, we will only present the performed simula-
tions.

Figure 4.3 shows the adaptive control simulation, but without any update
due to the thresholds specified. The simulated throttle opening and supervisor
output for this simulation are in figure 4.4, where we also present the controllers
gains.

With this simulation, we are able to tell that the parameters update does not
affect the system performance when we are dealing with the correct number of
outputs (and the correct throttle openings). However, we need to test how the
adaptive control improves the performance when one model is removed.

Therefore, in the second simulation, we removed the model M3, and tried
the same throttle opening change sequence. Figures 4.5 and 4.6 presents the
simulation without adaptive control to compare with the simulation which use
adaptive control from figures 4.7 and 4.8.

For the third simulation we do the same simulation, but this time removing
the model M2 and we present the results in figures 4.9, 4.10, 4.11 and 4.12.
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Figure 4.3: Adaptive control simulation with the autonomous system, with the
three models available.
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Figure 4.4: Supervisor index and controller gains for simulation of figure 4.3.
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Figure 4.5: Nonadaptive simulation of the system with models M1 and M2.
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Figure 4.6: Supervisor index and controller gains for simulation of figure 4.5.
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Figure 4.7: Adaptive control simulation of the system with models M1 and M2.
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Figure 4.8: Supervisor index and controller gains for simulation of figure 4.7.
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Figure 4.9: Nonadaptive simulation of the system with models M1 and M3.
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Figure 4.10: Supervisor index and controller gains for simulation of figure 4.9.
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Figure 4.11: Adaptive control simulation of the system with models M1 and M3.
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Figure 4.12: Supervisor index and controller gains for simulation of figure 4.11.
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Although the last eight figures seem similar, we are able to see that, in the
output performance of the adaptive control simulations, the estimated models
Mj have a slightly best fit than in the nonadaptive simulations. As in figure
4.1, in this simulations the estimated models also converge to the ‘real’ one,
which has the benefit of having an updated controller that improves the system
performance.

In most part of the simulations, we can observe that the supervisor results
are adequate. When the simulated throttle opening θ is higher than 1, the
chosen models are M2 in figures 4.6 and 4.8, and M3 in figures 4.10 and 4.12.
The model M1 is also correctly identified.

The difference between the controllers gains, for nonadaptive and adaptive
control, can also be viewed between figures 4.6 and 4.8, and between figures
4.10 and 4.12.

Moreover, we can observe that the changing controllers gains heads to-
wards the controller gain correspondent to the current model, i.e., C2 heads to
C3 when σ = 3. However, the number of changes is limited, due to the thresh-
olds predefined in table 4.1, which means that the controller gains does not
change when δν goes out of the bounds limited by δl and δu. The thresholds
should be redefined when using a different number of models.

The project about adaptive control complements the autonomous perfor-
mance of the system, where the output results are improved by identifying the
current system model and update the supervisor and controller.
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Chapter 5

Conclusion

In this work, we identified a nonlinear air heating system through multiple local
models. Then, we designed a controller able to control the global system, with
the support of a supervisor that can indicate which is the current model.

We conclude that the use of multiple controllers for reference tracking has
an acceptable performance, and can be implemented on the air heating sys-
tem.

Since the solution proposed in this work is not unique, we cannot state
that using multiple controllers is the best way to deal with nonlinear systems.
However, we can affirm that, for this specific process, the use of multiple LQG
controllers has a better performance than the use of only one of them, to control
the global system.

Due to the quick detection of the supervisor, the global system is able to
regulate the output even when the throttle opening is still moving. That can
be an important factor if the system stability depends on the quick controller
adaptation.

We managed to overcome the overheating problem mentioned before with
the offset estimation, which is also an important element for the supervisor
quickness.

The implementation of adaptive control to the global system proved an im-
provement on the system performance. The adaptive control is important when
the estimated models do not match the predicted ones due to small errors in
the dynamic behavior. However, it becomes even more relevant when the num-
ber of models is insufficient and does not cover the entire dynamic range of the
global system.

Moreover, the room temperature can influence the identification results,
leading to different system measurements every day. Nevertheless, since the
room temperature does not change the bandwidth of the system (section 2.1.2),

59



the parametric identification can be repeated again at anytime, in order to ob-
tain new models for the current conditions.

In the future, we may take into account more models, not only for more
flows, but for different temperatures too. If more models are used, the supervi-
sor may decrease its success rate. Nevertheless, if the supervisor chooses a
model near to the correct one for control, the difference would be less signifi-
cant, as the models would have similar dynamics.

Moreover, the supervisor logic can be improved to eliminate errors as initial
conditions and when the controller saturates. In addition, another methods
such as RST or PID controller can be also used. The results could then be
compared with the achieved multiple LQG controllers performance.

Another aspects pointed in this work, like the variance of the room tempe-
rature and the overheating of the equipment itself, can be taken in account or
externally controlled. The system offset effect may be modeled as well, instead
of having an estimated offset, to complete the construction of the global model.
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Appendix A

Heat energy exchange

The actuator of part À in figure 2.1 can be presented as a scheme of energy
exchanges, as shows in figure A.1.

-�

x

∆x

x+ ∆x

6

?

d-Qin

Tin

-
q

Qs,Ts
?

Qu

-Qout

Tout

Figure A.1: Actuator scheme.

An energy balance yields that

Qs = Qin +QP −Qout , (A.1)

where Q is the amount of heat transferred given by

Q = cpm∆T , (A.2)

where cp is the specific heat capacity, m is the air mass (in kg) and ∆T is
temperature variation.

For the amount of heat stored, Qs, we can have cpm = cpρV = CV , where
ρ is the air density, C = cpρ is the heat capacity and V = A∆x is the volume,
with A = πd2

4 the section of the tube. The incremental temperature variation is
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given by ∆T = Ts(t+ ∆t)− Ts(t), thereby we have

Qs(t) = CV
[
Ts(t+ ∆t)− Ts(t)

]
, (A.3)

where the stored temperature, Ts, can be the temperature anywhere between
x and x+ ∆x.

For the amount of heat that enters and exists the actuator, we do not have
a volume V . Instead, we make cpm = CV = Cq∆t, where q is the airflow that
passes in the tube in the time of ∆t. Therefore, we have

Qin(t) = Cq∆t Tin(t) , Qout(t) = Cq∆t Tout(t) , (A.4)

where the inflowing temperature Tin is located in x and the outgoing tempera-
ture Tout is located in x+ ∆x.

We can achieve equation (2.1) with making the temperatures as

Tin(t) = T (x, t) , (A.5)

Tout(t) = T (x+ ∆x, t) , (A.6)

Ts(t) = Tin(t) = T (x, t) , (A.7)

Ts(t+ ∆t) = T (x, t+ ∆t) , (A.8)

although, instead of equation (A.7) and (A.8), we could have the stored tempe-
rature as

Ts(t) = Tout(t) = T (x+ ∆x, t) , (A.9)

Ts(t+ ∆t) = T (x+ ∆, t+ ∆t) , (A.10)

The amount of heat inputted to the actuator is given by

Qu(t) = P (t)∆t (A.11)

which means that Qu is the power of the heat injected in the system P over
time.
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Appendix B

State space model matrices

The state space matrices for each model are

A1 =

 1.1310 −0.3862 0.0596

1 0 0

0 1 0

 , C1 =
[

0 0.0562 0.1103
]
,

A2 =

 1.0264 −0.3446 0.0576

1 0 0

0 1 0

 , C2 =
[

0.0148 0.1268 0
]
,

A3 =

 0.8513 −0.1953 0.0247

1 0 0

0 1 0

 , C3 =
[

0.0276 0.0981 0
]
.
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Appendix C

Controller and observer
gains

The LQG gains for each model, computed through equation (3.6), are

K1 =
[

0.0190 −0.0081 0.0016 0.2644
]
,

K2 =
[

0.0549 −0.0228 0.0049 0.5037
]
,

K3 =
[

0.3621 −0.0938 0.0138 1.3950
]
,

L1 =
[

3.3492 3.0646 2.6626 0.7847
]T
,

L2 =
[

2.8008 2.5676 2.2048 0.8261
]T
,

L3 =
[

2.4510 2.2824 2.0094 0.8601
]T
.
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Appendix D

First order low-pass filter

A discrete low-pass filter follows

out(k) = λ out(k − 1) + (1− λ) in(k) ,

with input in(k), output out(k) and λ is the pole of the discrete transfer function

out(k) =
(1− λ)q

q − λ in(k) .

67



Appendix E

Variable forgetting factor

The variable forgetting factor follows the next block diagram.

-v m+ r -πt

��m×
6

-
λt

rrHH r-1

-0.3

6
-

|δr|+ |δy|

q−1

> δry

Figure E.1: Block diagram for the variable forgetting factor implementation.
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Appendix F

Offset estimation with
forgetting factor

Based on [2], the system model is defined by

Az = Bu , y = z + b , (F.1)

For these models, the estimated output can be

ŷ(k) =

(
1− A(q)

ω(q)

)
y(k) +

B(q)

ω(q)
u(k) +

A(q)

ω(q)
b(k) . (F.2)

The output estimation error is given by1

ê(k) = ŷ(k)− y(k) = α(k)− b(k)β(k) , (F.3)

where

α(k) = −A(q)

ω(q)
y(k) +

B(q)

ω(q)
u(k) , β(k) = −A(q)

ω(q)
u−1

(k) . (F.4)

The cost function to be minimized, including the forgetting factor λb, is2

J
(
b(k)

)
=

k∑
j=0

λk−jb

(
ŷ(k)− y(k)

)2
=

k∑
j=0

λk−jb

(
α(j)− b(k)β(j)

)2
, (F.5)

1 Incorrectly in [2] is written α(k) + b(k)β(k). This would be valid only if β(k) =

+
A(q)

ω(q)
u−1(k).

2 Previous values of b(k) are not used in the cost function. That is why we do not
use b(j).
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that is equivalent to

J
(
b(k)

)
=

k∑
j=0

λk−jb α2(j)−2b(k)

k∑
j=0

λk−jb α(j)β(j)+b2(k)

k∑
j=0

λk−jb β2(j) . (F.6)

The partial derivative of J
(
b(k)

)
of equation (F.6) with respect to the variable

b(k) is

∂J
(
b(k)

)
∂b(k)

= −2

k∑
j=0

λk−jb α(j)β(j) + 2b(k)

k∑
j=0

λk−jb β2(j) . (F.7)

To have the estimation of b(k), we make equation (F.7) equal to zero

∂J
(
b(k)

)
∂b(k)

∣∣∣∣∣
b(k)=b̂(k)

= 0 ⇒ b̂(k) =

k∑
j=0

λk−jb α(j)β(j)

k∑
j=0

λk−jb β2(j)

. (F.8)
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