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Abstract. This paper presents a new model for trajectories in video
sequences using mixtures of motion fields. Each field is described by a
simple parametric model with only a few parameters. We show that,
despite the simplicity of the motion fields, the overall model is able to
generate complex trajectories occuring in video analysis.

1 Introduction

The analysis of trajectories plays an important role in computer vision [1]-[8].
Consider, e.g., a video surveillance system, tracking moving people or vehicles
in a parking lot or in a street. The trajectory of each object is a rich source of
information about its behavior. We should therefore be able to learn what are the
typical trajectories and how can they be characterized so that we can distinguish
typical behaviors from abnormal ones and discriminate different types of common
behaviors.

A trajectory model must be rich enough to allow different types of behaviors
occurring at the same place. For example, several types of trajectories may occur
in a hotel lobby. The same happens if we wish to characterize the traffic in a
city or in part of it. A single motion field is not enough to characterize people
of vehicle motion in a scene.

A generative model for trajectory analysis based on switched motion fields
was recently proposed in [1]. The model is equipped with estimation methods
that are able to learn a set of motion fields describing typical behaviors of objects
in a scene. It is assumed that each trajectory is driven by one of the motion fields
at each instant of time, the so-called active field. Switchings between active fields
are allowed and may occur at any position and any instant of time, according to
suitable probabilities. This model is rich enough to describe a variety of behaviors
and simple enough to be efficiently learned from experimental data.
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The work presented in [1] adopts a non-parametric model for the motion
fields based on first order splines. In this paper, we extend that work to simple
parametric models that depend on a small number of parameters and discuss
if it is still possible to obtain flexible overall behaviors and efficient estimation
from observed data. The main contribution consists in a parametric approach
to the switched motion field model.

2 Switched Motion Field Model

Let x = (x1, . . . ,xL), xt ∈ R2, denote the trajectory of an object in the image.
We assume that x is generated by a bank of K vector fields Ti : R2 → R2, i ∈
{1, . . . ,K}, according to

xt = xt−1 +Tkt(xt−1) +wt , (1)

where kt is the label of the active field at instant of time t and w1, . . . ,wL is a
white random sequence with normal distribution wt ∼ N (0, σ2

kt
I).

Furthermore, we assume that label sequence k = (k1, . . . , kL) is a Markov
chain with space varying transition probabilities, i.e., the next active field de-
pends on the current active field as well as on the position of the object in the
scene. This is an important issue. For example, consider a cross between two
streets. Many pedestrians and vehicles change their direction and velocity at the
cross. Therefore, the transition probabilities should be higher at the cross than
elsewhere.

To be specific, model switching is characterized by the transition probabili-
ties,

P (kt = j|kt−1 = i,xt−1) = Bij(xt−1) , (2)

where Bij(x) is the probability of switching from the field i to the field j at
position x. Therefore, B(x) = {Bij(x)} is a field of stochastic matrices which
verify the following properties at each position x:

Bij(x) ≥ 0,
K∑

p=1

Bip(x) = 1, ∀i, j . (3)

Figure 1 shows a set of of trajectories which can be easily generated by this
model using three vector fields. This figure suggests the variety of behaviors that
can be generated with the proposed approach.

The pair (xt, kt) can be considered as a hybrid state since it summarizes all
the past information needed to generate the future samples of the process. The
joint probability function associated to the pair of sequences {x, k} is given by

p(x, k) = p(x1, k1)
L∏

t=2

p(xt|kt,xt−1)p(kt|xt−1, kt−1), (4)

where



Fig. 1. Synthetic trajectories for the cross and roundabout problems

p(xt|kt,xt−1) =
1

2πσ2
kt

e
− 1

2σ2
kt

∥xt−xt−1−Tkt (xt−1)∥2

, (5)

and p(kt|xt−1, kt−1) = Bkt−1,kt(xt−1).
The parameters to be learned from the video data are: i) the number of

models K; ii) the motion fields T1, . . . ,TK ; iii) the field of transition matrices
B; and iv) the noise variances σ2

1 , . . . , σ
2
K .

In [1] the fields T1, ...,TK and B are modeled in a non-parametric way.
They are specified at the nodes of a regular grid and interpolated using first
order splines

Tk(x) =
N∑
i=1

tikϕi(x), B(x) =
N∑
i=1

biϕi(x) , (6)

where tik,b
i are the velocity vector and the transition matrix associated to the

i − th node of the grid and ϕi(x) is the corresponding spline function, cen-
tered at the i-th node. As a consequence, that approach can be classified as
non-parametric since we are not imposing any kind of structure, and each field
depends on a large number of parameters (typically a few hundreds) which have
to be estimated from the data. Some kind of regularization (Gaussian field priors,
in [1]) is required to obtain meaningful estimates for these parameters.

In this paper we follow a different approach by adopting parametric models
for the motion fields. This results in a much smaller number of parameters to
be estimated. Although we are making strong assumptions about each motion
field, a flexible trajectory model is expected at the end because trajectories are
decomposed into segments, each of them generated by a different motion field.
Parametric field may be tuned to a specific space region, if necessary.

3 Parametric Motion Fields

We consider several parametric motion models, which are often used in image
alignment and registration, namely [9]: translation (T), Euclidean (E), similarity
(S) and affine (A) transforms. All these models are expressed by

z = Ax+ t , (7)



Name Transformation Motion field

T z = x+ t T(x) = t
E z = Rx+ t T(x) = (R− I)x+ t
S z = sRx+ t T(x) = (sR− I)x+ t
A z = Ax+ t T(x) = (A− I)x+ t
Table 1. Parametric motion models

Fig. 2. Examples of motion fields and trajectories generated by the T, E, S models
(top row) and A, A, non parametric models (bottom row).

where z is the transformed position of the point x, A is a 2× 2 matrix and t is
a 2× 1 translation vector. The only difference between these models lies in the
structure of matrix A as shown in Table 1. In this table, R (a rotation matrix)
and sR, s ∈ R, have the following structure

R =

[
cos θ sin θ

− sin θ cos θ

]
sR =

[
a b

−b a

]
, (8)

and A is an arbitrary 2× 2 matrix.
Figure 2 shows examples of the motion fields and trajectories generated by

these models and by a non-parametric one. Only the translation and the Eu-
clidean transform generate trajectories in which the object moves with constant
speed since the eigenvalues of the matrix A lie on the unit circle. In the other
cases, velocity has an exponential growth or decay. This is not a major problem
since each model is only used for a short period of time. We stress that, at this
point, no switching was allowed in the generation of these trajectories. More
complex trajectories can be generated if we allow model switching.

4 Model Estimation

In an ideal setting, we would like to turn on the camera and ask the system
to learn the behavior of all the pedestrians and vehicles in the scene. Assuming



that the tracking task is solved (although this is by no means a trivial task) we
would like to estimate the number of fields and the field parameters from a set

of observed trajectories X = {x(1), . . . , x(S)} where x(s) = (x
(s)
1 , . . . ,x

(s)
Ls

) is the
s-th trajectory.

The maximum likelihood (ML) estimates of all the model parameters, col-
lectively denoted as θ, can be obtained by solving the following optimization
problem

θ̂ = argmax
θ

log p(X|θ). (9)

However, the likelihood function cannot be directly computed. Since we do
not know the sequence of active models underlying each trajectory, we should
marginalize the complete likelihood function p(X ,K|θ), i.e.,

p(X|θ) =
∑
K

p(X ,K|θ) =
∑
K

S∏
s=1

p(x(s), k(s)|θ), (10)

where K = {k(1), . . . , k(1)} are the (unobserved) label sequences (active models)
and p(x(s), k(s)|θ) is the joint density defined in (4). The marginalization involves
a sum for all sequences of labels K which is unfeasible since it involves a huge
number of operations.

This difficulty can be circumvented by using the Expectation-Maximization
(EM) method. The EM method is based on the optimization of an auxiliary
function: the conditional expectation of the complete log-likelihood

U(θ, θ̂) = E
{
log p(X ,K)|X , θ̂

}
, (11)

where θ̂ is the currently available estimate of the model parameters. The EM
method generates a sequence of estimates by iteratively optimizing U(θ, θ̂) with
respect to θ, to update the parameter estimates:

θ̂(t+ 1) = argmax
θ

U(θ, θ̂(t)). (12)

The expected value of the complete log-likelihood with respect to these variables
can be written as

U(θ, θ̂) = Ā(X ,K) + B̄(X ,K), (13)

with
Ā(X ,K) = C −

∑S
s=1

∑Ls

t=2

∑K
i=1 w

(s)
i

[
log(2πσ2

i )

+ 1
2σ2

i
∥x(s)

t − x
(s)
t−1 −Ti(x

(s)
t−1)∥2

]
,

(14)

B̄(X ,K) =
S∑

s=1

Ls∑
t=2

K∑
i,j=1

w
(s)
i,j logBij(x

(s)
t−1), (15)

where w
(s)
i (t) = P (k

(s)
t = i|x(s), θ̂) is the probability of label i at time t and

w
(s)
i,j (t) = P (k

(s)
t−1 = i, k

(s)
t = j|x(s), θ̂) the probability of the pair of labels i, j at



Fig. 3. Estimated fields for the cross problem with translation (1st row) and affine
(2nd row) models (K = 3)

consecutive instants of time. The probabilities w
(s)
i (t), w

(s)
i,j (t) are computed in

the E-step of the EM method using the forward-backward algorithm [10].
The M-step maximizes U with respect to the model parameters. The maxi-

mization with respect to the noise variances and switching matrix field is done
as in [11]. The optimization with respect to the motion parameters depends on
the motion model adopted but this is straight forward.

5 Results

The proposed model was applied to synthetic trajectories. Figure 1 shows two
sets of 30 trajectories which are denoted as cross and roundabout. The first case
simulates a cross between three streets with two entries. The second case simu-
lates a roundabout with four entries and combines linear and circular segments.
The field of transition matrices was modeled in a non-parametric way, using a
11× 11 regular grid of points and first order interpolation splines as in [1].

Figure 3 shows the estimates obtained by the EM method assuming affine
motion fields and translation fields. These results were obtained after 5 iterations.
Both models are able to correctly extract the correct motion fields. The second
affine motion field is not uniform but it is approximately uniform in the region
of interest. We stress that we do not have any a priori knowledge about the
active model at each instant of time. This information must be guessed by the

EM algorithm using the soft assignment variables (w
(s)
i (t), w

(s)
i,j (t)).

The second problem is more complex since it involves a larger number of fields
(five) and a mixture of circular and uniform fields. Figure 4 (1st row) shows the
estimates obtained using Euclidean motion fields showing that the EM method
is able to correctly estimate the field parameters. It should be mentioned that
the output of the EM method depends on the initialization as shown in the Fig-
ure 4 (bottom): two motion fields are associated to the circular motion and the
third motion field in the Figure tries to represent two different motion directions.



Fig. 4. Estimated fields for the roundabout problem with Euclidean transform model
(K = 5) and two different initializations

Fig. 5. Estimated fields for the roundabout problem with the affine model (K = 3)
and two different initializations

This is shown in Figure 5 which displays the output of the EM method, assum-
ing an affine model with a smaller number of fields (three) and two different
initializations.

Although excellent results were achieved for both problems, the algorithm
may converge to local maxima of the likelihood function, leading to poor esti-
mates of the motion fields. This is a consequence of the EM estimation method
which does not guarantee the convergence towards the global maxima [12]. How-
ever, this effect is stronger in the estimation of parametric vector fields depending
on a small number of parameters (< 10) then in the case of non-parametric mod-
els which depend on hundreds of parameters. The presence of global restrictions
increase the attraction towards local maxima.

6 Conclusions

This paper presents an extension of the trajectory model with multiple motion
fields presented in [1]. It shows that complex trajectories can be generated using
a set of simple motion fields (parametric fields) depending on a small number of
parameters. The key point is the ability to switch between motion fields at any



position in space. In addition we use space dependent switching probabilities
which allow different switching behaviors in different regions of space.

Despite the good results obtained there are several open question to be ad-
dressed in the future: how to initialize the EM method in an efficient way? how
to determine the best number of motion fields for a given problem? how to select
the most appropriate model for each field? application of this model to real data
and the comparison with the non-parametric model [1]. These questions will
be addressed in a forthcoming paper which will include extensive results and a
comparison with non-parametric techniques.
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