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ABSTRACT

A central issue in mixture-type models is the determi-

nation of a suitable number of components that best suits

the observed data. In this paper, we address this issue in

the context of trajectory classification based on mixtures of

motion vector fields.

We adopt a discriminative criterion for choosing among

alternative models for each class, based on the classifica-

tion accuracy on a held out dataset. The key idea is that we

make use of the knowledge that the obtained model is going

to be used for a specific task: classification. Experiments

with both synthetic and real data concerning pedestrian ac-

tivity classification illustrate the performance of the adopted

criterion.

1. INTRODUCTION

Model selection questions arise in many statistical inference

and learning problems and are usually tackled by choosing

a model that balances parsimony with adequacy to the ob-

served data.

In this paper, we focus on model selection in the con-

text of a problem of trajectory classification. Specifically,

the trajectories of the objects are described by a set of vec-

tor motion fields, as recently proposed in [1]. Each trajec-

tory can be split into a set of consecutive segments, each

generated by a vector field. Switching among fields can oc-

cur at any point in the image, with switching probabilities

depending on the object location via a field of (stochastic)

switching matrices.

To illustrate the idea, consider two intersecting roads (or

streets), as depicted in Fig. 1. The typical motion regime

in each street is well modeled by a simple (smooth) vec-

tor field. At the intersection, pedestrians (or cars) have a

considerable probability of changing (switching) direction,

whereas far from it, this switching probability is low (or

zero).

This work was partially supported by Fundação para a Ciência e Tec-

nologia, Portuguese Ministry of Science, Technology, and Higher Educa-

tion, under the scope of project PTDC/EEA-CRO/098550/2008 (ARGUS).

Fig. 1. Crossroad example. Set of trajectories (left) and two

vector fields modeling to the trajectories (center and right).

This approach is flexible enough to represent a wide va-

riety of trajectories and allows modeling space-varying be-

haviors without resorting to non-linear dynamical models,

which are infamously hard to estimate from training data.

Moreover, it was also shown that the model (i.e., the mo-

tion and switching fields) can be efficiently estimated via an

expectation-maximization (EM) algorithm.

The classical overfitting/underfitting tradeoff naturally

arises in this context: an arbitrarily large number of mo-

tion fields allows fitting the training data (set of observed

training trajectories) arbitrarily well. Of course, a model

with this overfit to the data will not generalize well, and

will not lead to a classifier with good performance. On the

other hand, a too small number of fields will not be able to

adequately capture the underlying complexity of the scene.

This also has a negative impact on the performance of any

classifier based on such model. Choosing the right number

of fields is clearly a model selection problem.

The literature on statistical model selection is too vast

to be comprehensively reviewed in this paper. There are

several families of approaches, such as variational Bayesian

methods [6, 7, 8] and information-theoretic criteria, such

as the minimum description length (MDL), the minumum

message length (MML), and the Akaike information crite-

rion (AIC) [2, 3, ?]. All these criteria are generative, in the

sense that they assume that the goal is to obtain a model that

strikes a balance between explaining well the observed data

(formally, having a high likelihood) and not being overly

complex. When generative models are used in the context
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of classification tasks (namely, as class-conditional densi-

ties), there is no guarantee that a generative model selection

criterion yields models with the best possible (among the

alternatives) classification performance.

Since the main goal of our model, a mixture of motion

fields, is trajectory classification, we proposed to adopt a

discriminative criterion for model selection, following the

rationale in [9]. The key idea is to make use of the knowl-

edge that the obtained models are going to be used for a

specific task: classification. That is, rather than basing the

model selection of the generative properties of the model, it

is their classification performance that is used as the model

selection criterion. To compute the discriminative criterion,

we split the available data into disjoint training and selec-
tion sets. We then estimate a collection of models from the

training set, using the standard maximum likelihood (ML)

criterion via the EM algorithm introduced in [1], and finally

select the one achieving the highest classification accuracy

on the selection set.

The rest of the paper is organized as follows: Section 2

reviews the adopted generative motion model; Section 3 de-

scribes how this model is used for trajectory classification;

the adopted discriminative model selection criterion in de-

scribed in Section 4; Section 5 reports experimental results

and Section 6 draws some conclusions and points to future

work.

2. TRAJECTORY MODEL AND ITS ESTIMATION

A trajectory is simply a length-n sequence of positions of

the center of mass of the person (or object) in the image

plane, x = (x1, ...,xn), with xt ∈ R
2. This sequence of

positions is provided by some tracking algorithm (although

this is by no means a trivial task, in the context of this paper

we consider it a solved problem).

We model each trajectory has having been generated by

a set of K vector (motion) fields T = {T1, . . . ,TK}, with

Tk : R
2 → R

2, for k ∈ {1, . . . , K}. The velocity vector at

point x ∈ R
2 of the k-th field is denoted as Tk(x). At time

instant t, one of the velocity fields is active, i.e., is driving

the motion, thus the trajectory is generated according to

xt = xt−1 + Tkt−1(xt−1) + wt, t = 2, ..., n, (1)

where kt ∈ {1, ..., K} is the label of the active field at time

t, wt ∼ N (0, σ2
kt

I) is white Gaussian noise with zero mean

and variance σ2
kt

. We assume that the initial position x1

follows a known distribution p(x1).
Furthermore, we assume that label sequence k = (k1, ...,

kn) is generated by a Markov chain with space varying tran-

sition probabilities, i.e., the next active field depends on the

current active field as well as on the position of the object

on the image. Formally, model switching is characterized

by the transition probabilities,

P (kt = j|kt−1 = i,xt−1) = Bij(xt−1), (2)

where Bij(x) is the probability of switching from the field

i to the field j at position x. Therefore, B(x) = {Bij(x)}
is a field of stochastic matrices which verify the following

properties at each position x:

Bij(x) ≥ 0,
K∑

p=1

Bip(x) = 1, ∀i, j . (3)

The joint probability function associated to the pair of

sequences {x, k} is given by

p(x, k) = p(x1, k1)
L∏

t=2

p(xt|kt,xt−1)p(kt|xt−1, kt−1),

(4)

where

p(xt|kt,xt−1) = N
(
xt|xt−1 − Tkt

(xt−1), σ2
kt

I
)
,

with N (v|μ,C) denoting a Gaussian density of mean μ
and covariance C, computed at v, and P (kt|xt−1, kt−1) is

as given in (2).

Given a training set of S observed trajectories X =
{x(1), . . . ,x(S)}, where x(s) = (x(s)

1 , . . . ,x(s)
Ls

) is the s-th

trajectory, we have shown in [1] that the ML estimate of the

model (i.e., the set of motion fields T , the switching field B,

and the noise variances σ = (σ2
1 , ..., σ2

K)) can be obtained

efficiently via an EM algorithm. That EM algorithm results

from treating the label sequences K = (k(1), ..., k(S)) as

missing data, and yields a maximum marginal likelihood

(MML) estimate,

θ̂ = arg max
θ

S∑
s=1

log p(x(s)|θ),

where p(x(s)|θ) is the marginal

p(x(s)|θ) =
∑

k(s)∈{1,...,K}Ls

p(x(s), k(s)|θ)

and θ = (T ,B, σ).

3. TRAJECTORY CLASSIFICATION

Each trajectory class, say j ∈ {1, ..., J}, is represented by

a model of the type described in the previous section, that

is, by θ(j) = (T (j),B(j), σ(j)). Given a set of training

trajectories from each of the classes, these models may be

estimated via EM, as referred in the previous section. These

generative models can then be used as class-conditional den-

sities to obtain the maximum a posteriori (MAP) classifier,
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following the standard Bayesian classification paradigm. For-

mally, the predicted class ĵ(x) for some new observed tra-

jectory x is given by

ĵ(x) = arg max
j∈{1,...,J}

{
log p(x|θ(j)) + log P (j)

}
,

where P (j) is the a priori probability of class j, herein as-

sumed to be simply P (j) = 1/J .

4. DISCRIMINATIVE MODEL SELECTION

A fundamental question that we have left aside up to this

moment is: how should we select the number of motion

fields used to model each activity class? That’s the question

to which we provide an answer in this section.

Let K = (K1, ..., KJ), referred to as a model config-
uration, denote the numbers of fields used in the model of

each of the activity classes. We assume that these numbers

satisfy 1 ≤ Kj ≤ M , for j ∈ {1, ..., J}, where M is the

maximum number of vector fields allowed in each class-

conditional model.

Assume that in addition to the training set from which

the generative model of each class is estimated, we have a

so-called selection set, with trajectories from all the classes:

D = (D(1), ...,D(J)), where D(j) = {x(j,1), . . . ,x(j,Dj)}
denotes a set of Dj trajectories from class j.

The discriminative performance of a given model con-

figuration K is obtained naturally on the selection set as

M(K,D) =
J∑

j=1

Dj∑
l=1

δ
(
j, arg max

r∈{1,...,J}
p(x(j,l)|θ(r)

K )
)
,

(5)

where p(x(j,l)|θ(r)
K ) is the likelihood of the trajectory x(j,l)

under the model for class r in a model configuration K, and

δ(a, b) = 1, if a = b, and zero otherwise.

The discriminative model selection criterion thus con-

sists in finding the model configuration that maximizes the

function M(K,D), that is

K̂ = arg max
K∈{1,...,M}J

M(K,D).

If M and J are not too large, it is feasible to find this max-

imum by exhaustive search over all MJ possible config-

urations. In some cases, this number may be reduced by

considering some model restrictions; for example, one may

assume that all the classes share the same number of mod-

els, thus K = K(1, ..., 1), and the search space becomes

simply {1, ...,M}.

5. EXPERIMENTS

5.1. Synthetic data

We first consider a synthetic experiment with two trajectory

classes (J = 2), generated according to the model described

in Section 2. Class 1 simulates a “left-turn” and is well

described by two uniform motion fields, one pointing right

and the other pointing up; switching between the two fields

may occur with probability 0.5 near the center of the image

and with probability zero elsewhere. Class 2 corresponds to

walking in an approximately straight line from left to right;

this is well modeled by a single right pointing uniform field

(of course, there’s no switching as there is only one field).

Fig. 2 shows examples of trajectories from these two syn-

thetic classes.
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Fig. 2. Synthetic trajectories from the two activities classes

described in the text; class 1 in red; class 2 in green.

Both the training and the selection sets each contains

100 trajectories (50 per class). We consider both the fully

unrestricted case, where K = (K1,K2) ∈ {1, 2, 3}2 (9

possible configurations) and the restricted case, where K =
K(1, 1), with K ∈ {1, ..., 5} (5 possible configurations).

Fig. 3 shows the classification accuracies on the selection

set for the unrestricted case (left) and restricted case (right).

It is clear from these plots that any model configuration with

2 or more models in class 1 achieves the maximum accu-

racy, thus the reasonable choice is K = (2, 1).

Fig. 3. Classification accuracies for the unrestricted (left)

and restricted (right) model configurations.

5.2. Real Data

For the real data experiments, we use the UCSD dataset

[10], which contain 189 labeled trajectories. There are two

different activities: “walking towards the camera” (class 1)

and “walking away from the camera” (class 2). Fig. 4 shows

examples of trajectories of both classes (in red and green).
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Fig. 4. Examples of trajectories of the two classes: “walk-

ing towards camera” (red), “walking away from the camera”

(green).

For this experiment, we used 10 trajectories per class for

training and the remaining trajectories as the selection set.

Fig. 5 shows the classification accuracy for the unrestricted

model configurations. It is clear that all the configurations

with 1 model in class 1 achieve the highest accuracy, thus

the reasonable choice is the simplest of these model config-

urations: K = (1, 1). Since the restricted set (in this case)

can not achieve higher accuracy, we don’t include the cor-

responding results. As expected, each activity in the UCSD

dataset requires a single motion vector field to be well clas-

sified. Fig. 6 depicts the estimated motion fields for the two

classes.
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Fig. 5. Classification accuracy with supervised (left) and

unsupervised (right) schemes.

Fig. 6. Estimates of the motion fields (blue arrows) and

some unlabeled trajectories (yellow lines).

6. CONCLUSIONS

We have presented a discriminative method for model se-

lection in the context of trajectory classification using a re-

cently introduce generative motion model. This motion model

is based on a mixture of vector fields, so the model selec-

tion issue (choosing the number of fields) is of central im-

portance. We have presented simple proof-of-concept ex-

periments using both synthetic and real data. The results

reported suggest that the discriminative model selection cri-

terion is capable of selecting the model configuration lead-

ing to the highest classification accuracy.

Future work will include more exhaustive testing on more

challenging problems. Another direction for future research

will consider the problem of searching for the best model

configuration when the number of classes and/or the max-

imum number of model is too large to allow exhaustive

search.
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