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(a)Instituto de Sistemas e Robótica (b)Instituto de Telecomunicações
Instituto Superior Técnico
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ABSTRACT

We propose a method to classify human trajectories, modeled by
a set of motion vector fields, each tailored to describe a specific
motion regime. Trajectories are modeled as being composed of
segments corresponding to different motion regimes, each gener-
ated by one of the underlying motion fields. Switching among the
motion fields follows a probabilistic mechanism, described by a
field of stochastic matrices. This yields a space-dependent motion
model which can be estimated using an expectation-maximization
(EM) algorithm. To address the model selection question (how
many fields to use?), we adopt a discriminative criterion based on
classification accuracy on a held out set. Experiments with real
data (human trajectories in a shopping mall) illustrate the ability
of the proposed approach to classify complex trajectories into high
level classes (client versus non-client).

1. INTRODUCTION AND PRIOR WORK

Activity recognition is a central topic in video surveillance tasks
[3, 7]. The methods proposed to address this problem depend
on the type of environment and application. The most recent ap-
proaches consider essentially two scenarios: short range activities
(SRA) and long range activities (LRA). For SRA, the human body
occupies a significant fraction of the image; accordingly, shape
features, such as silhouettes, can be used to classify the activities
[15, 10]. In LRA scenarios, i.e., in surveillance of wide areas,
pedestrians usually occupy a very small image area, sometimes
just a few pixels, precluding any accurate estimation of shape fea-
tures. In this case, pedestrian trajectories are the commonly used
feature for activity recognition. These trajectories (usually of the
center of mass of the pedestrian) are obtained by tracking algo-
rithms; examples of such trajectories are depicted in Fig. 1. The
work reported in this paper addresses the problem of trajectory
recognition for LRA scenarios.

Several trajectory analysis problems (namely classification and
clustering) have been addressed using pairwise (dis)similarity mea-
sures between trajectories; these include Euclidean [2] and Haus-
dorff distances [13]. However, since the duration of the trajecto-
ries is not constant, sequence alignment techniques are needed for
meaningful comparisons; this has been done using dynamic time
warping [4] and other techniques [12]. However, distance between
trajectories may not be appropriate to describe the nature of the
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Fig. 1. Examples of pedestrian’s trajectories performing different
activities.

underlying activities; i.e., two trajectories may be spatially close
and still correspond to quite different activities. Alternatively, tra-
jectory modeling can be viewed as a problem of semantic scene
modeling, since knowledge about the scene context plays an im-
portant role in activity recognition. In methods that exploit this
idea, semantically meaningful events, such as trajectory intersec-
tions or crossing entry/exit points are used [6, 13].

The approach herein proposed is an extension of the frame-
work presented in [8], in which we introduced a novel approach
for modeling trajectories in natural image sequences. In this pa-
per, we show how those (generative) models can be used to deal
with trajectory classification in a LRA surveillance setting.

We model the trajectories as being generated by a set of motion
(vector) fields, corresponding to different motion regimes. Switch-
ing between these fields is allowed and controlled by a space-
varying probabilistic mechanism; specifically, a field of stochastic
matrices. This model (i.e., the motion and switching fields) can
be learnt from a set of observed trajectories using an expectation-
maximization (EM) algorithm [8], in which the label of the active
field at each time instant is treated as missing/hidden data.

The paper is organized as follows. Section 2 describes the gen-
erative model while the learning algorithm is presented in Section
3. Activity classification is described in Section 4. Experimental
results are presented in Section 5. Section 6 concludes the paper.

2. GENERATIVE MOTION MODEL

We denote the set of vector motion fields as T = {T1, . . . ,TK},
where each Tk : R

2 → R
2 is a vector (velocity, i.e., displacement

in one time unit) field. The velocity vector at point x ∈ R
2 of the

k-th field is denoted as Tk(x). At each time instant, one of these
velocity fields is active, i.e., is driving the motion (generating the
trajectory); accordingly, the motion model is

xt = xt−1 + Tkt(xt−1) + wt, t = 2, ..., L, (1)
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where kt ∈ {1, ..., K} is the label of the active field at time t,
wt ∼ N (0, σ2

kt
I) is white Gaussian noise with zero mean and

variance σ2
kt

and L is the length of the trajectory. The initial po-
sition is assumed to follow some known distribution p(x1). The
conditional probability density of a trajectory x = (x1, . . . ,xL),
given the sequence of active models k = {k1, . . . , kL} is thus

p(x|k, T , σ) = p(x1)

L∏
t=2

p(xt|xt−1, kt), (2)

where σ = (σ2
1 , ..., σ2

K) and

p(xt|xt−1, kt) = N (xt|xt−1 + Tkt(xt−1), σ
2
kt

I), (3)

with N denoting, as usual, a Gaussian density.

We model the sequence of active fields k = (k1, . . . , kL) as
a realization of a first order Markov process, with some initial dis-
tribution P (k1), and a space-varying transition matrix, i.e.,

P (kt = j|kt−1 = i,xt−1) = Bij(xt−1),

where B : R
2 → R

K×K
+ is a field of stochastic matrices,

B(u) =

⎡
⎢⎣

B1,1(u) · · · B1,K(u)
...

. . .
...

BK,1(u) · · · BK,K(u)

⎤
⎥⎦ , (4)

i.e., such that
∑K

j=1 Bij(u) = 1, for any u and any i ∈ {1, ..., K}.
We assume that the initial label follows some known initial distri-
bution P (k1).

Finally, the joint distribution of a trajectory x and the underly-
ing hidden sequence of active field labels, k, is

p(x,k|T ,B, σ) =

p(x1)P (k1)

L∏
t=2

p(xt|xt−1, kt)P (kt|kt−1,xt−1), (5)

where p(xt|xt−1, kt) is as given in (3) and P (kt|kt−1,xt−1) =
Bkt−1,kt(xt−1).

An interesting feature of this motion model, for surveillance
applications, is its interpretability. Each velocity field describes a
different type of motion in the scene, a piece of information which
can be used, for example, by the manager of a public area to char-
acterize the typical ways in which people move in that area.

3. LEARNING THE MODEL

The model learning problem consists in estimating the set of ve-
locity fields T , the field of transition matrices B, and the set of
noise variances σ = {σ2

1 , ..., σ2
K}, from a set of observed tra-

jectories. Specifically, we assume that we have a training set of
S independent trajectories X = {x(1), ...,x(S)}, where x(j) =

(x
(j)
1 , ...,x

(j)
Lj

) is the j-th observed trajectory, with length Lj . Nat-

urally, the corresponding set of sequences of active fields, K =
{k(1), ...,k(S)}, is not observed. We denote the complete set of
fields and parameters to be estimated as θ = (T ,B, σ).

3.1. Model Estimation Criterion: Marginal MAP (MMAP)

The fact that the active field labels K are missing suggests the
use of an EM algorithm to find a marginal maximum a posteriori
(MMAP) estimate of θ under some prior p(θ) = p(T )p(B)p(σ);
formally, the set of parameters θ are given as

θ̂ = arg max
θ

p(X|θ) p(θ)

= arg max
θ

p(θ)
∑
K

p(X ,K|θ)

= arg max
θ

p(θ)

S∏
j=1

∑
k(j)∈{1,...,K}Lj

p(x(j),k(j)|θ)

(6)

where each p(x(j),k(j)|θ) has the form given in (5). Clearly, this
maximization can not be solved in closed form; next, we present
an EM algorithm for solving it.

3.2. The EM algorithm

The complete log-likelihood is given by

log p(X ,K|θ) =

S∑
j=1

log p(x(j),k(j)|θ), (7)

where each term p(x(j),k(j)|θ) has the form (5). Let us introduce
binary indicator variables to represent the model labels (which are

missing data, in the EM framework): each label k
(j)
t ∈ {1, ..., K}

(the active field at time t of trajectory j) is represented by a binary

vector y
(j)
t = (y

(j)
t,1 , ..., y

(j)
t,K) ∈ {0, 1}K , where y

(j)
t,l = 1 ⇔

k
(j)
t = l. With this notation, the complete log-likelihood becomes

log p(X ,K|θ) =

S∑
j=1

Lj∑
t=2

K∑
l=1

K∑
g=1

y
(j)
t−1,g y

(j)
t,l log B

(j)
g,l (x

(j)
t−1)

+

S∑
j=1

Lj∑
t=2

K∑
l=1

y
(j)
t,l logN (x

(j)
t |x(j)

t−1 + Tl(x
(j)
t−1), σ

2
l I) + C,

(8)

where C is an irrelevant constant.
The E-step computes the conditional expectation (with respect

to the missing variables K) of the complete log-likelihood (8),

given the current estimates of the parameters θ̂ and the observa-
tions X :

Q(θ; θ̂) ≡ EK
[
log p(X ,K|θ)|X , θ̂

]
.

Given the linearity of log p(X ,K|θ) with respect to the binary in-

dicators y
(j)
t,l and the (also binary) switching indicators y

(j)
t−1,g y

(j)
t,l ,

computing this conditional expectation corresponds to computing
the conditional expectations of these binary variables, which are
then plugged into log p(X ,K|θ). Notice that these conditional ex-
pectations can be obtained by a simple modified forward-backward
procedure [9]; the modification involves taking into account a vary-
ing transition matrix.

In the M-step, the model estimates are updated according to

θ̂new = arg max
θ

Q(θ; θ̂) + log p(θ). (9)

This maximization is not trivial and requires an adequate finite-
dimensional representation of the motion and switching fields. For
full details on this, the reader is referred to our previous work [8].

3482



4. ACTIVITY CLASSIFICATION

The generative motion model introduced in Section 2 can be eas-
ily used to build a maximum a posteriori (MAP) trajectory clas-
sifier. For that purpose, consider a collection of sets of trajecto-
ries, {X (a), a = 1, ..., A}, each assumed to have been produced
by one of the A activities. A direct approach to using the pro-
posed generative models is to simply estimate A generative mod-

els, {θ̂(a)
, a = 1, ..., A}, from these sets of trajectories, using

the EM algorithm described in Section 3.2. With these model es-
timates, and given a new trajectory x = (x1, . . . ,xL), the MAP
activity classifier is given by

â(x) = arg max
a∈{1,...,A}

p(x|θ̂(a)
) P (a), (10)

where P (a) is the prior probability for activity a (in this paper,

we take p(a) = 1/A), and p(x|θ(a)) is the probability density

function of the trajectory x under the model with parameters θ̂
(a)

,
which can be easily computed using the forward-backward proce-
dure [9].

In this paper, we consider a variant of the approach described
in the previous paragraph, motivated by the following observation.
In some scenarios, the types of motion regimes underlying the
classes tend to be the same; what distinguishes the classes is essen-
tially the way the trajectories switch among those motion regimes.
When this is a valid hypothesis, it makes sense to estimate a com-
mon set of motion fields (shared by all the classes), but a switching
field for each class. The motion fields estimates thus obtained ben-
efit from being based on a larger number of trajectories. Moreover,
this choice requires a very minor change in the EM algorithm. As
explained in Section 5, the experiments reported in this paper use
this option of shared motion fields.

One last question that has to be faced is that of choosing the
number of vector fields for the generative model. We resort to a
discriminative model selection criterion [11], where instead of re-
sorting to generative criteria, such as minimum description length
(MDL), minumum message length (MML), or the Akaike infor-
mation criterion (AIC) [5], we select the set of generative mod-
els achieving the best performance in terms of classification. This
model selection is carried out on a held out training subset. Of
course, this can be seen as a simplified (and cheaper) version of
cross validation.

5. EXPERIMENTAL RESULTS

In this section we present results with real data, concerning typical
trajectory classes in a shopping mall. In the following, two main
classes are considered for the trajectories in front of, and inside, a
store: client and non-client. The trajectories of these two classes
are obviously different. In the first one (client), the pedestrian en-
ters into the mall, stays for a considerable amount of time, during
which he/she enters the store and then leaves the scene. Fig. 2
shows some examples of the client class. In typical trajectories
of the non-client class, the pedestrian enters and leaves the scene,
maybe entering the store but not for a long time, or simply pass-
ing in the front of the store. Fig. 3 shows several trajectories of
the non-client class. In Fig. 3 (a) and (d), the pedestrian enters the
scene, then enters the store for a short time and finally leaves the
scene; in (b) and (e), the pedestrian never fully enters the store,
simply browsing at the entrance; in (c) and (f), the pedestrian first

browses at the entrance but then takes a quick walk inside the store
and finally leaves.

Notice the difference between the scene view in Fig. 1 and
the view in Figs. 2 and 3 (and also in Fig. 4). This difference is
due to the fact that the trajectories are shown on a so-called bird’s
eye view, obtained by a projective transformation (homography)
between the image and a plane parallel to the ground. This is a
common procedure in computer vision, which is done to compen-
sate for the apparent speed variation with the distance from the
camera.

It is clear that, in this problem, it is the switching pattern, not
the underlying motion regimes, that distinguish the two classes.
Accordingly, as described in Section 4, we use a common set of
motion fields and a different switching field for each class. Ac-
cording to the model selection criterion described above, the best
performance was obtained using four motion fields, which is the
number adopted.

We had a total of 58 trajectories, from which we used 10 for
training and the remaining ones for testing. Fig. 4 shows the esti-
mates of the four vector fields obtained by the EM algorithm. From
this figure, we see that the four vector fields represent essentially
the following four motion regimes: inwards motion; outwards mo-
tion; left-to-right motion; and right-to-left motion.

Table 1. Confusion matrix of the proposed classifier on the Client
and Non-Client classes.

Classifier output

Client Non-Client

True class = client 93.0% 7.0%

True class = non-client 9.8% 90.2%

Table 1 show the performance of the proposed approach, where
93% and 90.2% accuracy is achieved for the Client and Non- client
classes, respectively. These results allow concluding that the pro-
posed approach achieves a good performance in identifying com-
plex activities, with high level semantic meaning (in this case, be-
ing or not a store client), using only low level data (trajectories).

(a) (b)

Fig. 2. Examples of trajectories belonging to client class; (a) the person enters in
the right direction, (b) the person leaves the mal in the opposite direction.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Examples of trajectories belonging to non-client class. Notice the high
variability exhibited by these trajectories.

6. CONCLUSIONS

We have presented a new method for classification trajectories in
tailored to LRA surveillance settings. The method is based on
mixtures of vector fields that allow modeling space-dependent mo-
tions. We have presented an EM algorithm to estimate the underly-
ing motion fields along with the space-dependent switching prob-
abilistic model. Experiments using real data have shown that the
proposed approach is able to classify complex activities, with high
level semantic meaning, based only on low level trajectory data.

Directions of further work will include: (i) study of other
model selection strategies; (ii) application of the proposed ap-
proach to other types of data, such as crowds [1] and traffic flows.
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