

Application of Jini technology to a Swarm of Autonomous Vehicles

March 2004

Chad Hawthorne Todd Neighoff Dave Patrone Dennis Patrone

3/12/2003 - Rev 3

Applied Physics Laboratory

 University-Based Applied Research and Development Laboratory

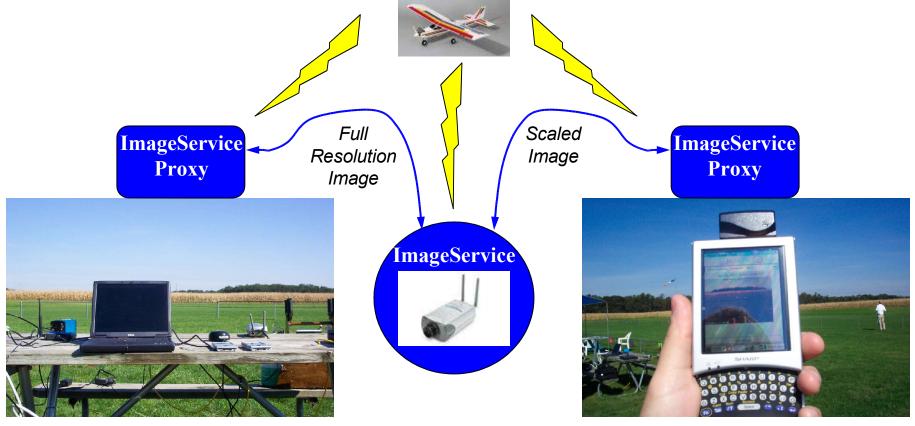
- Focus on National Security
- Major Effort in Space Science and Technology
- Partner in Johns Hopkins Commitment to Education and Medicine
- ~3,350 Staff
- ~\$590M Annual Revenues

Jini Applications

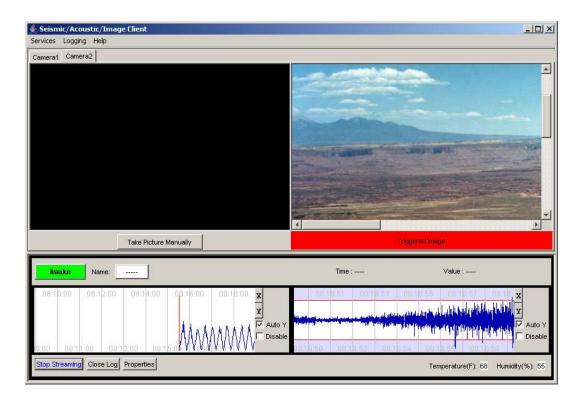
Swarm of Heterogeneous Robots

Autonomous Surveillance Application

- Jini Lookup-Service used to discover new platforms at runtime
- Allows for a fault-tolerant, self-healing network of sensors and robots
- Jini used for knowledge propagation between agents in swarm

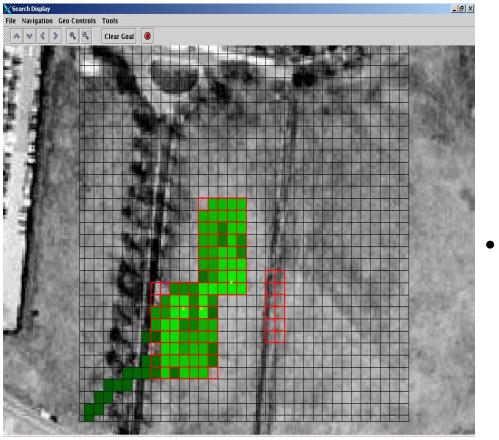


- Allow sensor networks to truly operate autonomously
 - Long-term, unmanned surveillance
- In this domain, Jini can provide:
 - Introduction of sensor upgrades and new capability to <u>deployed</u> systems
 - <u>Intelligent</u> fault-tolerance and re-distribution of resources
- Prototype Services:
 - ImageService interface
 - Provides images from camera-like devices
 - AcousticService interface
 - Provides acoustic data from microphone/geophone devices


- Wireless network provided to distributed sensors via air vehicle
- ImageService proxy scales image query to conserve network bandwidth and client resources based on platform it lands within (e.g. laptop, handheld, etc.)

- Client surveillance application reconfigures based on current services available
- ImageServices allow for manual image retrieval
- AcousticServices report acoustic activity
- If both available, AcousticServices automatically trigger ImageServices when activity is detected

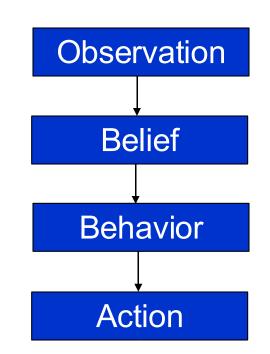
Swarming


- Modeled after insect behavior
 - Knowledge about the world is translated into beliefs (pheromones)
 - Shared beliefs between agents dictate behavior
- Heterogeneous Swarm of Vehicles
 - Emergent behavior
 - Self-organizing, Self-regulating
- Communication is critical
 - Jini is an excellent solution for application layer communications
 - Discovery of agents at run-time
 - Propagation of new knowledge types and behavior

Test Case

- Problem: Area Search
 - Robots are attracted to goal areas
 - Attracted-ness decreases as area becomes searched
 - Repelled from obstacles and each other
- Agents share and propagate beliefs (pheromones).
 - Beliefs are searchedness, search goal, robot location(s).

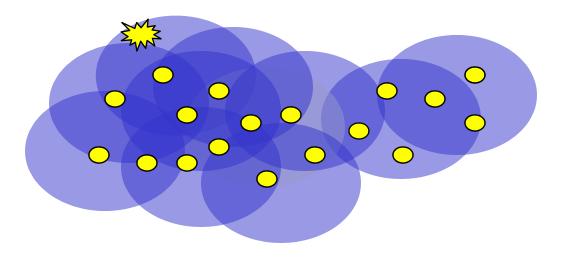
Robot Specs


- Robot Processor
 - Pentium II
 - 20 GB hard disk drive
 - video frame grabber
 - Serial Port board
 - iRobot Mobility software

Sensors:

- Multi-element Sonar array
- V TC Camera
- Laser Range Finder
- GPS receiver
- Compass / tilt module

- Variation on classic AI paradigm of: Sense, Plan, Act
 - Sensor-based Observations are used to generate...
 - Belief about the current state of the world which in turn is used to devise an appropriate...
 - Behaviors to satisfy group goals and objectives. Behaviors are then used to generate...
 - Actions which translate into real world movements of the robot.
- Jini currently being used for transmission of beliefs between agents.



Jini Benefits

- Java ideal platform for heterogeneous swarm.
 - UGV, UAV, Windows Laptop, Handheld
 - Future embedded devices....
- Deployment
 - Run-time discovery of new platforms, beliefs, behaviors
- Robust in an unreliable network

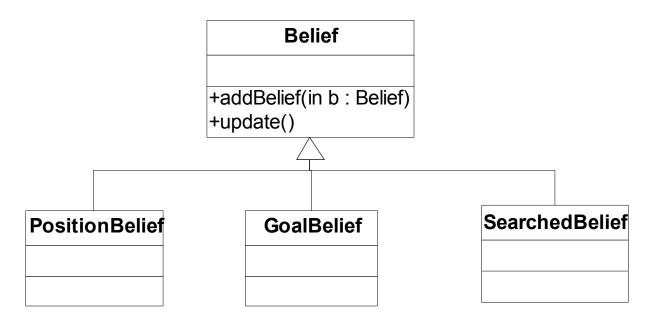
Jini based Beliefs

- New beliefs (pheromones) can be discovered and propagated.
 - Robot does not need to use new belief, can merely propagate it.
- Proxy provides a simple "put" interface.
- New classes are loaded with a custom ClasspathServer
- Beliefs shared using RMI

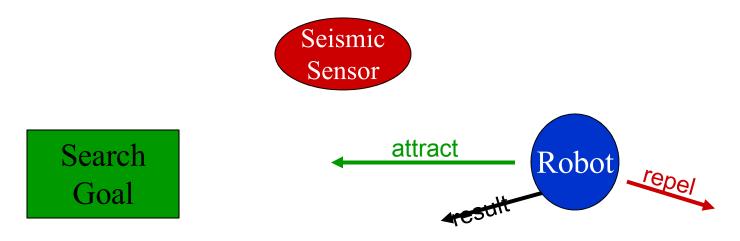
BeliefManagerClient

+serviceAdded(in event : ServiceDiscoveryEvent) +serviceRemoved(in event : ServiceDiscoveryEvent)

```
public void run(){
    while(proxylterator.hasNext()){
        BeliefManagerService service =
            (BeliefManagerService)managerIterator.next();
        service.put(belief);
    }
}
```



Information Technologies Group

+put(in b : Belief) +getName() : String


- Beliefs have behavior associated with their state
 - Know how to perform "add" operation. May differ depending on belief type.
 - Can degrade quality based on elapsed time and belief type.

- Beliefs are useless without a behavior
 - Ant pheromone for food-source useless without ability to gather food
- Each platform should have both a belief and associated behavior
 - Seismic sensor can send belief of its location
 - Behavior will keep noisy ground vehicles away

- Network is unreliable
 - Can experience flood of TCP/IP rebroadcasts at edge of communication range
 - RMI communication breaks down at edge of wireless range
 - UDP multicast is more desirable for belief transmission
- Modifications required for UDP based communications
 - Implement a UDP based lookup-service
 - Implement a UDP based class-loader
 - Re-implement Proxy without RMI interface

- Jini-based behaviors
- Merge Jini-based sensors with robots
- Interface standardization
- Scalability
- Integrate connectionless class-loader