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Cooperative Control for Localization of Mobile

Sensor Networks

Fan Zhang, Ben Grocholsky, Vijay Kumar, and Max Mintz

GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
{zhangfan,bpg,kumar,mintz}@grasp.cis.upenn.edu

Summary. In this paper, we consider the problem of cooperatively control a for-
mation of networked mobile robots/vehicles to optimize the relative and absolute
localization performance in 1D and 2D space. A framework for active perception is
presented utilizing a graphical representation of sensory information obtained from
the robot network. Performance measures are proposed that capture the estimate
quality of team localization. We show that these measures directly depend on the
sensing graph and shape of the formation. This dependence motivates implementa-
tion of a gradient based control scheme to adapt the formation geometry in order
to optimize team localization performance. This approach is illustrated through ap-
plication to a cooperative target localization problem involving a small robot team.
Simulation results are presented using experimentally validated noise models.

1 Introduction

In order for a team of mobile robots to navigate autonomously and per-
form such cooperative tasks as manipulation, surveillance, or search and res-
cue, they must be able to localize themselves relative to each other as well as
relative to a global reference frame. Therefore, how to estimate robots’ and/or
targets’ positions in a precise and efficient way is a crucial factor that impacts
the overall performance of mobile robot platforms. In this paper, we are in-
terested in situations where sensors are placed on networked mobile robots
that can be thought of as a sensor network with additional degrees of freedom
afforded by mobility. We assume that robots within a team can communicate
and combine mutual sensor measurements, such as relative range and bear-
ing, to improve their localization performance, and further investigate how to
control robots’ motions cooperatively in order to optimize the performance of
such localization process.

The approach presented in this paper is closely related to and builds on
three threads of recent research. The first is localization of a team of robots
[1, 2, 3] where distributed robot measurements from heterogeneous sensors are
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integrated and fused to localize all the robots in the team. Second, in addi-
tion to localizing robots, it may also be essential to localize targets. Different
approaches to track targets are described in [4, 5, 6]. For example, robots
are driven by controllers designed to minimize the errors associated with es-
timates of target locations. Thus, optimal trajectories for mobile robots to
localize or track the targets can be obtained assuming that the robots’ states
are known exactly [5, 6]. Third, more generally, a team of robots can be con-
trolled to perform a wide range of tasks including, for example, manipulation
[7] and surveillance [8]. The cooperative control of multi-robot formations is
addressed in [9, 10, 11, 12].

In most of these papers, controllers to regulate the shape of the formation
are described. The control of shape to maintain constraints due to communi-
cation and sensing is addressed by [13]. Similarly, constraints on the shape to
accomplish cooperative manipulation tasks are described in [7].

In all three problem areas, it is necessary to model the interaction (sens-
ing, communication, and physical constraints) between robots. Graphs are the
natural mathematical objects for modeling these discrete interactions [11, 14].
Results on graph rigidity theory [15, 16, 17] can be directly applied to localiza-
tion of multi-robot systems in R

2 and SE(2) in a deterministic setting [18, 19].
In particular, directed graphs in which edges model the observations of one
robot by another robot can be used to model a robot network [20].

Our focus in this paper is on the dependence of localization errors on the
robots’ states or the shape of the formation and the information available to
each robot. We consider the scenario in which the positions of robots and tar-
gets are estimated simultaneously from distributed sensor measurements. We
address the problem of localizing robots in addition to targets, and controlling
the robots by optimizing an appropriate measure of performance. Our perfor-
mance metric for localization is based on the uncertainty associated with the
estimates of relative or absolute positions of the robots and targets.

This paper is organized as follows. In Section 2, we present a model for
formations of mobile sensor networks, incorporating observations of robots
and targets by other robots and the errors associated with these observations.
In Section 3, we discuss models for sensors with a particular emphasis on
cameras. We derive a simple state-dependent measurement noise model for
omni-directional cameras. The connection between measurement errors and
estimate uncertainty is introduced in Section 4, and the dependence of local-
ization quality on formation geometry is also investigated. We derive a simple
controller that drives the team of robots to locally optimal formations in Sec-
tion 5, with applications of these concepts to a small team of robots in R and
R

2. We discuss some of the advantages of the proposed approach and the key
challenges for future research in Section 6.
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Fig. 1. Modeling of sensory information (an example in R
2): (a) A team of two

robots in R
2: Ri has range measurements about Rj ; Rj has absolute measurements

about itself and bearing measurements about Ri. A body reference frame, Bj , has
been attached to Rj . (b) The sensing graph representation of the team in (a).

2 Modeling of Sensor Networks

Consider a d-dimensional Euclidean world, W = R
d (d = 1 or 2), occu-

pied by a team of n robots, R = {R1, R2, . . . Rn}, and assume each robot
can communicate with every other robot in the team. The physical config-
urations of the robots coupled with the characteristics of the hardware and
the requirements of the sensing and control algorithms induce a physical net-

work or a formation of n robots in R
d. We define a global reference frame

F by defining a virtual robot or a beacon R0 with fixed position x0 = 0 in
the inertial frame. (See Figure 1(a)). The shape of the formation in F is de-

noted by shape variable x =
[

xT
1
,xT

2
, . . . ,xT

n

]T
∈ R

dn, where xi ∈ R
d is the

position vector of the ith robot in F . A body reference frame Bj at the jth

robot is also defined with its x-axis aligned with the direction of heading of
Rj . The shape of the formation in the body-fixed frame Bj is described by

x̃ = [(xj
1
)T , (xj

2
)T , . . . , (xj

n)T ]T , where x
j
i is the relative position vector of Ri

about Rj , and x
j
j = 0. For a formation of n robots in R

d, localization is the
determination of the d · n coordinates in x or x̃ that characterize the robots’
positions in a particular reference frame.

2.1 Sensing Graph

In order to represent the sensory information, we define a directed graph
called the sensing graph, G = (V, E ,Z,P), where V = R∪ {R0} is a finite set
of vertices. The edge set E ⊂ V×V consists of labeled, directed edges that rep-
resent the presence of measurements (observations) between robots. An arrow
emanating from Ri leading to Rj indicates one or more sensor measurements
of Rj made by Ri. In this paper, we consider three types of exteroceptive
sensors: range sensors, bearing sensors, and global positioning sensors. Thus,
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Fig. 2. A formation of five car-like mobile robots (left) and a sample image from
omni-directional camera sensor (right).
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Fig. 3. Two candidate sensing graphs for the five-robot formation. In (a), the
measurement set Z ={ φ13, φ15, ρ23, φ23, ρ31, ρ32, ρ34, ρ35, φ31, φ32, φ34, φ35, ρ41,
ρ42, φ41, φ42, φ45, ρ51, φ51, φ53, φ54 }, while in (b) the measurement set Z ={ φ13,
φ15, ρ23, φ23, ρ31, ρ34, ρ35, φ31, φ32, ρ41, ρ42, φ45, ρ51, φ51, φ54 }.

the measurement set Z consists of three types of sensory information: (i) the
range between two robots, ρij , (ii) the bearing of one robot in relation to
another, φij , and (iii) the absolute position of a robot in F , xj , which can be
obtained either by global positioning sensors, or by triangulation with some
fixed, known landmarks. The set P contains the uncertainties associated with
the measurements in Z.

An example of a team of two robots, Ri and Rj , with a fixed beacon R0,
is shown in Figure 1(a). The directed, labeled sensing graph for the team is
shown in Figure 1(b). More generally, in a sensing graph G, the jth vertex has
an incoming edge from the ith vertex whenever robot Ri can sense robot Rj .
Corresponding to different types of sensory information, we use the following
labels: (i) (ρij) or (ρij , null) to denote a range measurement, (ii) (φij) or
(null, φij) to denote a bearing measurement, and (iii) (ρij , φij) to denote a
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range-bearing measurement. Any absolute measurement made by any robot
Rj can be represented by a directed edge from Rj to R0.

A second example of a formation of a five-robot team is shown in Fig-
ure 2. Figure 3 gives two candidate sensing graphs for this formation that are
constructed by two different sets of relative measurements.

2.2 Observation Models

Each range and bearing measurement in Z, which can be potentially used
to estimate the relative distance or angles between the robots, provides infor-
mation about the shape of a multi-robot formation. Thus, every range and
bearing measurement in the associated sensing graph G can be written as an
observation equation on the shape variable, x or x̃, of the formation.

Specifically, for a formation of robots in R, all measurements in Z lead to
an observation model on the relative positions of the form:

ρij = |xi − xj | , (1)

where xi and xj are the positions of robot Ri and Rj in R respectively.
For a multi-robot formation in R

2, measurements lead to one of three
types of observation models on the shape variables. For a pair of robots, in a
body-fixed reference frame Bj :

Type 1 : ρik =

√

(xj
i − x

j
k)T (xj

i − x
j
k) , (2)

Type 2 : φji = tan−1(yj
i /xj

i ) . (3)

For a group of three robots Ri, Rj , and Rk, a pair of bearing measurements,
φij and φik, results in the following Type 3 observation model.

Type 3 : φij − φik = cos−1
(xj

i − x
j
j)

T (xj
i − x

j
k)

‖xj
i − x

j
j‖ · ‖x

j
i − x

j
k‖

. (4)

And all these observation models, Equations (1–4), can be written in the form

z = h(x̃) , (5)

where z = Az0 with z0 be a vector of p measurements in the set Z and A

is a m × p matrix whose elements are either 1, -1 or 0, and h is a nonlinear
function of the shape variable in a body-fixed reference frame. Choosing R0

as the origin, the above observation equations can be also written in terms of
absolute coordinates x with respect to a global reference frame.

These are the only three types of observation models that can be used to
describe the network in R or R

2. All other equations that can be written are
functionally dependent on the above observation equations.
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Given a formation of n robots in R
d, it is necessary to first check if d · n

independent observation equations are available to determine the d · n coor-
dinates in the shape variable x or x̃. In [20], we have developed a test of
functional independence for all observations by defining a constraint matrix
that is built by the derivatives of those observation equations.

3 Sensor Models

3.1 Introduction

While Equations (1–4) describe the geometry of the team robots, they do
not incorporate the measurement noise that is inherent in the process. We
modify Equation (5) to incorporate the measurement noise, v:

z = h(x̃,v) , (6)

The above equation is general enough to model typical sensors on mobile
robots, including global position systems (GPS), inertial measurement units
(IMUs), ultrasonic or infra-red range sensors, and cameras1.

In many sensors, the quality of the measurements is often a function of
the state of the system. For example, ultrasonic sensors have a sweet spot
while camera resolution decreases with range. This suggests that to improve
the localization of a team of robots, it is beneficial for robots to move into
“optimal” configurations. While it may be difficult to determine what an
optimal configuration is, it is certainly meaningful to investigate schemes that
might improve the quality of estimates of relative positions by moving the
robots relative to each other. Hence we are interested in a control scheme
that can improve the estimation quality of robots’ and targets’ positions by
cooperatively moving the robots towards states that are optimal for relative
measurements.

In this section we consider indoor mobile robots and cameras as sensors
for localization. We investigate omni-directional cameras and use experimental
data to develop a sensor model. This will be used as a basis for investigating
optimal formations for localization.

3.2 Omni-directional cameras

The omni-directional camera detailed in Figure 4 utilizes a parabolic mirror
in order to enable a single camera to directly measure both range and bearing
to a feature. The mirror geometry introduces a nonlinear observation model
that relates the pixel measurements z = rc to the range observation y = r,
given by

1 In some cases, e.g. IMUs, it may be necessary to condition and filter the raw
sensory information before it can be written in the above form.
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Fig. 4. Parabolic omni-directional camera and geometry

z = h(y) + ν =
D

y

(

√

l2 + y2 − l
)

+ ν. (7)

where ν ∼ N(0, R) is measurement noise in pixel coordinates. For a given
operating condition, the sensitivity of the range observations to small changes
in pixel coordinates can be obtained by linearizing Equation (7):

H =
∂h

∂y
=

y2
√

l2 + y2

Dl
(

√

l2 + y2 − l
) . (8)

Our experiments show that the noise in pixel measurements is reasonably
well modeled by a normal distribution, N(0, R). From Equation (8), this leads
to errors in the observations of y given by (HT R−1H)−1. Since H is a function
of range, the variance associated with a range observation, y = ρij = ‖xi−xj‖,
obtained from an omni-directional camera, will depend on the range.

The experimental data in Figure 5(a) shows observations for different
ranges. In the experiments, an omni-directional camera was rotated about
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its vertical axis while observing static features at various known ranges. As
the range decreases, the distribution is sharper and the variance associated
with the distribution decreases. It is not too hard to see from Equation (8)
that the variance is approximately proportional to the fourth power of the
range:

σ2

ρij
= σ2

0
+ σ2

1
‖xi − xj‖

4 . (9)

As shown in Figure 5(b), the predicted range-dependent measurement un-
certainty given by Equation (9) (shown by the solid curve) agrees well with
the experimental data points.

In the next section, we will define a measure of the quality of localization,
and use the model in Equation (9) to develop the dependence of this measure
on the geometry of the formation.

4 Measures of Localization

Given the noise model of the camera sensors, we are interested in the con-
nection between measurement errors and estimation errors. We assume that
each sensor measurement is taken independently. Accordingly, if the observa-
tion models in Equation (5) are linearized about the nominal state, xn, they
can be written in the form:

∆z =
∂h(x,v)

∂x

∣

∣

∣

∣

xn

∆x +
∂h(x,v)

∂v

∣

∣

∣

∣

xn

∆v . (10)

We use weighted least squares (WLS) method to obtain the estimates of ∆x

around the nominal states, xn, of robots and targets. Defining

H(x) =
∂h(x,v)

∂x
and L(x) =

∂h(x,v)

∂v
(11)

as the Jacobians of the observation equations around the formation shape
that is specified by the measurements, z, Equation (10) can be written as

∆z = H(x)∆x + v′, (12)

where v′ = L(x)∆v is a vector of random variables, v′ ∼ N(0,R(x)), with
its state-dependent covariance matrix R(x) defined by the expectation of
L(x)∆v∆vT L(x)T .

To obtain the covariance matrix for estimation errors, we can also use a
simple weighted least squares method to get

∆x = (HT WH )−1 HT W∆z , (13)

where W = R(x)−1 is the weight matrix. Squaring both sides of Equation
(13) by multiplying both sides of the equation by their respective transposes:
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∆x∆xT = (HT WH)−1HT W ∆z∆zT WT H ((HT WH)−1)T . (14)

Taking the expectation of the result, we get the covariance matrix as:

P = (HT WH)−1 HT WRWT H ((HT WH)−1)T . (15)

Defining the weight matrix W = R(x)−1, Equation (15) can be simplified to

P(x) = [H(x)T R(x)−1 H(x) ]−1 . (16)

In our simple linearized model with independent, Gaussian noise, the co-
variance matrix P contains all the information about the errors in localization.

We can now consider any of a number of cost functions derived from this
matrix as a metric and controllers that minimize these cost functions. Two
such cost functions are the trace and the determinant of P. They are both
scalar utility measures that capture the quality of the estimate obtained from
a given set of measurements. Since the elements of matrix H are written in
terms of the shape variables, the covariance matrix P resulting from Equation
(16) is naturally dependent on the shape of the formation. Accordingly, we
define two cost functions:

JI (x , G) = trace (P(x)), or JII (x , G) = det (P(x)). (17)

We can also see that these errors are bounded for any set of measurements
if H is a nonsingular, square matrix. If a minimal set of observations are
available, the H matrix derived from a set of m independent observation
equations (m = n − 1 or 2n − 2 or 3n − 3 for systems in R, R

2 or SE(2)
respectively) is nonsingular and square. And the matrix norm of P can be
computed as

‖P‖= ‖H−1 R H−T‖≤‖H−1‖·‖R‖·‖H−T‖= ‖R‖·‖H−1‖2 . (18)

This implies that for a given sensing graph, the uncertainty of coordinates
estimation will explicitly depend on and also be bounded by the measurement
quality and the formation shape. If additional redundant measurements are
added, H is no longer square but continues to be full-rank. In such a situation,
even though Equation (18) is no longer valid, the same conclusion can be
reached.

5 Optimal Formation Deployment

For a given sensing graph, G, gradient descent of the utility measure, J ,
provides a mechanism to drive the robot network to an optimal spatial shape
for relative measurements. Controlling robot velocity according to

ẋ = −k ∇xJI (x , G) = −k ∂
∂x

trace (P(x)) (19)
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where k is a constant scalar factor, yields trajectories that realize the desired
shape of the formation. Using the matrix calculus relations

∂
∂x

trace (X) = trace ( ∂
∂x

X) and ∂
∂x

X = −X ∂
∂x

(X−1)X,

the control strategy shown as Equation (19) can be written as

ẋ = −k trace
[

−P
(

∂
∂x

HT R−1 H + HT ∂
∂x

R−1 H + HT R−1 ∂
∂x

H
)

P
]

= k trace
[

2P
(

∂
∂x

HT R−1 H
)

P + P
(

HT ∂
∂x

R−1 H
)

P
]

. (20)

A similar control scheme using gradient descent of JII can be obtained as

ẋ = −k ∇xJII (x , G) = −k ∂
∂x

det (P(x)) (21)

5.1 Optimal Formations in R
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Fig. 6. (a) A candidate sensing graph for the single robot example in R. (b) Un-
certainty of position estimates of R1 and the target, using JI =trace(P(x)) as the
utility measure. (c) Uncertainty of position estimates of R1 and the target, using
JII = det(P(x)) as the utility measure.

As an example, we consider a single robot, R1, and a target, T, in R.
Assume that the robot can measure the range between the origin R0 at x0 = 0
and itself, and the distance to the target at xT = 1. The goal is to estimate the
positions of the robot and target simultaneously while minimizing the overall
estimation uncertainty. Figure 6 shows that the optimal position for R1 to
take the measurements is where the estimation uncertainty becomes minimal.
And the point where the estimation uncertainty goes to minimum varies if a
different utility measure for localization quality is used.
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Another example of a two-robot formation in R is shown in Figure 7. In
this example, a team of two robots, R1 and R2, are deployed to estimate the
positions of themselves and a target at xT = 1. Given two different sensing
graphs as shown in Figure 7, the optimal shape of this two-robot formation
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in R can be obtained analytically by solving for the minimum of the utility
measure, JII =det(P(x)), which is represented by the surfaces in Figure 8. In
Figure 9, we can see that using the gradient control as defined in Equation
(21), robot R1 and R2 are distributed to the optimal positions where the
minimum of the utility measure occurs in Figure 8.

5.2 Optimal Formations in R
2
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Fig. 10. Three mobile robots/sensors deploy to collectively localize themselves and
a target of interest using a sensing graph containing the relative measurements
z = {φ10, ρ10, ρ12, ρ13, ρ20, ρ23, ρ2T , ρ30, ρ3T }. Where ρiT denotes the relative
range measurement between the ith robot and the target.

As shown in Figure 10, three mobile robots, R1, R2, and R3, are deployed
to collaboratively localize themselves and a target of interest in the fixed
beacon R0’s reference frame. A minimum number of relative measurements are
used to achieve the localization. The initial compact formation of R1, R2 and
R3 close to R0 yields poor target localization degrading overall localization
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performance. The control scheme described by Equation (20) is applied to
improve this situation. Each robot moves along a trajectory governed by the
gradient of the trace of the error covariance matrix. The configuration of this
mobile sensor network converges to an optimal formation, where the quality
of overall team location estimation is maximized.

6 Discussion

There are many interesting challenges in networks of robots with sensors
that go beyond the problems in sensor networks. Sensors generally have a
limited range and field of view and their accuracy often varies with range.
Depending on the information that needs to be acquired, robots/sensors can
be positioned appropriately and even optimally. This paper presents a gen-
eral framework and algorithms for controlling a network of robots to obtain
relative position and orientation. While the main focus is on camera networks
and problems in two dimensions, a similar approach can be used in three
dimensions and for other sensors with different noise characteristics. With a
suitable performance function, one can optimally configure robots to ensure
every robot can localize itself relative to its neighbors and with respect to one
or more targets.

There are many directions for future research. Throughout this paper, we
assume that the sensing graph is invariant under robot motions. Though this
is valid for some applications with particular kinds of sensors, it is gener-
ally not practical for sensors that are limited in terms of field of view and
for robots with limited range of communication. For example, the effective
range of the omni-directional cameras considered in Section 3 is less than 3
meters. Stereo cameras may have a larger range of sensing but they also have
their limits. Occlusion due to obstacles may introduce changes in visibility
and therefore changes in the network. Changes in the sensing graph in turn
introduce discontinuities and make the control problem non-smooth.

Additionally, we have assumed that all robots can communicate with each
other at all times. This may not be true, especially with small robots with low-
power antennae. If multi-hop communication schemes are considered, robots
may be able to talk to each other if they are all connected. Multi-hop intro-
duces delays and noise that will adversely affect the control algorithm. Thus
the choice of sensing graph will have to reflect the ease with which observations
can be integrated and fused and the utility/cost associated with integrating
a robot’s measurements.

On a related note, the estimation and control algorithms discussed in this
paper are centralized. We have considered the localization of all the robots
and the target and cost functions that incorporate all the associated errors.
Further, our centralized control scheme assumes complete state feedback and
centralized decision making that can potentially lead to a global optimal so-
lution for robots’ states. However, before our proposed scheme can be scaled
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to larger teams, we must consider how these algorithms can be distributed
between robots so each robot can develop local estimates of state and in-
dependently make decisions on how to move to improve its estimates. The
decentralized architecture for fusing sensory information and the coordinated
control strategy for air-ground coordination proposed in [21] offer a starting
point in this direction.

Finally, it is important to reiterate the lesson learned from the simple ex-
amples in Section 5. Even for the centralized minimization problem associate
with two robot sensors operating on a line, there may be more than one local
optimum. For multiple robots operating in two and three dimensions, schemes
such as the one proposed in Equation (20) can only lead to local optima. There
may be geometric singularities in configuration space associated with obser-
vation equations becoming functionally dependent. And as discussed above,
it is necessary to change the sensing graph to avoid such configurations. Thus,
this paper provides a starting point to a rich set of problems in cooperative
control.
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