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Abstract

We present a model for multi-agent team forma-
tion and task allocation through implicit communication
among the agents. Intelligent stationary agents (bea-
cons) that are placed dynamically over the task area me-
diate the communication process among the task agents.
Task specialization and the current situation in a re-
gion are used to guide the task allocation, team forma-
tion is based on the strength and type of known tasks. By
utilizing decentralized communication and control mech-
anisms, inspired by biological swarming behaviors, very
large teams can be formed in real time. We illustrate our ap-
proach in an application that requires the coordination
of multiple tasks in a rescue operation for a tsunami sce-
nario, in which the environment changes dramatically and
very little prediction of task requirements can be done in ad-
vance.

1. Introduction

In realistic dynamic environments, very little informa-
tion is available to allocate teams of heterogeneous agents
to complete a group of tasks within a reasonable time scale.
We use disaster rescue as a domain to implement our model
for coordination among a large number of agents with dif-
ferent capabilities. Our goal is to generalize the model for
similar domains, such as space exploration [12] and urban
warfare.

RoboCup Rescue is a simulated environment for disaster
planning involving multiple agents [5]. The environment is
generally an urban location affected by some disaster such
as fire or earthquake [3], the goal is for a group of hetero-
geneous agents to cooperate in performing tasks such as
putting out fire, rescuing civilians, and clearing roads. The
problem is interesting, not only for its potential for reducing
humanitarian damage in an actual physical implementation,
but also for the challenges it presents in terms of forming

dynamic teams of heterogeneous agents in a fast-changing
environment, where very little communication is possible
among the agents. Although, many techniques have been
applied to Robocup Rescue [1, 3], most of the approaches
do not scale for very large teams [11].

In this paper we introduce the concept of beacons, which
are intelligent stationary agents that are dynamically placed
in the task region by the mobile agents. Each beacon coor-
dinates the goal attainment in its local region, by mediat-
ing communication among the mobile agents that perform
the assigned tasks. The beacons are assumed to have a rel-
atively short communication range, and the mobile agents
can only communicate with the agents, in their region. The
mobile agents keep the stationary agents updated of the var-
ious task requirements in that region. This procedure is scal-
able, since it involves decentralized control by the station-
ary agents, and it allows effective coordination strategies to
be formed among the agents in real time.

2. Related Work

RoboCup Rescue has been the subject of a number of
practical implementations [3, 4, 5]. Usage of task alloca-
tion in distributed mobile sensor network is discussed by
Low et al. [7] and the usage of network beacons for mo-
bile robot exploration is discussed by Batalin et al. [2]. Ah-
madi el al. [1] have used advice taking based approach to
coordinate between multiple agents, in RoboCup environ-
ment. Architectures for large-scale team formation is a sub-
ject of current research [6, 8, 9, 10].

Batalin et al. [2] have used beacons in a sensor and com-
munication network and have used robots to dynamically
deploy the agents on the domain. However, the beacons
used for their application do not involve in team formation
among agents, and is used just an aid for navigation. Our ap-
proach involves the use of network beacons, with the bea-
cons being autonomous and intelligent, guiding the task per-
forming agents. In this model, we use the beacons that are



dynamically deployed in the task domain as an agent for de-
centralized control and coordination.

3. The Task

We take our task to be rescuing humans from wreck-
age caused by a tsunami. The recent South Asian tsunami
showed that damage can be widespread and civilians could
be trapped in hundreds of damaged buildings in the task
area. The goal of the agents is to rescue as many humans
as possible in the shortest time range. The number of civil-
ians may be in the hundreds and could be dispersed widely
in the task region and each of them would constitute a res-
cue operation. Individual rescue operations might require
the cooperation of multiple agents, the number of agents re-
quired for a rescue operation depends on the degree of dam-
age, which has to be dynamically determined by the agents.
Communication channels may be limited since many of the
signal towers in the region could have collapsed, and the
overall operation could potentially involve even thousands
of agents, precluding the possibility of centralized control.

4. System Architecture

We have designed a general architecture that is applica-
ble to many domains involving the coordination of a large
number of mobile agents, where each agent possesses some
task specialization, performing complicated tasks in a dy-
namic environment. Examples for this may include space
exploration, wide area search munitions [8], urban warfare,
and RoboCup Rescue.

4.1. Agent Structure

Our model involves the following agents:

1. Heterogeneous mobile agents, or task agents, that must
coordinate to perform tasks that arise in the environ-
ment.

2. Stationary agents, or beacons, that guide the task
agents in a particular region. The mobile agents have
limited communication capability. They can only ex-
change data with a stationary agent that is within
its signal vicinity. Task agents have the capabil-
ity to move within the task area; for simplicity we
assume that they can compute their current posi-
tion using dead reckoning. The overall model is shown
in Figure 1.

In the tsunami domain, the mobile agents are subdivided
into:

1. General search agents that possess general-purpose
sensors to detect humans, damaged buildings, and ve-
hicles, and that can communicate with the stationary

agents about the presence of targets in the region, with
approximate positional information.

2. Task confirmation agents that possess precise sensors
to estimate the degree of destruction and the number
of humans trapped at a particular location. They calcu-
late the number and type of rescue agents required for
the operation. The stationary agents guide the task con-
firmation agents regarding the approximate position of
targets to look for.

3. Rescue agents that use the predictions generated by the
task confirmation agents to form teams with the neces-
sary capabilities. After adequate team strength is at-
tained, the agents move to rescue the target.

4. Deployment agents that possess a number of beacons;
they navigate through the task area and use a sim-
ple criterion for deciding when to drop the beacons.
If at any point they aren’t receiving a broadcast mes-
sage from any beacon, they deploy a beacon (station-
ary agent) initialized with the current time-stamp and
positional information; otherwise they continue mov-
ing.The stationary agents consist of a network beacon
with computational and communication capabilities
that can be deployed in the task region. The station-
ary agents broadcast their signals over a short range,
communicating with the task agents that respond to the
broadcast message.

4.2. Team Formation

Teams are formed through implicit communication be-
tween the task agents, mediated by the beacons. The task
domain is dynamically split into a number of smaller task
regions, where each region has a guiding beacon that main-
tains information about the region. The information is col-
lected through the communication between the beacons and
mobile agents that visit the region. Figure 1 illustrates this
process. The beacons also maintain an ordering relationship
of tasks; when an agent enters its region, it tries to find a lo-
cation where that agent might be required to perform the
subtask in which it specializes. Some of the tasks might in-
volve more than one agent; in this case the beacon advises
the agents to wait for a sufficient number of the specified
type of agents to gather. Thus, we have decentralized con-
trollers that possess knowledge of the local environment and
use this knowledge to engage the task agents in teams.

The task agents, on entering a region, look for tasks that
they specialize in. Search agents navigate within the region
looking for targets; when it finds one, it communicates with
the beacon to register the presence of the target. The bea-
con then waits for a confirmation agent that can estimate
the strength and position of that target. When a confirma-
tion agent enters a region, the beacon guides the path to



Figure 1. A General illustration of the system interaction.

the approximate location of the target, and the confirmation
agent sends information about the strength and location of
target to the beacon. The strength value is used to estimate
the number of rescue agents required and the beacons main-
tain the list of these estimates. When a rescue agent enters
a region where there are targets to be rescued, it registers
its presence, moves closer to the target and waits for sig-
nal from the beacon. Once sufficient rescue agents gather in
that region, the beacon informs the agents to move to the tar-
get and the team of rescue agents performs the rescue task.

When an agent doesn’t have a task assigned to it, it nav-
igates around the environment, looking for targets in other
regions. In the future work, we plan to work on enabling
communication between the beacons, through the agents
that cross from one region to another. This will allow the
task agents to form teams more quickly, by information
sharing among regions, forming dynamic groups of super-
regions that maintain and exchange relevant information.

5. Results

We implemented the system in C++, modeling the agents
as class objects. The physical domain, the mobile agents,
and the stationary agents were implemented as separate
classes that are monitored by a top-level controller class,

which controls the simulation process. Targets were ran-
domly placed in the task domain; all of the agents were de-
ployed starting at one corner of the task region. The task
domain was modeled as a N*M rectangular grid, and the
agents could move one grid per simulation cycle. The agents
have a randomized motion behavior; they persist with their
current direction with a probability Pt determined by that
type (rescue and confirmation agents have greater persis-
tence, search and deployment agents have lower persis-
tence); with probability 1 - Pt, they select a radom direc-
tion to move in.

The experiments were conducted by varying each of the
parameters - number of mobile agents, size of the task
area, and communication radius. Here, communication ra-
dius refers to the maximum signal propagation strength of
the beacons; this range affects the size of the task regions,
which in turn affects the team formation capabilities. The
total number of beacons was set to be 1000. We used a
specialization that assigned 15% of the total agents to be
deployment agents, 35% search agents, 20% confirmation
agents and 30% rescue agents. These values were chosen
through a trial and error process to maximize the average
performance for the domain. The number of targets was set
at 50 in all cases. Since the distribution of the targets may
affect performance, we performed 5 trials for each data set



and averaged over them.

The main performance indicator in our case is the num-
ber of targets rescued within the allotted amount of time.
Other performance indicators used were the distance trav-
eled per target and the ratio of agents to the number of tar-
gets rescued.

In Figure 2, we compare the rescue rate for varying num-
bers of agents. We found that the rescue rate increased sig-
nificantly as the number of agents increases. Here, we see
that with 500 agents, 90% of the targets were rescued within
1500 time steps. In general, the number of targets rescued
increases monotonically with the number of agents. This is
also shown by the Figure 3,which shows the average num-
ber of targets rescued at a given time (t = 3000) increase, as
the number of agents increases.

However, as shown in Figure 4, the efficiency of the agents
fall, after reaching a certain threshold. In this case, we ex-
perimented with two communication limit values. The tests
were run with a varying number of agents with communi-
cation limits of 50 and 90. The number of targets rescued
per agent peaks around 100 agents for this particular sce-
nario and then drops off. Another measure of efficiency -
total distance traveled also provides a metric for compar-
ison, since the energy spent, the probability of agent fail-
ure and positioning error all increase with increase in dis-
tance. In Figure 5 we see that the distance traveled per tar-
get increases with the number of agents. This shows that
we need a trade-off between efficiency and rescue capabil-
ity when deciding on the number of agents required for an
operation.

Though there is an initial trend of increasing target res-
cue with higher communication access, this does not con-
tinue. This is because increasing the communication lim-
its increases the degree of centralization,since each beacon
controls a larger region, causing the performance to fall
slightly after reaching a threshold. This is shown in Fig-
ure 6, where increasing the communication propagation, af-
ter a certain limit, slightly reduce the number of targets res-
cued. The graph shows that there was a performance gain
when the communication limit was increased from 40 to 50.
The performance, however, decreased when the communi-
cation limit was set to 60 and 100.

The total area of the task domain also affects the per-
formance, since it determines the distance traveled by the
agents and the size of the area to be searched. Figure 7
shows that increasing the task area slightly reduces the num-
ber of targets rescued for a given number of task agents.
However, the reduction was not great indicating that the
model will scale well to large task domains.
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Figure 2. Influence of the number of agents
on the time taken for rescue. The size of the
task domain was 400 X 400; the communica-
tion limit was 50 units.
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Figure 3. Number of targets rescued at t =
3000 with varying number of agents. The size
of the task domain was 400 X 400; the com-
munication limit was 50 units.



Efficiency in terms of targets rescued per agent
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Figure 4. Efficiency of the agents in terms of
targets rescued per agent, for different com-
munication limits. The size of the task do-
main was 400 X 400; the time limit was t =
3000.
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Figure 5. Efficiency of the agents in terms
of total distance travelled per target rescued.
Communication limit was 90 units; size of the
task domain was 400 X 400; the time limit was
t = 3000.
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Figure 6. Influence of the communication
limit on the time taken for rescue. The num-
ber of agents was 300, and the size of the task
domain was 600 X 600.
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Figure 7. Influence of the task domain size
on the time taken for rescue. The number of
agents was 300; the communication limit was
50 units.



6. Conclusion and Scope for further work

In this initial work, we implemented a model for large-
scale team formation using decentralized control provided
by network beacons that are dynamically deployed in the
task domain. This model was applied to a disaster rescue do-
main. Our experiments show that the model can be used for
teams of large groups of heterogeneous agents, and that the
efficiency of task agents, does not drop significantly as the
number of agents increases. Task performance is also main-
tained fairly well, with an increased area of operation. We
believe that this model will scale well and can be applied to
a variety of applications.

In the future, we plan to integrate this model with existing
RoboCup Rescue architectures and include more method-
ologies to compare our approach with existing techniques.
We also plan to enable task weighting based on the time
taken to rescue a target, which could guide the task alloca-
tion process. We are also exploring inter-region communi-
cation via mobile agents that cross region boundaries; this
will create a communication network that will enable bet-
ter transfer of information and increasing the efficiency of
the system.
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