
A Framework for Multi-Robot Coalition

Formation

Lovekesh Vig and Julie A. Adams

Electrical Engineering and Computer Science Department,
Vanderbilt University,

Nashville,
TN 37212

{lovekesh.vig, julie.a.adams}@vanderbilt.edu

Abstract. Task allocation is a fundamental problem that any multi-
robot system must address. Numerous multi-robot task allocation schemes
have been proposed over the past decade. A vast majority of these
schemes address the problem of assigning a single robot to each task.
However as the complexity of multi-robot tasks increases, often situa-
tions arise where multiple robot teams need to be assigned to a set of
tasks. This problem, also known as the coalition formation problem has
received relatively little attention in the multi-robot community. This
paper provides a generic, task independent framework for solutions to
this problem for a variety task environments. In particular, the paper
introduces RACHNA, a novel auction based coalition formation system
for dynamic task environments. This is an extension to our previous
work which proposed a static multi-robot coalition formation algorithm
based on a popular heuristic from the Distributed Artificial Intelligence
literature.

1 Introduction

Task allocation is a problem that must be addressed by any multi-robot sys-
tem. Over the past decade, numerous solutions to the Multi-Robot Task Allo-
cation (MRTA) problem have been proposed in the literature. However, most
of the proposed solutions assign individual robots to individual tasks. In other
words, the existing solutions operate under the assumption that each task may
be performed by a single robot, also called the single-task single-robot (ST-SR)
assignment problem [1].

As multi-robot systems evolve, multi-robot tasks are becoming more complex.
The increase in task complexity results in situations where a task cannot be
completed by a single robot and it becomes necessary to assign a team of robots
to an individual task. This problem is called the single-task multiple-robot (ST-
MR) allocation problem and is the central theme of this work. In this paper the
problem of allocating tasks to disjoint robot teams is investigated. Each such
team is referred to as a coalition. The set of all disjoint coalitions is called the
coalition structure. Finding the optimal coalition structure is called the coalition



formation problem and has been proven to be NP-complete [2]. Solutions to
the coalition formation problem have many potential applications, especially
in situations where tasks are located at considerable distances from one another
and teams of robots need to be dispatched to different locations to autonomously
complete their designated tasks.

Gerkey and Matarić [3] point out that despite the existence of various multi-
agent coalition formation algorithms, none of these algorithms had been demon-
strated in the multi-robot domain. Although not heavily pursued in Multi-Robot
Systems (MRS), coalition formation is an established area of Distributed Artifi-
cial Intelligence (DAI) research, and various heuristics have been proposed that
yield good, tractable, sub-optimal solutions. However, these solutions make un-
derlying assumptions that are not applicable to the multiple-robot domain, hence
the existence of a discrepancy between the multi-agent and multi-robot coali-
tion formation literature. Our prior work [4] identifies these assumptions and
provides modifications to multi-agent coalition formation algorithms to enable
their use in the multi-robot domain. In this paper we outline extensions of this
work so as to provide a framework for allocation of multi-robot (MR) tasks. In
particular, we present RACHNA1, a novel dynamic, market-based architecture
for allocating multi-robot tasks based on individual robot capabilities.

The coalition formation approaches discussed in this paper are completely
task independent, i.e. task allocation is performed without making any underly-
ing assumptions about the types of tasks. Also no assumption is made regarding
the approach used to perform the task, i.e. the underlying coordination mecha-
nism could be behavior based, swarm based or economy based without impacting
team formation.

The remainder of the paper is organized as follows. Section 2 provides the
related work. Section 3 identifies some important differences between software
agent environments and multi-robot environments. Section 4 provides a brief
glance of our previous work which lead to the ideas presented in this paper. Sec-
tion 5 formulates the coalition formation problem as an instance of the matching
problem. Section 6 outlines the different kinds of task environments and intro-
duces RACHNA, a novel, market-based, dynamic coalition formation system.
Section 7 discusses the conclusions and identifies areas for future work.

2 Related Work

A number of elegant solutions to the task allocation problem have been proposed
in the literature. The ALLIANCE [5] architecture uses motivational behaviors
to monitor task progress and dynamically reallocate tasks. ALLIANCE employs
a variant of the subsumption architecture [6] and makes use of ”behavior sets”
to enable a robot to perform versatile tasks. Recently Low et al. [7] proposed
a swarm based approach for the cooperative observation of multiple moving
targets (CMOMMT) task, a test-bed first introduced by Parker [8]. This scheme

1 Robot Allocation through Coalitions using Heterogeneous Non-Cooperative Agents



mimics ant-behavior to regulate the distribution of sensors in proportion to that
of the mobile targets. Dahl et al. [9] present a task allocation scheme based
on “Vacancy Chains,” a social structure modeled on the creation and filling
up of vacancies in an organization. The Broadcast of Local Eligibility system
(BLE) [10] system uses a Publish/Subscribe method to allocate tasks that are
hierarchically distributed.

Market based task allocation systems have traditionally found favor with
the software-agent research community. The inspiration for these systems stems
from the Contract Net protocol [11]. Variations of the Contract Net protocol
have found applications in numerous software-agent negotiation scenarios, these
include [12], [13], [14] and [15].

Robotics researchers have designed a variety of market based control archi-
tectures for multi-robot tasks. Stentz and Dias [16] were the first to utilize a
market-based scheme to coordinate multiple robots for cooperative task com-
pletion. This work introduced the methodology of applying market mechanisms
to intra-team robot coordination as opposed to competitive inter-agent inter-
actions in domains such as E-commerce. Laengle et al. [17] implemented the
KAMARA system which uses a negotiation based task allocation scheme for
controlling the different components of a complex robot. Caloud et al. [18] de-
veloped the GOPHER architecture that utilizes a centralized auction protocol
to allocate tasks with a high level of commitment. Gerkey and Mataric̀ [19]
developed MURDOCH; a completely distributed auction-based task allocation
scheme that utilized a publish/subscribe communication model. Tasks in MUR-
DOCH are allocated via a single round, first price auction in a greedy fashion.
M+, another auction based task allocation protocol was developed by Botelho
and Alami [20]. The novelty of the M+ system lies in that it allows for dynamic
task reallocation of subcomponents of complex tasks. Dias [21] designed the
Traderbots architecture for multirobot control. Traderbots agents called traders
are responsible for trading tasks via auctions. When an auction is announced
agents compute bids based on their expected profit for the tasks, and the robots
that can perform the tasks for the lowest price are awarded contracts.

As previously stated, a relatively unexplored problem in multi-robot systems
is the allocation of multi-robot teams to different tasks (the ST-MR problem).
Very recently Zlot and Stentz [22] have designed a scheme for complex task
allocation for multi-robot teams. This scheme allows bidding on tasks at different
levels of the decomposition hierarchy via the use of task trees. To the best of our
knowledge, this is the only system apart from the one described here that deals
with task allocation for multi-robot tasks.

Coalition formation is an established area of DAI research and many tech-
niques for agent coalition formation have been proposed. Sandholm et al. [2]
formally prove that finding the optimal coalition structure is an NP-Complete
problem. They view the coalition structure generation process as a search of a
coalition structure graph[2]. The problem is formulated as a search through a
subset of the coalition structures and selection of the best coalition structure
encountered. Fass [23] provides an Automata-theoretic view of agent coalitions



that discusses results that can be adapted to selecting groups of agents. Li and
Soh [24] discuss the use of a reinforcement learning approach in which agents
learn to form better coalitions over repeated iterations. Sorbella et al. [25] de-
scribe a mechanism for coalition formation based on a political society. A novel
organisational approach was recently proposed by Abdallah and Lesser [26]. In
this approach, an organization-based distributed polynomial time algorithm is
proposed that makes use of reinforcement learning to optimize local decisions
made by agents in the organization as the agents gain experience.

3 Agents vs. Robots

Despite the similarities between multi-agent and multi-robot systems, the algo-
rithm translation from agents to robots is not straightforward. There are some
inherent differences between software agents and robots and the environments
in which they both operate. Software agents are simply code fragments whose
capabilities correspond to software functionality and current data knowledge.
Robots are tangible entities that occupy physical space and whose capabilities
correspond to sensors, actuators, etc. Whereas software agents are programmed
by individual programmers, robots are manufactured on a large scale. Software
agents may dynamically alter their capabilities by downloading additional code,
but robot capabilities remain static. Due to the flexibility that comes with soft-
ware agents, DAI researchers make numerous assumptions while designing algo-
rithms that do not hold when those algorithms are applied to robots. Besides
these assumptions, robots must handle real world sensory noise, full or partial
robot failures, and communication latency or loss of communications. All of these
issues must be addressed before a multi-agent algorithm may be considered vi-
able for robotic applications. The following section addresses these issues and
suggests modifications to an existing multi-agent coalition formation algorithm.

4 The Multi-Robot Coalition Formation Algorithm

This section provides a brief overview of an existing multi-robot coalition forma-
tion algorithm that leverages a heuristic from the multi-agent coalition formation
literature. Also, presented is the concept of coalition imbalance and its implica-
tions with respect to fault tolerance in multi-robot coalitions.

4.1 Shehory and Kraus’ algorithm

Shehory and Krauss [27] designed a heuristic based algorithm for task allocation
via agent coalition formation in Distributed Problem Solving (DPS) environ-
ments. The algorithm restricts the coalition structure space by restricting the
size of individual coalitions to a fixed constant k. This heuristic fits well with the
multi-robot task domain because very often task execution requires less than a
fixed number of robots. The algorithm consists of two primary stages:



1. Calculate the coalition values thus enabling their comparison.
2. Agents determine via an iterative greedy process the preferred coalitions and

form them.

Due to the differences between agents and robots outlined above, the current
algorithm cannot be directly applied for multiple-robot coalition formation. The
subsequent sections provide a cursory glance at some of these issues and the
solutions [4]. The impact of extensive communication was shown to be severe
enough to endorse relinquishing communincation in favour of additional compu-
tation when possible. The task format for multi-robot coalitions was modified
to adequately represent additional constraints imposed by the multi-robot do-
main. The concept of coalition imbalance was introduced and its impact on the
coalition’s fault tolerance was demonstrated.

4.2 COMPUTATION vs. COMMUNICATION

Shehory and Kraus’ algorithm [27] in its original form requires extensive commu-
nication and synchronization during the computation of coalition values. While
this may be inexpensive for disembodied agents, it is often desirable to minimize
communication in multiple-robot domains even at the expense of extra compu-
tation. The purpose of communication in Shehory and Kraus’ algorithm is to
allow the agents to continuously update each others capability values and to
avoid redundant computations. Since robot capabilities typically remain static,
the need for continuous updates is eliminated. Therefore, we altered the algo-
rithm to allow each robot to evaluate all coalitions in which it was a member
and eliminated the need for communication in the coalition evaluation stage.

4.3 TASK FORMAT

The multi-agent coalition formation algorithm [27] assumes that the agents have
a capability vector, < bi

1, ..., b
i
r >. Agents are allowed to exchange resources,

therefore an agent coalition is deemed to have sufficient resources to perform
a task if each element of the vector sum of the agent capabilities is greater
than the vector of capability requirements for the task. Shehory and Kraus’
algorithm assumes that the individual agents’ resources are collectively available
upon coalition formation. The formed coalition freely redistributes resources
amongst the members. However, this is not possible in a multiple-robot domain.
Robot capabilities correspond to sensors (camera, laser, sonar, or bumper) and
actuators (wheels or gripper) which cannot be autonomously exchanged. This
implies that simply possessing adequate resources does not necessarily create
a multiple-robot coalition that can perform a task, other locational constraints
have to be represented and met. These constraints were represented using a task
constraint graph and the coalitions were validated using arc-consistency to check
for constraint violations.

Using the Constraint Satisfaction Problem (CSP) formulation each candidate
coalition is checked to verify if its coalition is feasible. After constraint checking



fewer coalitions remain for further evaluation. While additional overhead is in-
curred during constraint checking, this overhead is somewhat compensated for
by the reduced number of coalitions.

4.4 COALITION IMBALANCE

Coalition imbalance or lopsidedness is defined as the degree of unevenness of
resource contributions made by individual members to the coalition. This char-
acteristic is not considered in other coalition formation algorithms. A coalition
where one or more agents have a predominant share of the capabilities may have
the same utility as a coalition with evenly distributed capabilities. Recall from
Section 3 that robots are typically unable to redistribute their resources. There-
fore coalitions with one or more dominating members (resource contributors)
tend to be heavily dependent on those members for task execution. These dom-
inating members then become indispensable. Such coalitions should be avoided
in order to improve fault tolerance. Over reliance on dominating members can
cause task execution to fail or considerably degrade. If a robot is not a dominat-
ing member (does not possess many sensors) then it is more likely that another
robot with similar capabilities can replace this robot. The Balance Coefficient
metric [4] quantifies the coalition imbalance level.

Simulation experiments were performed in the Player/Stage [28] simulation
environment to demonstrate the effect that the balance coefficient would have
on fault tolerance of robot teams. The algorithm was then transferred to actual
robots in which the box-pushing task was used as a proof of concept experiment.

The translation of the simulation experiments to real world robot experiments
required a few adjustments to account for problems of slippage and mapping of
capabilities to real numbers. However, the experiments successfully establish that
the algorithm performs satisfactorily with real robots.

5 Coalition Formation as a Matching Problem

The title “coalition formation” is to some degree a misnomer in that it implies
that the problem is simply the partitioning of the set of robots into teams or
coalitions. In reality, coalition formation as defined in game theory and DAI is
only half of the problem, the other half of the problem is the assignment of
coalitions to individual tasks so as to maximize the overall system utility. At
first glance these two phases seem to be independent but closer examination
reveals a strong link. The coalition value is determined largely by the utility of
the task assigned to that coalition. Therefore, the coalition formation process has
to consider all tasks while considering possible coalition structures (containing
coalitions to a size k). This is what makes coalition formation a harder problem
than a simple instance of the Set Partitioning problem where the values of subsets
are fixed.

Our current coalition formation algorithm [4] greedily chooses the best coalition-
task pair. Although this greedy approach yields a fast solution, it also detracts



from the solution optimality. Therefore, we propose to formulate the problem as
a matching problem and simultaneously consider all the tasks and coalitions.

5.1 THE MATCHING PROBLEM

A matching in a graph G = (V, E) is a subset M of the edges E such that no two
edges in M share a common end node. If the graph’s edges have an associated
weight, then a maximum weighted matching is a matching such that the sum of
the matching edge weights is maximized.

A graph is bipartite if it has two kinds of nodes and edges exist only between
two nodes of a different kind. Matchings in bipartite graphs can be computed
more efficiently than matchings in general (non-bipartite) graphs.

A maximum cardinality matching is a matching with a maximum number of
edges. If the graph edges have an associated weight, then a maximum weighted
matching is a matching such that the sum of the matching edge weights is
maximized. A maximum weighted maximum cardinality matching is a maximum
cardinality matching with the maximum weight.

5.2 MATCHING COALITIONS AND TASKS

Once the agents have created a list of coalitions and evaluated all coalitions as
discussed in Section 4, the coalitions and the tasks can be represented as the
nodes of a bipartite graph, as shown in Fig 1. Once the tasks and coalitions
are represented as nodes of a bipartite graph, the selection of coalitions can be
formulated as a matching problem.
Three types of problems can arise depending upon what parameter is to be
maximized:

1. Maximize the number of tasks assigned: This is an instance of the maximal
cardinality bipartite matching problem. The best known algorithm for solving
this problem was developed by Hopcroft and Karp [29].

2. Maximize the overall utility: This is an instance of the maximum weighted
matching problem. The best known algorithm for solving this problem was
provided by Tarjan [30].

3. Maximize number of tasks and for this maximal number, maximize the util-
ity: An instance of the maximum weighted maximum cardinality matching
problem. The best known algorithm for solving this problem was provided
by Kuhn [31].

The problem with formulating the coalition formation as a matching problem
is that the chosen coalitions may overlap, i.e. the members of one coalition in
the maximal matching may be present in another. Since at the moment only
disjoint coalitions are being considered, we need to ensure that the final chosen
coalitions do not overlap. This is accomplished by iteratively computing the
maximal matching using the appropriate matching algorithm as listed above.
The edges of the matching are arranged in ascending order (in case of weighted



Fig. 1. Matching coalitions with tasks.

maximal matching). Each edge (coalition-task pair) is selected in order, and all
coalitions with members common with the selected coalition are deleted from the
graph. Additionally, all the edges incident on those coalitions are deleted from
the list of edges in the current maximal matching. This edge deletion continues
until all the edges are exhausted and the list of edges is empty. A new maximal
matching is then computed with the remainder of the coalitions and tasks. The
maximal matching for the resulting graph is then recomputed and the entire
process is repeated until either all the coalitions are deleted or all the tasks have
been assigned.

6 Task Environments

The suitability of solutions to the coalition formation problem depends to a large
degree on the nature of the task environments. Solutions that are appropriate
for a particular task environment may not be appropriate for a different task
environment. This section outlines some approaches for coalition formation in
different task environments. It should be noted that no assumptions about the
nature of the tasks are being made, only about the manner in which tasks are
introduced into the system.

6.1 STATIC TASKS

If the tasks are independent and task utilities do not change with time, then the
task environment is called static. Robots in static environments must allocate



themselves amongst the various tasks only once, i.e. once a given set of tasks are
allocated, the algorithm terminates. This is the simplest task environment and
the algorithm described in Section 4 can be used to form coalitions.

6.2 PRECEDENCE ORDERED TASKS

There may be occasions where a specific task tj cannot be performed unless
another specific task ti has already been satisfied. This is generalized by a partial
precedence order between the tasks, t1 � t2 . . . � tn, where ti � tj means that
ti is the predecessor of tj in the performance order. Consider the blocks world
problem as shown in Figure 2, the task is to arrange a set of blocks starting
from an initial configuration into a final configuration. Assuming that the blocks
are too heavy for an individual robot to transport, each block must be moved
by a coalition of robots. In Figure 2 blocks D1, D2 and D3 may be transported
at different times (as long as D1 and D2 are placed before D3). Therefore the
final configuration may be attained by formation of three overlapping coalitions,
each responsible for the placement of one of the blocks D1, D2, D3. These three
coalitions may have robots in common because the tasks performed by these
coalitions may be performed at different times.

Fig. 2. The Blocks world [26].

Since these tasks have to be executed in order, the coalition members may
overlap. However, closer examination reveals that the twin tasks of arranging
blocks D1 and D2 are independent of each other, i.e. they may be executed
in parallel or in any random order. Therefore, it would be more efficient to
assign disjoint coalitions to these tasks to allow for the parallel arrangement of
D1 and D2. This idea can be generalized to a sequence of precedence ordered
tasks where some intermittent sub-sequences may consist of independent tasks.
The most efficient solution in this case would be to execute the tasks in such a



subsequence in parallel by assigning disjoint coalitions to as many tasks in the
subsequence as possible. Subsequences of tasks for which interdependencies do
exist may be performed using overlapping coalitions.

The Algorithm: The idea is to find the largest subset of tasks consistent with
the task ordering that can be executed with the currently available set of robots.
Instead of evaluating individual coalitions against all the tasks, sets of coalitions
must now be examined. Unlike the algorithm in Section 4 where one coalition
was assigned to a task in each iteration. In the precedence order case, the agents
may form several coalitions in each iteration. Formally the algorithm in this case
is:

1. Find all tasks that have no unfulfilled pre-requisite tasks. Call this list of
candidate tasks the candidate list Cl.

2. Evaluate all coalition structures comprising of coalitions of size k or less with
respect to the tasks in Cl.

3. Choose the coalition structure with the highest utility of coalitions and assign
each coalition to its designated task.

4. Remove the tasks executed from Cl and add any new tasks that are now
eligible for execution.

5. Check if any robots have completed their task and if so add them to the list
of available robots.

6. Repeat until no more tasks remain to be executed.

6.3 DYNAMIC TASKS: The RACHNA Architecture

A common feature of the market based systems discussed in Section 2 is that
all these systems require the robots to bid on the tasks. While this approach is
adequate for allocating single-robot (SR) tasks, it does not allow for the gath-
ering of the global information necessary to allocate resources to multi-robot
(MR) tasks. The bidding process is central to determining the auction outcome.
Therefore when dealing with complex tasks, the bidder should have a global
view of the available resources. Previous systems require a robot to bid without
incorporating any knowledge of the status of other robots (i.e. busy or idle). We
propose a system, namely RACHNA2, in which the bidding is reversed. The auc-
tion is performed by the tasks for the individual robot services. This allows for
the bidding to be performed with the global information necessary for coalition
formation. There are two types of software agents that are involved in the task
allocation:

1. Service Agents: The Service Agents are the mediator agents through which
the tasks must bid for a service. RACHNA requires that each robot has a set
of services or roles that it is capable of performing. The roles are determined
by the individual sensor and behavioral capabilities resident on each robot.

2 Robot Allocation through Coalitions using Heterogeneous Non-Cooperative Agents



There is one service agent for each service type that a robot can provide.
A service agent may communicate with any of the robots that provide the
particular service to which the agent corresponds. For example, the foraging
service agent may communicate with all robots that currently have sensor
capabilities i.e. (camera, gripper) to perform the foraging service. Service
agents reside on any one of the robots that are capable of providing the
service. Thus, the global information concerning the task is acquired in a
decentralized manner through the use of service agents.

2. Task agents: These agents place offers on behalf of the tasks so as to acquire
the necessary services. The task agents communicate only with the service
agents during negotiations. Once the task has been allocated, the task agent
may communicate directly with the robots that have been allocated for the
task.

Figure 3 provides an overview of an example RACHNA architecture implemen-
tation.

Fig. 3. An example RACHNA Implementation.

We propose an economy where the tasks are represented by task-agents that
are bidding for the services of the individual robots. The economy has a set of
robots R1, R2..., RN where each robot is equipped with sensor capabilities that
enable it to perform various services such as pushing, watching, foraging, etc. The
tasks are assumed to be decomposable into the sub-task behaviors (roles) that
they require. For example, in the box-pushing task as defined in [32], two pusher



sub-task roles are required and one watcher sub-task role is required. Each role is
represented by a service agent that is responsible for negotiating with the robots
with the desired capability. The roles may be implemented through the use of
behavior sets as defined in [5]. The negotiation proceeds as follows, on arrival of
a task with a certain utility, a new task agent is created that considers the roles
required for task execution and communicates an offer to the respective service
agents. The initial offer for each role is an equal distribution of the task utility
amongst the robots engaged in the task. The contacted service agents then at-
tempt to find a suitable robot that is currently receiving a lower utility than has
been offered. If there is no such robot with the required capabilities, the service
agent sends a reject message to the task agent along with the minimum utility
that would have to be offered for the provided service. If all the service agents
reject the task agent’s offer, then the desired resources cannot be allocated and
the task agent must wait until the task utility increases (utility may be modeled
as an increasing function of time) or until the task agent receives a signal from
the service agent indicating that the service has become cheaper. If all service
agents accept the offer, then the task is successfully allocated. The interesting
case occurs when some service agents accept and others reject the offer. The
twin quantities of Slack Utility and Utility Requirement are defined in order to
handle this situation.

Slack Utility: The slack utility of a task is defined as the excess utility of-
fered to the service agents for the individual services. In other words, it is the
maximum utility that can be withdrawn from an offer which will still enable the
task to retain the current set of services. Formally, if the current set of services
that have accepted require a minimum of Umin to continue to stay committed
to the task and if the previous combined bid for these services was Up then the
Slack Utility (SU) is given by:

SU = Up − Umin (1)

Utility Requirement: The utility requirement of a task is defined as the min-
imum additional utility needed to acquire remaining services required for the
task. Formally, the current set of services that have refused to commit to the
task require a minimum of Umin to do so, and the previous combined bid for
these services is Up, then the Utility Requirement (UR) is given by:

UR = Umin − Up (2)

After the receipt of the accept/reject messages from the service agents, the
task agent has sufficient global information to determine whether the task re-
sources can be acquired. When the task agent receives acceptances from some
agents and has enough slack utility to purchase more services, it calculates the
slack utility available to the task and evaluates whether this slack is sufficient
(i.e. if SU > UR ). If enough SU exists, the entire extra slack is offered to the
individual service agents one at a time. Note that although the Slack Utility



may seem sufficient, the services may still be refused if the other tasks increase
their offers to the individual robots in response to the threat of losing a robot.
If the current Slack Utility proves insufficient then the services cannot be ac-
quired and the task agents wait until the task utility increases to the desired
level or until the service agents indicate that the service is now available at a
lower price. These tasks are placed in the service agent’s task queue to wait until
some robots are free or have completed their designated task (and have become
idle). Robots will inform their respective service agents as soon as they are free,
the waiting tasks in the service queue will then be sent a signal to restart the
auction process. Care must be taken to disallow the different service agents from
competing with each other for different services on the same robot for the same
task.

Once all the services have been acquired, the robots are sent a ’green’ signal
to leave their current task and start performing the new task. A robot only
stops performing its current task if it has received a ’green’ signal from the new
task. The negotiation process is carried out asynchronously via a multi-threaded
communication mechanism.

The interaction between the robots and service agents is fairly involved. If
a robot receives an offer that is better than its current utility (plus the penalty
it would have to pay for decommiting from its current task), a robot will send
a bargaining message to its current task agent asking for more utility. The task
agent would then reply with one of two possible messages:

– An offer that matches the robot’s current best offer.
– A regret message indicating that it cannot offer a utility that matches the

robot’s current best offer.

If the task agent sends the first message then the robot’s utility is increased and
the robot is ’happy’ with its new salary and continues working on the task. If
the second message is sent, the robot decommits and leaves for the task that
offered a better pay package.

Note that this work does not focus on the decomposition of tasks. Instead we
assume a task is pre-decomposed into the required set of behaviors or roles. If a
given behavior decomposition cannot be allocated (i.e. the service agents return
a negative response), alternative decompositions may be considered.

UTILITIES AND PENALTIES: One difficulty with the economy based
approach that RACHNA employs is that the resulting teams are highly depen-
dent on the initial utilities assigned to various tasks. However, this may not be
an entirely undesirable property, while it makes the system sensitive to initial
utilities, it also empowers the user to prioritize tasks by varying the task utili-
ties. The payoff distribution to individual team members is handled through the
negotiation process.

Different multi-robot tasks require different levels of commitment. For exam-
ple, in a multi-robot foraging task, if one of the foragers decides to decommit,
the task can still be performed, albeit more slowly. However, in tightly coupled



tasks such as construction or box-pushing, decommiting can have a severe im-
pact on task performance. RACHNA provides the user with the ability to define
the appropriate level of commitment via the use of penalties. For example, in
the case of tightly coupled tasks, the penalty of leaving a task should be high in
order to discourage agents from leaving after accepting and rendering the task
incomplete.

If a robot loses control of a sensor or actuator in RACHNA, the system allows
for graceful performance degradation. If a sensor failure occurs a robot may still
be capable of performing an alternative behavior, due to the existence of the
mapping from sensor capabilities to behavioral capabilities. Consider a robot
that is capable of performing the foraging and watcher behaviors. If the robot’s
gripper is damaged, it will be unable to execute the foraging behavior but it may
still be able to perform the watcher behavior. The foraging service agent system
simply deletes the robot from the list of foragers and in future auctions this
robot will not receive offers relating to the foraging behavior. The robot will not
be deleted from the list of watchers because the relevant sensors for watching
(camera) are still intact. Thus, the system allows for graceful degradation in
performance. It should be noted that the system makes no attempt to detect
faults.

COMMUNICATION: Communication as highlighted in Section 4.2 as a very
important issue in Multi-Robot System (MRS) system design. Communication
failures are fairly common in robotic systems, hence it is important that the
system should be robust to communication failures. RACHNA requires only that
the robots within a defined communication range respond with accept/reject
messages. So while the system has fewer robots to choose from when a robot
undergoes a communication failure, the robot’s commmunication failure does
not debilitate the system. If a robot fails during task execution, the task agent
simply attempts to bid for another robot to perform the service.

DISCUSSION: This section introduced RACHNA, a novel negotiation-based
approach to the multi-robot coalition formation problem that takes advantage
of this inherent redundancy in robot capabilities by grouping the robots accord-
ing to their behavioral capabilities. The reversal of the bidding process with
tasks bidding on robots allows for acquisition of the global resource information
necessary for dynamically solving the coalition formation problem.

As outlined in Section 3, there are some inherent differences between the
multi-agent and multi-robot domains. One of the most prominent of these dif-
ferences is the level of redundancy in multi-robot and software-agent capabilities.
Whereas software-agents are simply code fragments programmed by individuals,
robots are manufactured on a large scale. Therefore, robots are more likely to
have greater redundancy in their sensor/actuator capabilities. Indeed, almost
any modern day robotics facility would have a number of robots with identi-
cal capabilities. To the best of our knowledge, RACHNA is the first system to



leverage this redundancy to enable a more tractable formulation of the coalition
formation problem.

7 Conclusion and Future Work

This paper addresses the problem of a heterogeneous set of robots coalescing
into teams to perform a set of complex (multi-robot) tasks. The paper focuses
on illustrating how the coalition formation problem is formulated as an instance
of the matching problem which can yield solutions closer to the optimal. Finally,
the paper discusses coalition formation techniques for task environments with
static, precedence ordered, and dynamic tasks. RACHNA, a novel market based
system is presented that enables dynamic reconfiguration of the the coalitional
configuration on introduction of new tasks into the task environment. In conclu-
sion, this work provides the outline for a generic, task independent framework
for the formation of multi-robot coalitions in different task environments.

This work is a precursor to a more thorough investigation into the multi-
robot coalition formation problem. Even though experiments have been con-
ducted to demonstrate that the algorithm described in Section 3 can be used
with real robots, the experiments do not prove that the algorithm scales because
the experiments were performed with a total of three robots. Therefore further
experiments will be conducted with a larger number of robots and a heteroge-
neous set of tasks. The prominent contribution of this paper is the RACHNA
system which is currently being implemented. Experiments will be performed
with the RACHNA system to demonstrate its application to a dynamic task
environments and to test its robustness to variations in incoming task rate and
task utilities. Also experiments will be conducted to demonstrate the fault toler-
ance of the system to both partial and complete robot failure. Another aspect of
the system that requires study is the extent of communication involved during
the negotiation process. This would reveal important results with regard to the
system scalability. These experiments will first be conducted via simulations and
then be conducted on real robots.

References

1. Gerkey, B., Matarić, M.J.: A framework for studying multi-robot task alloca-
tion. In: Proceedings of the Multi-Robot Systems: From Swarms to Intelligent
Automata. Volume 2. (2003) 15–26

2. Sandholm, T.W., Larson, K., Andersson, M., Shehory, O., Tomhe, F.: Coalition
structure generation with worst case guarantees. Artificial Intelligence 111 (1999)
209–238

3. Gerkey, B., Matarić, M.J.: Are (explicit) multi-robot coordination and multi-agent
coordination really so different? In: Proceedings of the AAAI Spring Symposium
on Bridging the Multi-Agent and Multi-Robotic Research Gap. (2004) 1–3

4. Vig, L., Adams, J.A.: Issues in multi-robot coalition formation. In: Proceedings
of Multi-Robot Systems. From Swarms to Intelligent Automata. Volume 3. (2005)
15–26



5. Parker, L.E.: Alliance: An architecture for fault tolerant multi-robot cooperation.
IEEE Transactions on Robotics and Automation 14 (1998) 220–240

6. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation 2 (1986) 14–23

7. Low, K.H., Leow, W.K., M. H. Ang, J.: Task allocation via self-organizing swarm
coalitions in distributed mobile sensor network. In: Proceedings of the American
Association of Artificial Intelligence. (2004) 28–33

8. Parker, L.E.: Cooperative robotics for multi-target observation. Intelligent Au-
tomation and Soft Computing, special issue on Robotics Research at Oak Ridge
National Laboratory 5(1) (1999) 5–19

9. Dahl, T.S., Matarić, M.J., Sukhatme, G.S.: Multi-robot task-allocation through
vacancy chains. In: Proceedings of IEEE International Conference on Robotics and
Automation. (2003) 14–19

10. Werger, B., Matarić, M.J.: Broadcast of local eligibility: Behavior based control for
strongly cooperative multi-robot teams. In: Proceedings of Autonomous Agents.
(2000) 21–22

11. Smith, R.G.: The contract net protocol: High level communication and control
in a distributed problem solver. IEEE Transactions on Computers C-29 (1980)
1104–1113

12. Sandholm, T.: An implementation of the contract net protocol based on marginal
cost calculations. In: Proceedings of the Eleventh National Conference on Artificial
Intelligence. (1993) 256–262

13. Collins, J., Jamison, S., Mobasher, B., Gini, M.: A market architecture for multi-
agent contracting. Technical Report 97-15, University of Minnesota, Dept. of Com-
puter Science (1997)

14. Sandholm, T., Lesser, V.: Advantages of a leveled commitment contracting pro-
tocol. In: Proceedings of the Thirteenth National Conference on Artificial Intelli-
gence. (1996) 126–133

15. Sycara, K., Zeng, D.: Coordination of multiple intelligent software agents. In-
ternational Journal of Intelligent and Cooperative Information Systems 5 (1996)
181–211

16. Stentz, A., Dias, M.B.: A free market architecture for coordinating multiple ro-
bots. Technical Report CMU-RI-TR-01-26, The Robotics Institute, Carnegie Mel-
lon University (1999)

17. Laengle, T., Lueth, T.C., Rembold, U., Woern, H.: A distributed control architec-
ture for autonomous mobile robots. Advanced Robotics 12 (1998) 411–431

18. Caloud, P., Choi, W., Latombe, J.C., Pape, C.L., Yim, M.: Indoor automation with
many mobile robots. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems. (1990) 67–72

19. Gerkey, B.P., Matarić, M.J.: Murdoch: Publish/subscribe task allocation for het-
erogeneous agents. In: Proceedings of Autonomous Agents. (2000) 203 – 204

20. Botelho, S.C., Alami, R.: M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement. In: Proceedings of IEEE International
Conference on Robotics and Automation. (1999) 1234 – 1238

21. Dias, M.B.: TraderBots: A New Paradigm for Robust and Efficient Multirobot
Coordination in Dynamic Environments. PhD thesis, Robotics Institute, Carnegie
Mellon University (2004)

22. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: Proceedings
of the IEEE Conference on Robotics and Automation (ICRA). (2005) 67–72



23. Fass, L.F.: Automatic-theoretic view of agent coalitions. Technical Report WS-
04-06, American Association Of Artificial Intelligence Workshop on Forming and
Maintaining Coalitions and Teams in Adaptive Multiagent Systems (2004)

24. Li, X., Soh, L.K.: Investigating reinforcement learning in multiagent coalition
formation. Technical Report WS-04-06, American Association Of Artificial Intel-
ligence Workshop on Forming and Maintaining Coalitions and Teams in Adaptive
Multiagent Systems (2004)

25. Sorbella, R., Chella, A., Arkin, R.: Metaphor of politics: A mechanism of coalition
formation. Technical Report WS-04-06, American Association Of Artificial Intel-
ligence Workshop on Forming and Maintaining Coalitions and Teams in Adaptive
Multiagent Systems (2004)

26. Abdallah, S., Lesser, V.: Organization-Based Cooperative Coalition Formation.
In: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent
Agent Techonology, IAT. (2004) 162–168

27. Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation.
Artificial Intelligence Journal 101 (1998) 165–200

28. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Matarić,
M.J.: Most valuable player: A robot device server for distributed control. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems. (2001) 1226–1231

29. Hopcroft, J.E., Karp, R.M.: An n 5=2 algorithm for maximum matching in bipar-
tite graphs. SIAM Journal of Computing 2 (1973) 225–231

30. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM publications (1983)
31. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research

Logistics Quarterly (1955) 83–97
32. Gerkey, B.P., Matarić, M.J.: Pusher-watcher: An approach to fault-tolerant tightly-

coupled robot coordination. In: Proceedings of the IEEE International Conference
on Robotics and Automation. (2002) 464 – 469


