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1. PROBLEM DESCRIPTION: LARGE-SCALE 

ROBOT TEAMS 

The requirements of autonomy, size, low power, and limited computation 
available on small robots place extraordinary constraints on communication 
and coordination of robot platoons. Individual robots, executing a limited set 
of behavioral programs, must cooperate to produce a global behavior that 
satisfies the goals of the mission. Current robot architectures rely on large, 
power-hungry subsystems for mobility, communication, and control; 
furthermore, they do not address the problem of coordinating large numbers 
of robots. 

In the CentiBOTS project, we envisage a system of a large number of 
mobile robots able to effectively explore, map, and surveil the interior of a 
building. The name of the project comes from our goal of having 100 robots 
performing the task.  Each robot is minimally capable of self-localization in 
a map and communication with nearby robots. Some are more specialized 
for tasks such as mapping or tracking people, with different degrees of 
performance (and consequent computational and sensor abilities). The robots 
must function as an effective team for accomplishing an extended 
surveillance mission, with appropriate resilience in the face of environmental 
challenges. These include a dynamic environment with unexpected events, 
uncertainty that is inherent in sensing and acting on the physical world, and 
the need for communication among the robots and/or with a central base 
station under conditions in which power or bandwidth may be limited, 
connectivity may be intermittent, and stealth may be a factor. 

Under these circumstances, it is imperative to be selective about what is 
sensed, and what needs to be communicated.  Each sensor must be tasked to 
obtain only the data relevant to the overall mission, each robot must 
aggregate and compress the data from its sensors before transmission to 
others, and these communications need to be guided by the overall mission 
control architecture. 

The nature of the control architecture itself is problematic. The challenge 
is to control a large number of robots effectively, based on mission 
parameters. Individual robots may fail, or may not have the required sensors 
for a task, or may need cooperation from other robots to do their job. Given 
the environmental requirements above, it is impossible to centralize the 
planning, resource allocation, and coordination task; instead, it must be 
distributed, with local robot groups sharing information and coordinating 
with other.  
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1.1 Research Goals 

The previous section identified a daunting array of challenges for this 
project, and relate directly to our research goals. We intend to answer the 
following questions: 

1. What is a realistic distributed control architecture for hundreds of 
limited-capability robots cooperating on a task? Such an 
architecture must account for limited communication, limited 
computation, and disruption of a dynamic environment. Our goal 
here is to develop an architecture that scales well because its 
organization is multi-layered, functioning at the individual, small 
group (squad), and team levels. 

2. How can we effectively reason about spatial arrangements in a 
distributed, dynamic environment? A major portion of the 
planning effort involves reasoning about space for mapping, 
localization, and tracking; we intend to extend current single-robot 
methods to robot squads and teams of robot squads. 

3. Are there good methods for squads of robots to coordinate in 
solving mapping and tracking tasks? We have already developed 
effective probability-based algorithms for these tasks using single 
robots; our idea is that sensor and action fusion using extensions of 
these techniques will result in more effective performance. 

4. How can information be passed among robots whose 
communication topology constantly changes?  We intend to 
deploy mobile ad-hoc network on larger scale than tested today to 
support communication needs of autonomous robot teams 

5. How can a user track and influence the development of a mission 
scenario that involves hundreds of robots? 

We believe that individual robot behaviors have matured enough to shift 
our focus to collaboration and coordination among robots. The benefits are 
increased robustness and resistance to environmental disturbance; reduction 
in computational and sensor load on individual robots; and enabling of 
highly effective, controllable robot teams. 

1.2 Overview of the Approach 

In the project scenario, the CentiBOTS are deployed as an advanced 
surveillance team for urban missions. A first set of mapping-capable 
CentiBOTS will survey an area of interest: build and share a distributed map 
as well as highlight hazards, humans, and hiding places. They will then 
combine with a second wave of tracking robots that deploy in an optimal 
way into the area, configuring themselves to effectively sense intruders and 
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share the information among themselves and a command center. As a large 
team, the CentiBOTS will be able to reconnoiter a set of buildings faster, 
more reliably, and more comprehensively than an individual or small set of 
robots. For example, the team can dynamically form subteams to perform 
tasks that cannot be done by individual robots. Examples of such tasks might 
be to measure the range to a distant object, or to use other robots as markers 
in the building for localization or communication relays. In addition, the 
team can automatically reconfigure itself to handle contingencies such as 
disabled CentiBOTS or changing lighting conditions. 

The robot teams will collaboratively perform tasks with minimal 
supervision in dynamic environments.  Our major contribution is a 
distributed robot architecture in which collective behavior is uniquely 
adaptive, fault tolerant, and capable, incorporating the following innovative 
elements. 

? ? A collaborative, multi-level architecture, adaptive to new 
tasks and team organizations, and scalable to very large 
teams based on SRI’s proven Saphira robot control system and 
the Distributed Dispatcher Manager (DDM) hierarchical agent 
framework developed by SRI for the DARPA ANTs program. 
We will also incorporate principles of collaboration, derived 
from our work on structured and dynamic negotiation for the 
DARPA ANTs program, so that CentiBOTS will be capable of 
re-organization and re-tasking in response to resource and 
problem changes in the environment. 

? ? Optimal distributed map-building and deployment of 
CentiBOTS for tracking based on novel distributed spatial 
reasoning techniques. We extend single-robot probabilistic 
methods such as Markov sampling and relational dynamic Bayes 
nets to the multi-robot, distributed case. 

? ? Large-scale, fault-tolerant communication building on SRI-
developed mobile ad-hoc network protocols that have already 
been successfully demonstrated on smaller robot teams. The 
protocol supports the mission specific communication tasks 
efficiently. Additionally, it alerts the application about decreasing 
fault tolerance when links break. 

? ? Robot team interface and monitoring that provides both robot 
level attribute-of-interest updating and tracking as well as task 
and team level goal tracking.  

? ? Analyzable and predictable behavior Through systematic 
experiments with well-defined evaluation metrics, in both the 
SRI Augmented Reality Robot Simulator as well as 
demonstrations and experiments, we will show increasing 
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capability of the software solution on a collection of at least 100 
COTS mobile robot platforms. 

The project started in July 2002.  By the time of the workshop, we will 
have completed our first demo at 6 months, and have results to report on the 
complete integration of distributed mapping, ad-hoc network 
communication, and team formation and execution.  As of the current 
writing (Dec 1, 2002), we have major portions of the system in place.  
Recent results are posted to the website www.ai.sri.com/centibots. 

2. ROBOTS AND INFRASTRUCTURE 

Given the nature of the mission and the large number of robots, a critical 
component of the project is the robot platform, sensor suite, and software 
programming base.  The robots must have enough capability to be able to 
perform mapping, localization, communication and tracking functions, while 
at the same time they are subject to the conflicting demands of low power, 
simplicity, modest computational load, and small size.  In contrast to swarm-
based robotics, where individual robots have almost no ability for 
independent action, we equip each robot with the capability to localize and 
perform some tracking or mapping function.  Pioneer and AmigoBot robots 
from ActivMedia, and robot software from SRI and ActivMedia, form the 
core of the infrastructre.  The basic robot types are as follows. 
Robot class #  Computer Sensors Capabilities 
Pioneer II DX/AT 6 PIII EBX LRF, sonars map, detect, track 
AmigoBot 10 VIA Epia Stereo vision, 

sonars 
detect, track (form, range) 

 60 VIA Epia Mono vision, sonars detect, track (color, bearing) 
 14 VIA Epia Doppler radar track (motion, no light) 

 
All robots are equipped with 802.llb wireless links, and are capable of 

localizing in a map, through the use of sonars or LRF sensors.  The larger 
(30 lb), more capable Pioneer II DX/AT robots have a powerful computer, 
and a laser range finder for mapping and people-tracking.  These robots 
perform the distributed mapping task, and assist in detection and tracking of 
people.  

The smaller (6 lb) AmigoBots are used as detection and tracking robots 
for finding the targets, and for surveillance of intruders. They have low-
power VIA Epia processors, and are able to survive for long periods of time 
in low-power mode (6-12 hours), while still performing communication and 
surveillance on wakeup.  The mix of sensors on the AmigoBots reflects 
differing environmental conditions, capabilities, and power requirements.  
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The base software for the robots, Saphira/Aria, is a joint project of SRI 
and ActivMedia. Saphira/ARIA is a modern 3-level (behaviors, sequencing, 
strategy) robot control architecture with an extensive library of modular 
capabilities, including probabilistic localization, map-building, optimal 
realtime path planning, and visual tracking, developed by members of the 
project team.  We have extended the core architecture to be network-aware, 
so that each robot becomes a member of an ad-hoc mobile network (Figure 
1). 

3. COMMUNICATION ARCHITECTURE 

CentiBOT teams must operate with little or no infrastructure and present 
a challenging scenario for information operations. Networks are formed in 
an ad-hoc fashion, and information exchanges occur via the wireless 
networking equipment carried by the individual CentiBOTS. While the 
CentiBOTS are executing their mapping and search mission, fluctuations in 
the network topology occur when an individual moves or when wireless 
transmissions are blocked by building features, distance, or interference from 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Robot control architecture, showing an individual robot, and its connections to 

the robot net. 
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other RF transmissions. 

In spite of such dynamically changing conditions, the team’s CentiBOTS 
must maintain close communication with one another. We therefore 
anticipate a requirement for self-configuring, self-sustaining dynamic 
networks coupled with a location-independent flexible addressing 
architecture for effective network communication. 

The CentiBOT teams are highly collaborative in nature with a 
requirement for time-critical communication. However, the transmission 
range of each node is limited in order to preserve its battery power.  Hence, 
the CentiBOT team is organized into a Mobile Ad-hoc Network (MANET), 
wherein messages are exchanged directly between members of the team or 
may be forwarded via other members to extend the range. Since 
communication bandwidth is a scarce resource in a MANET, it is important 
that the routing protocol be efficient in terms of overhead.  

3.1 The TBRPF Routing Protocol 

 SRI has developed a protocol called Topology Broadcast based on 
Reverse-Path Forwarding (TBRPF) [Bellur and Ogier 1999, Ogier et. al. 
2002] to manage the network multihop routing while the topology is 
changing. TBRPF is an efficient proactive, link-state routing protocol 
designed for mobile ad-hoc networks, which provides hop-by-hop routing 
along shortest paths to each destination. Each node running TBRPF 
computes a source tree (providing paths to all reachable nodes) based on 
partial topology information stored in its topology table, using a 
modification of Dijkstra's algorithm.  To minimize overhead, each node 
reports only ‘part’ of its source tree to neighbors. This is in contrast to other 
protocols in which each node reports its ‘entire’ source tree to neighbors.  

TBRPF uses a combination of periodic and differential updates to keep 
all neighbors informed of the reportable part of its source tree. Each node 
also has the option to report additional topology information (up to the full 
topology), to provide improved robustness in highly mobile networks.   

TBRPF consists of two modules: the TBRPF neighbor discovery (TND) 
module and the routing module that performs topology discovery and route 
computation.  The neighbor discovery protocol allows each node in the 
network to quickly detect the neighboring nodes with which the node has a 
bi-directional link.  

TBRPF performs neighbor discovery using "differential" HELLO 
messages that report only changes in the status of neighbors. This results in 
HELLO messages that are much smaller than those of other link-state 
routing protocols such as OSPF. As a result, HELLO messages can be sent 
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more frequently in highly mobile networks without increasing overhead 
significantly 

TBRPF is extremely agile in that a change in the up or down status of 
links is quickly detected, and alternate routes are immediately computed. 
The proof of correctness and pseudo-code for TBRPF as well as examples 
illustrating its operation can be found in [Bellur and Ogier 1999, Ogier et. al. 
2002].  

3.2 Testbed Elements 

SRI’s TBRPF protocol is implemented in Linux with the Merit Multi-
Threaded Routing Toolkit (MRT) daemon (www.mrtd.net). This 
implementation has been in use for laboratory and fielded experiments since 
June 1999.  

TBRPF operates transparently on each node of the ad hoc network, 
providing a standard IP stack interface to network-based applications. The 
robots and command center send and receive messages as if being connected 
through a common local area network.  We display current topology 
information at individual nodes and an aggregated picture at the command 
center (Figure 2). In future implementations of CentiBOTS, we plan to 
support multicast messages suitable for more efficient intra-team 
communication. 

The network interfaces are commercially available IEEE 802.11b 
PCcards and USB network interfaces operating in the 2.4 GHz frequency 
band, using the Direct Sequence Spread Spectrum (DSSS) modulation, and 
provides up to 11 Mbps data transfer rates with a maximum range of 
approximately 1000 m line of sight. We configure the cards to use Ad-hoc 
mode, rather than to be dependent on fixed infrastructure elements. 

Aiming at deployment of as many as 100 nodes, we will operate one of 
the largest mobile ad hoc networks known today.  Yarvis et al. [Yarvis et al. 
2002] have reported an ad hoc sensor network for interactive voting 

 

 
 
 
Figure 2.  Dynamic topology 
display screen shows current 
nodes and links. 
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applications with configurations of 24, 48, and 91 nodes.  However, they 
placed and fixed the nodes over a rectangular grid, and their experiment 
lasted for one hour.  In our CentiBOTS project, all robots are mobile and 
their mission tasks take several hours. 

3.3 Distributed Directory Service 

For higher level reasoning, the robots need to obtain the current status of 
other robots on the mission. We are developing a distributed directory 
service to provide robots with such information. Given the scarce bandwidth 
and the inherently unpredictable network structure, the distributed directory 
service must carefully adjust the amount of messages that keep status 
information up to date at the expense of getting possibly stale data. 

The distributed directory service provides a query interface through which 
a robot can perform various searches for other robots and computers, their 
locations and their assets. Each robot maintains a local table with all 
information it gathers about the current state of the network. In adjustable 
time intervals, the robot updates its local copy of the table with entries kept 
in a network-wide table, and also submits its own current information to the 
network table. 

We chose the JavaSpaces™  technology to implement the distributed 
directory service. JavaSpaces is a Jini™  service that provides a high-level 
tool for creating collaborative and distributed applications in Java. The 
JavaSpaces model is different from techniques like message passing and 
remote method invocation. A space is a shared, network-accessible 
repository for objects.  Processes use the repository as a persistent object 
storage and exchange mechanism; instead of communicating directly, they 
coordinate by exchanging objects through spaces. 

Processes perform simple operations to write new objects into a space, 
take objects from a space, or read (make a copy of) objects in a space. When 
taking or reading objects, processes use a simple value-matching lookup to 
find the objects that matter to them. If a matching object is not found 
immediately, then a process can wait until one arrives. Unlike conventional 
object stores, processes do not modify objects in the space or invoke their 
methods directly --- while there, objects are just passive data. To modify an 
object, a process must explicitly remove it, update it, and reinsert it into the 
space. 

For the distributed directory service, the persistent objects in the space are 
the entries of status information for each robot. Depending on the current 
network situation and also on pre-determined parameters, the robots update 
their own entries and their local copies of the other entries more or less 
frequently.  When the higher level behavior of a robot queries the distributed 
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directory service, it compiles the answer from the information stored locally 
and in the network space. 

4. MULTIROBOT MAPPING AND LOCALIZATION 

Coordinated exploration of an unknown environment is one of the most 
fundamental problems in multi-robot coordination. We propose a novel, 
distributed approach that addresses this problem in its most general way. 
Key features of our approach are the consideration of limited communication 
between robots, no assumptions about relative start locations of the robots, 
and dynamic assignment of processing tasks. We apply efficient, statistical 
methods to determine hypotheses for the relative locations of robots. To 
achieve maximal robustness, these hypotheses are verified before maps are 
merged. Once robots know their relative locations, they form exploration 
clusters so as to coordinate their actions. Furthermore, our approach 
dynamically assigns processing tasks and roles to robots, thereby avoiding 
the dependency on a central server. 

4.1 Communication and Coordination Architecture 

Our distributed approach to mapping and exploration is enabled by pair-wise 
relations between robots.  Each pair of robots can have four different types 
of interactions: none, hypothesis generation, hypothesis verification, and 
coordination. At each point in time, the state of the multi-robot system can 
be summarized by a graph structure where the nodes are individual robots 
and edges represent the current interaction between two robots (see Figure 
3). We will now briefly discuss the different types of interactions. 
1. No interaction: The robots are not within communication range (no arc 
between nodes in Figure 3). 
2. Hypothesis generation (dotted edges): The robots can communicate but 
don’t know their relative locations. In this stage, one of the two robots 
receives sensor data from the other robot and estimates their relative location 
using its own map. Which of the two robots adopts the estimation role 
depends on available computational resources. 
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3. Hypothesis verification (dashed edges): Robots can communicate and 
verify a location hypothesis determined in the hypothesis generation phase. 
This is done by moving to a point at which the robots try to meet. If the 
robots don’t meet at the expected location, the hypothesis is rejected and 
they continue with the hypothesis generation phase. Otherwise, the robots 
can establish their relative positions, combine their maps, and coordinate 
their exploration efforts. 
4. Coordinated exploration (solid edges): Once the robots determined their 
relative locations, they can share their maps and perform coordinated 
exploration. A nice feature of this interaction type is transitivity, i.e. if robot 
i and j can share their maps, and robot j and k can share their maps, then all 
three robots can build a combined map. Hence, robots in this interaction 
mode form exploration clusters in which they can coordinate their actions 
(indicated by the gray areas in Figure 3). Each cluster determines one robot 
responsible for data combination and robot coordination (dark nodes). All 
information is frequently spread throughout the cluster, and direct 
communication between all robot pairs within the cluster is not required. The 
transitions between the different interaction modes are summarized in Figure 
4. 

          
      (a)               (b) 
 
Figure 3.  Dynamic communication / interaction graph at two points in time. Note that this 
graph illustrates different interactions between robots, not spatial relations. Robots are shown 
as circles. Solid edges indicate coordinated exploration of robots; dashed lines indicate that 
two robots currently navigate to a meeting point so as to verify a hypothesis for their relative 
positions; and dotted lines show communication between robots without valid location 
hypotheses. (a) Robots 1,2,7,11, and 12 already established their relative locations and 
coordinate exploration. For this exploration cluster, robot 7 was chosen to perform data 
combination and exploration coordination. Robots 12 and 13 do not yet know their relative 
locations. They are currently moving to a meeting point so as to verify a location hypothesis. 
Robot 10 can communicate with robots 5, 6, and 14, but no good location hypothesis has 
been generated so far. (b) Robots 12 and 13 moved to the meeting point and detected each 
other. As a result, robot 13 is integrated into the exploration cluster. Robot 5 determined a 
hypothesis for robot 10’s relative location. Robot 10 accepted the meeting point and they 
both move to this location. 



12 CentiBOTS
 
4.2 Technical Approach 

To implement the individual parts of our architecture, we will rely on 
existing, well established techniques whenever possible. The key 
components are: 
? ? Individual mapping and exploration: Before a robot can coordinate its 

activities with another robot, it explores the environment using recently 
developed online mapping and exploration techniques [Yamauchi 1998, 
Thrun et al. 2000, Gutmann and Konolige 2000]. 

? ? Coordinated mapping and exploration: Whenever multiple robots can 
communicate and know their relative locations, they form an exploration 
cluster. One robot within each cluster is chosen to coordinate the 
exploration of the cluster and to combine information collected by the 
individual robots. This central coordination robot can be replaced by any 
other robot in the cluster whenever necessary. The coordination strategy 
is based on ideas used in [Burgard et al. 2000, Simmons et al. 2000]. In a 
nutshell, this approach coordinates robots by sending them to different 
unexplored areas. We intend to significantly reduce the computational 
complexity of this approach by clustering frontier cells based on their 
proximity. 

 
 
Figure 4.  Transitions between the possible interactions between two robots. Depending on 
the initial knowledge, robots start either in “no communication” or “coordinated 
exploration”. As soon as robots can communicate, they estimate their relative locations 
(hypothesis generation). Once a high probability hypothesis has been generated, the robots 
try to verify it by meeting each other (hypothesis verification). If they do not meet at the 
expected location, the hypothesis is rejected and they keep on estimating their relative 
locations. If, however, they meet, then they combine their maps and perform coordinated 
exploration. Note that the coordinated exploration mode can be reached from any other mode 
if a robot within the same exploration cluster establishes this mode with a new robot. For 
example, in Figure 3b), robots 1 and 13 are in the coordinated exploration mode, 
established by the connection of robots 12 and 13. 
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? ? Hypothesis generation: In this phase one robot receives sensor data 

from the other robot and estimates their relative location using its own 
map. To solve this technically very challenging problem, we are 
currently developing a Monte-Carlo approach that generates location 
hypotheses by sampling trajectories of one robot through the other 
robot’s map.  This technique, similar to particle filters for robot 
localization [Fox et al. 2000b], takes into account that a robot’s path 
might overlap only partially or not at all with the other robot’s map 
(overlap estimation is done by a dynamic Bayesian network). Once a 
robot received enough data to determine the other robot’s location with 
high probability, it generates a meeting point with the other robot. This 
meeting point is chosen optimally under consideration of both robots’ 
location uncertainty. The other robot uses a decision theoretic approach 
to decide whether it accepts the meeting point or prefers to keep on 
exploring on its own. 

? ? Hypothesis verification: Once two robots agree to meet so as to verify a 
hypothesis for their relative locations, they both move there and use their 
sensors (laser range-finder or vision [Fox et al. 2000a]) in order to detect 
each other. If they detect each other they can share maps, otherwise the 
hypothesis is rejected and they continue to generate new hypotheses. 

We are currently implementing the individual components of our 
architecture. Based on very promising first experiments and the fact that we 
can rely on existing software solutions to most of the basic components, we 
expect to generate results within the next few months. A full paper will 
present experimental results and further details on the underlying Bayesian 
estimation techniques.  

4.3 Current Mapping Progress 

At the moment, we have successfully integrated maps from 5 separate 
robot mapping runs into a large scale map (Figure 5). The map data was 
collected offline, by running a mapping robot on 5 different trajectories, and 
then mixing all the scans as if 5 robots were running simultaneously. 
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5. DISTRIBUTED COORDINATION AND 
PLANNING 

5.1 Multi-level agent architecture 

Teams are comprised of autonomous vehicles (AVs).  Each AV is 
designed to reflect two dimensions of organization: a functional dimension 
and a software dimension.  The former segments robot functionality into 
what we refer to as team, strategy, tactical, and control levels.  Figure 6 
illustrates the architecture.   Computations at each level associate a particular 
functionality with that level and have complexity that is conceptually 
bounded, reflecting the expected time available for decisions made at that 
level.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  5 robots mapping from a common breach.  The map is about 2/3 constructed at 

this point, with 4 areas of frontier and 1 area of infill explorationl 
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The lowest levels are responsible for purely reactive robot behavior, 
while more deliberative and goal-directed behavior takes place at the higher 
levels, generally over a longer period of time.  At the control level, response 
is immediate; the robot has a 10ms cycle time for responses. At the task 
level, responses take place within 100ms to 1s. Computations taking place at 
the strategy level generally take 1 to 10s and can usually be performed in 
parallel with actions taken at other levels.  Finally, deliberations at the team 
level span a conceptually longer period of time (approximately a minute), 
responding to faults at other levels approximately every 1 to 10s.  Crucially, 
progress at each level is monitored so that task failure (here, task refers to 
the internal robot tasks undertaken at each level) and excessive backtracking 
can be avoided by offloading tasks to other levels (or even to a user).  

The team level is responsible for decisions involving societal aspects of 
the robot group, such as negotiations with other robots on the division of 
responsibility or the allocation of resources.  The team level is also designed 
to respond to changes in the environment that could impact the performance 
of the group (e.g., a robot that suddenly detects an intruder entering a team 
member's sector should realize that if that team member is already tracking 
another intruder, it will need help).   

The strategy level is concerned with longer-term (in comparison to the 
control level) individual decisions involving a robot's intentions (i.e., its 
commitments to future actions). From a resource-bounded perspective, 
intentions serve the role of representing fairly stable commitments to 
actions; central to the strategy level is an ability to reconcile existing 
intentions with newly considered ones.  When a potential intention would 
conflict with an existing one, the agent must either reject the potential 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  High level autonomy diagram.   
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intention or reconsider its existing intentions in the new context. 

The strategy level is also responsible for exploring ways in which to 
achieve an intention, including the means to perform that intention and the 
resources needed to support execution.  Typically, the decisions at this level 
proceed at a high level of abstraction.  In considering a potential intention, 
strategic-level projection of that action in the context of existing intentions is 
necessary, but generally follows simplified considerations of relevant lower-
level factors. An example is navigation around small obstacles, which is 
assumed to succeed at the strategic level because it is handled in a reactive 
manner.  If the obstacle proves impossible to overcome during execution, the 
system adapts. By design, control is passed up to the strategy or team level 
for reconsideration.  

At the tactical level, intended goals that are the output of the strategy 
level (along with the expected resources needed for execution) are processed 
when the time comes for execution.  Goals have associated plans (each 
representing a possible means for achieving that goal).  Each goal is matched 
with a plan that does not exceed the resources deemed necessary at the 
strategic level.  In addition, monitoring sentinels are attached to the plan that 
can be activated during execution for tracking progress and adapting 
execution to unexpected changes.  Adaptation at the tactical level takes the 
form of interleaving multiple activities, which may be intended to be 
performed at the same time.  For example, a robot may wish to follow an 
intruder while at the same time remaining in communication with a team 
member.  Rather than define a behavior, for every possible combination of 
behaviors, such as follow_and_stay_in_communication, the tactical level 
implements a scheme for behavior blending.  Behavior blending is also used   
to manage goals of varying priority. 

Behavior blending is based on a sound logical formulation [Ruspini 
1991], based upon the notion of utility that permits the context-dependent 
blending of multiple behaviors.  Each behavior is essentially a producer of 
desirability measures. These desirability measures are functions defining the 
relative utility of potential actions from the viewpoint of a specific goal.  
Behavior-specific desirabilities are then combined on the basis of 
considerations of the relative importance of each behavior given the current 
operational context.  In addition to agent-specific (or in some cases, human) 
preferences, our behavior-based approach permits the representation and 
manipulation of group behaviors imposing soft constraints on the overall 
behavior of collaborating agents.  

In this framework, goals are represented by means of state-functions that 
quantify the degree by which being in that state means that the goal has been 
attained.  Typically, the degree of attainment of a specific goal is represented 
by a number between 0 and 1, with 0 corresponding to the worst possible 
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situation (as far as that goal is concerned) and 1 corresponding to full goal 
attainment. In cases where it is impossible to determine precisely the relative 
desirability of being in a particular state, more general qualitative 
measurement scales may be used (e.g., intervals of possible values). As 
modeled in this methodology, goals are elastic in the sense that, in most 
situations, there exists a continuum of possibilities of degree of goal 
attainment.  

The control level is responsible for passing low-level actions for 
execution to the AV.  The control level is also responsible for regularly 
polling the state of resources on the robot (e.g., battery, camera, motors) and 
communicating that information to the appropriate level.  

 All the software modules of the current system are implemented in SRI's 
Procedural Reasoning System (PRS),  a reactive control system based on the   
belief, desire, and intention (BDI) agent model.  

5.2 Team organization and blending 

  Each robot is architected  in the manner just described. Teams, however, 
are organized hierarchically in order to manage the complexity of the team 
activity. Within a team, any robot is able to take on either a leadership role 
or a supporting role in the collaborative activities of the team. Task and 
resource management is distributed in several stages.  Our approach is based 
on a system called the distributed dispatcher manager (DDM) [Yadgar et al. 
2002].  DDM has been tested in environments consisting of thousands of 
mobile, cooperative (possibly noisy) sensor agents in which thousands of 
tasks, in the form of targets that must be tracked, must be managed.  Each 
DDM agent has direct access to only local and partial information about its 
immediate surroundings.  DDM organizes teams hierarchically, which 
reduces the degree of communication necessary between agents. DDM 
processes can very quickly combine partial results to form an accurate global 
picture.  Each successively higher level narrows the uncertainty about the 
solution based on the data obtained from lower levels.  We have shown that 
the hierarchical processing of information reduces the time needed to form 
an accurate global solution and have also derived analytical bounds on the 
amount of information collected with respect to the ideal depth of the 
hierarchy.  

DDM is loosely based on a metaphor for task distribution modeled on the 
activity of a "taxi dispatcher" who assigns taxis to incoming calls (tasks).  
The taxi dispatcher dispatches taxis in terms of their general proximity to 
passenger pickups. The dispatcher need not have complete knowledge of the 
location and state of each taxi.  Similarly, in DDM, a team leader or dispatch 
agent distributes a problem and its solution among the robot team.  The team 
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is organized in a hierarchical fashion.  In DDM, the dispatcher agent is 
called a zone coalition leader. The zone coalition leader can either be 
initially assigned or can be dynamically chosen through some voting 
process.  The lower level of the hierarchy consists of individual robots that 
are grouped together according to particular sectors or capabilities.  Each 
group also has a leader.  These group leaders are also grouped according to 
their sector.  Each such group of leaders is associated with a zone group 
leader. Figure 7 illustrates this structure.  Zone group leaders are also 
grouped according to associated sectors with their own zone group leader. 
Individual robots are mobile. They may therefore change their group when 
changing their area.  The zone group leaders execute a load balancing 
algorithm so that if too many tasks appear in a particular sector, agents from 
other sectors can be diverted from other sectors through negotiations with 
other zone leaders [Yadgar et al. 2002].  DDM is also fault tolerant. If a 
zone leader becomes disabled, DDM reorganizes itself so that another agent 
will take its role.  

The role of a zone coalition leader is to distribute robots of the 
appropriate general capability to sectors where they are needed. Just as with 
the taxi dispatcher, it need not concern itself at this high level of the details 
of how the agents will perform their tasks.  This assignment of robots to 
sectors can be accomplished in one of several ways, depending on the degree 
of global knowledge that the zone coalition leader has.  The zone coalition 
leader might base the distribution of robots within its sector through:  

1. knowledge of the state of coverage of the sector under 
reconnaissance, derived from output from the spatial reasoning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  The Distributed Dispatch Manager (DDM). 
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process described earlier. 
2. the distribution of tasks within a sector. For example, the need 

for a certain number of patrol and communications relay robots. 
3. auction-based mechanisms in which the zone coalition leader 

queries team members for their availability and their potential 
contribution (utility) to a task. 
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