
 DARPA SOFTWARE FOR DISTRIBUTED
ROBOTICS: TECH REPORT 2002-12-01

CENTIBOTS
Large Scale Robot Teams

Kurt Konolige, Charles Ortiz, Regis Vincent, Andrew Agno, Michael
Eriksen, Benson Limketkai, Mark Lewis, Linda Briesemeister, Enrique
Ruspini
Artificial Intelligence Center
SRI International
Menlo Park, CA

Dieter Fox, Jonathan Ko, Benjamin Stewart
Department of Computer Science and Engineering
University of Washington
Seattle, WA

Leonidas Guibas
Computer Science Department
Stanford University
Stanford, CA

Abstract: As part of the DARPA Software for Distributed Robotics Program, SRI
International, Stanford University, the University of Washington, and
ActivMedia Robotics are designing and implementing a computational
framework for the coordination of large robot teams, consisting of at least 100
small, resource limited mobile robots (CentiBOTS), on an indoor
reconnaissance task.

Key words: Multirobot mapping and surveillance

2 CentiBOTS

1. PROBLEM DESCRIPTION: LARGE-SCALE

ROBOT TEAMS

The requirements of autonomy, size, low power, and limited computation
available on small robots place extraordinary constraints on communication
and coordination of robot platoons. Individual robots, executing a limited set
of behavioral programs, must cooperate to produce a global behavior that
satisfies the goals of the mission. Current robot architectures rely on large,
power-hungry subsystems for mobility, communication, and control;
furthermore, they do not address the problem of coordinating large numbers
of robots.

In the CentiBOTS project, we envisage a system of a large number of
mobile robots able to effectively explore, map, and surveil the interior of a
building. The name of the project comes from our goal of having 100 robots
performing the task. Each robot is minimally capable of self-localization in
a map and communication with nearby robots. Some are more specialized
for tasks such as mapping or tracking people, with different degrees of
performance (and consequent computational and sensor abilities). The robots
must function as an effective team for accomplishing an extended
surveillance mission, with appropriate resilience in the face of environmental
challenges. These include a dynamic environment with unexpected events,
uncertainty that is inherent in sensing and acting on the physical world, and
the need for communication among the robots and/or with a central base
station under conditions in which power or bandwidth may be limited,
connectivity may be intermittent, and stealth may be a factor.

Under these circumstances, it is imperative to be selective about what is
sensed, and what needs to be communicated. Each sensor must be tasked to
obtain only the data relevant to the overall mission, each robot must
aggregate and compress the data from its sensors before transmission to
others, and these communications need to be guided by the overall mission
control architecture.

The nature of the control architecture itself is problematic. The challenge
is to control a large number of robots effectively, based on mission
parameters. Individual robots may fail, or may not have the required sensors
for a task, or may need cooperation from other robots to do their job. Given
the environmental requirements above, it is impossible to centralize the
planning, resource allocation, and coordination task; instead, it must be
distributed, with local robot groups sharing information and coordinating
with other.

CentiBOTS 3

1.1 Research Goals

The previous section identified a daunting array of challenges for this
project, and relate directly to our research goals. We intend to answer the
following questions:

1. What is a realistic distributed control architecture for hundreds of
limited-capability robots cooperating on a task? Such an
architecture must account for limited communication, limited
computation, and disruption of a dynamic environment. Our goal
here is to develop an architecture that scales well because its
organization is multi-layered, functioning at the individual, small
group (squad), and team levels.

2. How can we effectively reason about spatial arrangements in a
distributed, dynamic environment? A major portion of the
planning effort involves reasoning about space for mapping,
localization, and tracking; we intend to extend current single-robot
methods to robot squads and teams of robot squads.

3. Are there good methods for squads of robots to coordinate in
solving mapping and tracking tasks? We have already developed
effective probability-based algorithms for these tasks using single
robots; our idea is that sensor and action fusion using extensions of
these techniques will result in more effective performance.

4. How can information be passed among robots whose
communication topology constantly changes? We intend to
deploy mobile ad-hoc network on larger scale than tested today to
support communication needs of autonomous robot teams

5. How can a user track and influence the development of a mission
scenario that involves hundreds of robots?

We believe that individual robot behaviors have matured enough to shift
our focus to collaboration and coordination among robots. The benefits are
increased robustness and resistance to environmental disturbance; reduction
in computational and sensor load on individual robots; and enabling of
highly effective, controllable robot teams.

1.2 Overview of the Approach

In the project scenario, the CentiBOTS are deployed as an advanced
surveillance team for urban missions. A first set of mapping-capable
CentiBOTS will survey an area of interest: build and share a distributed map
as well as highlight hazards, humans, and hiding places. They will then
combine with a second wave of tracking robots that deploy in an optimal
way into the area, configuring themselves to effectively sense intruders and

4 CentiBOTS

share the information among themselves and a command center. As a large
team, the CentiBOTS will be able to reconnoiter a set of buildings faster,
more reliably, and more comprehensively than an individual or small set of
robots. For example, the team can dynamically form subteams to perform
tasks that cannot be done by individual robots. Examples of such tasks might
be to measure the range to a distant object, or to use other robots as markers
in the building for localization or communication relays. In addition, the
team can automatically reconfigure itself to handle contingencies such as
disabled CentiBOTS or changing lighting conditions.

The robot teams will collaboratively perform tasks with minimal
supervision in dynamic environments. Our major contribution is a
distributed robot architecture in which collective behavior is uniquely
adaptive, fault tolerant, and capable, incorporating the following innovative
elements.

? ? A collaborative, multi-level architecture, adaptive to new
tasks and team organizations, and scalable to very large
teams based on SRI’s proven Saphira robot control system and
the Distributed Dispatcher Manager (DDM) hierarchical agent
framework developed by SRI for the DARPA ANTs program.
We will also incorporate principles of collaboration, derived
from our work on structured and dynamic negotiation for the
DARPA ANTs program, so that CentiBOTS will be capable of
re-organization and re-tasking in response to resource and
problem changes in the environment.

? ? Optimal distributed map-building and deployment of
CentiBOTS for tracking based on novel distributed spatial
reasoning techniques. We extend single-robot probabilistic
methods such as Markov sampling and relational dynamic Bayes
nets to the multi-robot, distributed case.

? ? Large-scale, fault-tolerant communication building on SRI-
developed mobile ad-hoc network protocols that have already
been successfully demonstrated on smaller robot teams. The
protocol supports the mission specific communication tasks
efficiently. Additionally, it alerts the application about decreasing
fault tolerance when links break.

? ? Robot team interface and monitoring that provides both robot
level attribute-of-interest updating and tracking as well as task
and team level goal tracking.

? ? Analyzable and predictable behavior Through systematic
experiments with well-defined evaluation metrics, in both the
SRI Augmented Reality Robot Simulator as well as
demonstrations and experiments, we will show increasing

CentiBOTS 5

capability of the software solution on a collection of at least 100
COTS mobile robot platforms.

The project started in July 2002. By the time of the workshop, we will
have completed our first demo at 6 months, and have results to report on the
complete integration of distributed mapping, ad-hoc network
communication, and team formation and execution. As of the current
writing (Dec 1, 2002), we have major portions of the system in place.
Recent results are posted to the website www.ai.sri.com/centibots.

2. ROBOTS AND INFRASTRUCTURE

Given the nature of the mission and the large number of robots, a critical
component of the project is the robot platform, sensor suite, and software
programming base. The robots must have enough capability to be able to
perform mapping, localization, communication and tracking functions, while
at the same time they are subject to the conflicting demands of low power,
simplicity, modest computational load, and small size. In contrast to swarm-
based robotics, where individual robots have almost no ability for
independent action, we equip each robot with the capability to localize and
perform some tracking or mapping function. Pioneer and AmigoBot robots
from ActivMedia, and robot software from SRI and ActivMedia, form the
core of the infrastructre. The basic robot types are as follows.
Robot class # Computer Sensors Capabilities
Pioneer II DX/AT 6 PIII EBX LRF, sonars map, detect, track
AmigoBot 10 VIA Epia Stereo vision,

sonars
detect, track (form, range)

 60 VIA Epia Mono vision, sonars detect, track (color, bearing)
 14 VIA Epia Doppler radar track (motion, no light)

All robots are equipped with 802.llb wireless links, and are capable of

localizing in a map, through the use of sonars or LRF sensors. The larger
(30 lb), more capable Pioneer II DX/AT robots have a powerful computer,
and a laser range finder for mapping and people-tracking. These robots
perform the distributed mapping task, and assist in detection and tracking of
people.

The smaller (6 lb) AmigoBots are used as detection and tracking robots
for finding the targets, and for surveillance of intruders. They have low-
power VIA Epia processors, and are able to survive for long periods of time
in low-power mode (6-12 hours), while still performing communication and
surveillance on wakeup. The mix of sensors on the AmigoBots reflects
differing environmental conditions, capabilities, and power requirements.

6 CentiBOTS

The base software for the robots, Saphira/Aria, is a joint project of SRI
and ActivMedia. Saphira/ARIA is a modern 3-level (behaviors, sequencing,
strategy) robot control architecture with an extensive library of modular
capabilities, including probabilistic localization, map-building, optimal
realtime path planning, and visual tracking, developed by members of the
project team. We have extended the core architecture to be network-aware,
so that each robot becomes a member of an ad-hoc mobile network (Figure
1).

3. COMMUNICATION ARCHITECTURE

CentiBOT teams must operate with little or no infrastructure and present
a challenging scenario for information operations. Networks are formed in
an ad-hoc fashion, and information exchanges occur via the wireless
networking equipment carried by the individual CentiBOTS. While the
CentiBOTS are executing their mapping and search mission, fluctuations in
the network topology occur when an individual moves or when wireless
transmissions are blocked by building features, distance, or interference from

Figure 1. Robot control architecture, showing an individual robot, and its connections to

the robot net.

CentiBOTS 7

other RF transmissions.

In spite of such dynamically changing conditions, the team’s CentiBOTS
must maintain close communication with one another. We therefore
anticipate a requirement for self-configuring, self-sustaining dynamic
networks coupled with a location-independent flexible addressing
architecture for effective network communication.

The CentiBOT teams are highly collaborative in nature with a
requirement for time-critical communication. However, the transmission
range of each node is limited in order to preserve its battery power. Hence,
the CentiBOT team is organized into a Mobile Ad-hoc Network (MANET),
wherein messages are exchanged directly between members of the team or
may be forwarded via other members to extend the range. Since
communication bandwidth is a scarce resource in a MANET, it is important
that the routing protocol be efficient in terms of overhead.

3.1 The TBRPF Routing Protocol

 SRI has developed a protocol called Topology Broadcast based on
Reverse-Path Forwarding (TBRPF) [Bellur and Ogier 1999, Ogier et. al.
2002] to manage the network multihop routing while the topology is
changing. TBRPF is an efficient proactive, link-state routing protocol
designed for mobile ad-hoc networks, which provides hop-by-hop routing
along shortest paths to each destination. Each node running TBRPF
computes a source tree (providing paths to all reachable nodes) based on
partial topology information stored in its topology table, using a
modification of Dijkstra's algorithm. To minimize overhead, each node
reports only ‘part’ of its source tree to neighbors. This is in contrast to other
protocols in which each node reports its ‘entire’ source tree to neighbors.

TBRPF uses a combination of periodic and differential updates to keep
all neighbors informed of the reportable part of its source tree. Each node
also has the option to report additional topology information (up to the full
topology), to provide improved robustness in highly mobile networks.

TBRPF consists of two modules: the TBRPF neighbor discovery (TND)
module and the routing module that performs topology discovery and route
computation. The neighbor discovery protocol allows each node in the
network to quickly detect the neighboring nodes with which the node has a
bi-directional link.

TBRPF performs neighbor discovery using "differential" HELLO
messages that report only changes in the status of neighbors. This results in
HELLO messages that are much smaller than those of other link-state
routing protocols such as OSPF. As a result, HELLO messages can be sent

8 CentiBOTS

more frequently in highly mobile networks without increasing overhead
significantly

TBRPF is extremely agile in that a change in the up or down status of
links is quickly detected, and alternate routes are immediately computed.
The proof of correctness and pseudo-code for TBRPF as well as examples
illustrating its operation can be found in [Bellur and Ogier 1999, Ogier et. al.
2002].

3.2 Testbed Elements

SRI’s TBRPF protocol is implemented in Linux with the Merit Multi-
Threaded Routing Toolkit (MRT) daemon (www.mrtd.net). This
implementation has been in use for laboratory and fielded experiments since
June 1999.

TBRPF operates transparently on each node of the ad hoc network,
providing a standard IP stack interface to network-based applications. The
robots and command center send and receive messages as if being connected
through a common local area network. We display current topology
information at individual nodes and an aggregated picture at the command
center (Figure 2). In future implementations of CentiBOTS, we plan to
support multicast messages suitable for more efficient intra-team
communication.

The network interfaces are commercially available IEEE 802.11b
PCcards and USB network interfaces operating in the 2.4 GHz frequency
band, using the Direct Sequence Spread Spectrum (DSSS) modulation, and
provides up to 11 Mbps data transfer rates with a maximum range of
approximately 1000 m line of sight. We configure the cards to use Ad-hoc
mode, rather than to be dependent on fixed infrastructure elements.

Aiming at deployment of as many as 100 nodes, we will operate one of
the largest mobile ad hoc networks known today. Yarvis et al. [Yarvis et al.
2002] have reported an ad hoc sensor network for interactive voting

Figure 2. Dynamic topology
display screen shows current
nodes and links.

CentiBOTS 9

applications with configurations of 24, 48, and 91 nodes. However, they
placed and fixed the nodes over a rectangular grid, and their experiment
lasted for one hour. In our CentiBOTS project, all robots are mobile and
their mission tasks take several hours.

3.3 Distributed Directory Service

For higher level reasoning, the robots need to obtain the current status of
other robots on the mission. We are developing a distributed directory
service to provide robots with such information. Given the scarce bandwidth
and the inherently unpredictable network structure, the distributed directory
service must carefully adjust the amount of messages that keep status
information up to date at the expense of getting possibly stale data.

The distributed directory service provides a query interface through which
a robot can perform various searches for other robots and computers, their
locations and their assets. Each robot maintains a local table with all
information it gathers about the current state of the network. In adjustable
time intervals, the robot updates its local copy of the table with entries kept
in a network-wide table, and also submits its own current information to the
network table.

We chose the JavaSpaces™ technology to implement the distributed
directory service. JavaSpaces is a Jini™ service that provides a high-level
tool for creating collaborative and distributed applications in Java. The
JavaSpaces model is different from techniques like message passing and
remote method invocation. A space is a shared, network-accessible
repository for objects. Processes use the repository as a persistent object
storage and exchange mechanism; instead of communicating directly, they
coordinate by exchanging objects through spaces.

Processes perform simple operations to write new objects into a space,
take objects from a space, or read (make a copy of) objects in a space. When
taking or reading objects, processes use a simple value-matching lookup to
find the objects that matter to them. If a matching object is not found
immediately, then a process can wait until one arrives. Unlike conventional
object stores, processes do not modify objects in the space or invoke their
methods directly --- while there, objects are just passive data. To modify an
object, a process must explicitly remove it, update it, and reinsert it into the
space.

For the distributed directory service, the persistent objects in the space are
the entries of status information for each robot. Depending on the current
network situation and also on pre-determined parameters, the robots update
their own entries and their local copies of the other entries more or less
frequently. When the higher level behavior of a robot queries the distributed

10 CentiBOTS

directory service, it compiles the answer from the information stored locally
and in the network space.

4. MULTIROBOT MAPPING AND LOCALIZATION

Coordinated exploration of an unknown environment is one of the most
fundamental problems in multi-robot coordination. We propose a novel,
distributed approach that addresses this problem in its most general way.
Key features of our approach are the consideration of limited communication
between robots, no assumptions about relative start locations of the robots,
and dynamic assignment of processing tasks. We apply efficient, statistical
methods to determine hypotheses for the relative locations of robots. To
achieve maximal robustness, these hypotheses are verified before maps are
merged. Once robots know their relative locations, they form exploration
clusters so as to coordinate their actions. Furthermore, our approach
dynamically assigns processing tasks and roles to robots, thereby avoiding
the dependency on a central server.

4.1 Communication and Coordination Architecture

Our distributed approach to mapping and exploration is enabled by pair-wise
relations between robots. Each pair of robots can have four different types
of interactions: none, hypothesis generation, hypothesis verification, and
coordination. At each point in time, the state of the multi-robot system can
be summarized by a graph structure where the nodes are individual robots
and edges represent the current interaction between two robots (see Figure
3). We will now briefly discuss the different types of interactions.
1. No interaction: The robots are not within communication range (no arc
between nodes in Figure 3).
2. Hypothesis generation (dotted edges): The robots can communicate but
don’t know their relative locations. In this stage, one of the two robots
receives sensor data from the other robot and estimates their relative location
using its own map. Which of the two robots adopts the estimation role
depends on available computational resources.

CentiBOTS 11

3. Hypothesis verification (dashed edges): Robots can communicate and
verify a location hypothesis determined in the hypothesis generation phase.
This is done by moving to a point at which the robots try to meet. If the
robots don’t meet at the expected location, the hypothesis is rejected and
they continue with the hypothesis generation phase. Otherwise, the robots
can establish their relative positions, combine their maps, and coordinate
their exploration efforts.
4. Coordinated exploration (solid edges): Once the robots determined their
relative locations, they can share their maps and perform coordinated
exploration. A nice feature of this interaction type is transitivity, i.e. if robot
i and j can share their maps, and robot j and k can share their maps, then all
three robots can build a combined map. Hence, robots in this interaction
mode form exploration clusters in which they can coordinate their actions
(indicated by the gray areas in Figure 3). Each cluster determines one robot
responsible for data combination and robot coordination (dark nodes). All
information is frequently spread throughout the cluster, and direct
communication between all robot pairs within the cluster is not required. The
transitions between the different interaction modes are summarized in Figure
4.

 (a) (b)

Figure 3. Dynamic communication / interaction graph at two points in time. Note that this
graph illustrates different interactions between robots, not spatial relations. Robots are shown
as circles. Solid edges indicate coordinated exploration of robots; dashed lines indicate that
two robots currently navigate to a meeting point so as to verify a hypothesis for their relative
positions; and dotted lines show communication between robots without valid location
hypotheses. (a) Robots 1,2,7,11, and 12 already established their relative locations and
coordinate exploration. For this exploration cluster, robot 7 was chosen to perform data
combination and exploration coordination. Robots 12 and 13 do not yet know their relative
locations. They are currently moving to a meeting point so as to verify a location hypothesis.
Robot 10 can communicate with robots 5, 6, and 14, but no good location hypothesis has
been generated so far. (b) Robots 12 and 13 moved to the meeting point and detected each
other. As a result, robot 13 is integrated into the exploration cluster. Robot 5 determined a
hypothesis for robot 10’s relative location. Robot 10 accepted the meeting point and they
both move to this location.

12 CentiBOTS

4.2 Technical Approach

To implement the individual parts of our architecture, we will rely on
existing, well established techniques whenever possible. The key
components are:
? ? Individual mapping and exploration: Before a robot can coordinate its

activities with another robot, it explores the environment using recently
developed online mapping and exploration techniques [Yamauchi 1998,
Thrun et al. 2000, Gutmann and Konolige 2000].

? ? Coordinated mapping and exploration: Whenever multiple robots can
communicate and know their relative locations, they form an exploration
cluster. One robot within each cluster is chosen to coordinate the
exploration of the cluster and to combine information collected by the
individual robots. This central coordination robot can be replaced by any
other robot in the cluster whenever necessary. The coordination strategy
is based on ideas used in [Burgard et al. 2000, Simmons et al. 2000]. In a
nutshell, this approach coordinates robots by sending them to different
unexplored areas. We intend to significantly reduce the computational
complexity of this approach by clustering frontier cells based on their
proximity.

Figure 4. Transitions between the possible interactions between two robots. Depending on
the initial knowledge, robots start either in “no communication” or “coordinated
exploration”. As soon as robots can communicate, they estimate their relative locations
(hypothesis generation). Once a high probability hypothesis has been generated, the robots
try to verify it by meeting each other (hypothesis verification). If they do not meet at the
expected location, the hypothesis is rejected and they keep on estimating their relative
locations. If, however, they meet, then they combine their maps and perform coordinated
exploration. Note that the coordinated exploration mode can be reached from any other mode
if a robot within the same exploration cluster establishes this mode with a new robot. For
example, in Figure 3b), robots 1 and 13 are in the coordinated exploration mode,
established by the connection of robots 12 and 13.

CentiBOTS 13

? ? Hypothesis generation: In this phase one robot receives sensor data

from the other robot and estimates their relative location using its own
map. To solve this technically very challenging problem, we are
currently developing a Monte-Carlo approach that generates location
hypotheses by sampling trajectories of one robot through the other
robot’s map. This technique, similar to particle filters for robot
localization [Fox et al. 2000b], takes into account that a robot’s path
might overlap only partially or not at all with the other robot’s map
(overlap estimation is done by a dynamic Bayesian network). Once a
robot received enough data to determine the other robot’s location with
high probability, it generates a meeting point with the other robot. This
meeting point is chosen optimally under consideration of both robots’
location uncertainty. The other robot uses a decision theoretic approach
to decide whether it accepts the meeting point or prefers to keep on
exploring on its own.

? ? Hypothesis verification: Once two robots agree to meet so as to verify a
hypothesis for their relative locations, they both move there and use their
sensors (laser range-finder or vision [Fox et al. 2000a]) in order to detect
each other. If they detect each other they can share maps, otherwise the
hypothesis is rejected and they continue to generate new hypotheses.

We are currently implementing the individual components of our
architecture. Based on very promising first experiments and the fact that we
can rely on existing software solutions to most of the basic components, we
expect to generate results within the next few months. A full paper will
present experimental results and further details on the underlying Bayesian
estimation techniques.

4.3 Current Mapping Progress

At the moment, we have successfully integrated maps from 5 separate
robot mapping runs into a large scale map (Figure 5). The map data was
collected offline, by running a mapping robot on 5 different trajectories, and
then mixing all the scans as if 5 robots were running simultaneously.

14 CentiBOTS

5. DISTRIBUTED COORDINATION AND
PLANNING

5.1 Multi-level agent architecture

Teams are comprised of autonomous vehicles (AVs). Each AV is
designed to reflect two dimensions of organization: a functional dimension
and a software dimension. The former segments robot functionality into
what we refer to as team, strategy, tactical, and control levels. Figure 6
illustrates the architecture. Computations at each level associate a particular
functionality with that level and have complexity that is conceptually
bounded, reflecting the expected time available for decisions made at that
level.

Figure 5. 5 robots mapping from a common breach. The map is about 2/3 constructed at

this point, with 4 areas of frontier and 1 area of infill explorationl

CentiBOTS 15

The lowest levels are responsible for purely reactive robot behavior,
while more deliberative and goal-directed behavior takes place at the higher
levels, generally over a longer period of time. At the control level, response
is immediate; the robot has a 10ms cycle time for responses. At the task
level, responses take place within 100ms to 1s. Computations taking place at
the strategy level generally take 1 to 10s and can usually be performed in
parallel with actions taken at other levels. Finally, deliberations at the team
level span a conceptually longer period of time (approximately a minute),
responding to faults at other levels approximately every 1 to 10s. Crucially,
progress at each level is monitored so that task failure (here, task refers to
the internal robot tasks undertaken at each level) and excessive backtracking
can be avoided by offloading tasks to other levels (or even to a user).

The team level is responsible for decisions involving societal aspects of
the robot group, such as negotiations with other robots on the division of
responsibility or the allocation of resources. The team level is also designed
to respond to changes in the environment that could impact the performance
of the group (e.g., a robot that suddenly detects an intruder entering a team
member's sector should realize that if that team member is already tracking
another intruder, it will need help).

The strategy level is concerned with longer-term (in comparison to the
control level) individual decisions involving a robot's intentions (i.e., its
commitments to future actions). From a resource-bounded perspective,
intentions serve the role of representing fairly stable commitments to
actions; central to the strategy level is an ability to reconcile existing
intentions with newly considered ones. When a potential intention would
conflict with an existing one, the agent must either reject the potential

Figure 6. High level autonomy diagram.

16 CentiBOTS

intention or reconsider its existing intentions in the new context.

The strategy level is also responsible for exploring ways in which to
achieve an intention, including the means to perform that intention and the
resources needed to support execution. Typically, the decisions at this level
proceed at a high level of abstraction. In considering a potential intention,
strategic-level projection of that action in the context of existing intentions is
necessary, but generally follows simplified considerations of relevant lower-
level factors. An example is navigation around small obstacles, which is
assumed to succeed at the strategic level because it is handled in a reactive
manner. If the obstacle proves impossible to overcome during execution, the
system adapts. By design, control is passed up to the strategy or team level
for reconsideration.

At the tactical level, intended goals that are the output of the strategy
level (along with the expected resources needed for execution) are processed
when the time comes for execution. Goals have associated plans (each
representing a possible means for achieving that goal). Each goal is matched
with a plan that does not exceed the resources deemed necessary at the
strategic level. In addition, monitoring sentinels are attached to the plan that
can be activated during execution for tracking progress and adapting
execution to unexpected changes. Adaptation at the tactical level takes the
form of interleaving multiple activities, which may be intended to be
performed at the same time. For example, a robot may wish to follow an
intruder while at the same time remaining in communication with a team
member. Rather than define a behavior, for every possible combination of
behaviors, such as follow_and_stay_in_communication, the tactical level
implements a scheme for behavior blending. Behavior blending is also used
to manage goals of varying priority.

Behavior blending is based on a sound logical formulation [Ruspini
1991], based upon the notion of utility that permits the context-dependent
blending of multiple behaviors. Each behavior is essentially a producer of
desirability measures. These desirability measures are functions defining the
relative utility of potential actions from the viewpoint of a specific goal.
Behavior-specific desirabilities are then combined on the basis of
considerations of the relative importance of each behavior given the current
operational context. In addition to agent-specific (or in some cases, human)
preferences, our behavior-based approach permits the representation and
manipulation of group behaviors imposing soft constraints on the overall
behavior of collaborating agents.

In this framework, goals are represented by means of state-functions that
quantify the degree by which being in that state means that the goal has been
attained. Typically, the degree of attainment of a specific goal is represented
by a number between 0 and 1, with 0 corresponding to the worst possible

CentiBOTS 17

situation (as far as that goal is concerned) and 1 corresponding to full goal
attainment. In cases where it is impossible to determine precisely the relative
desirability of being in a particular state, more general qualitative
measurement scales may be used (e.g., intervals of possible values). As
modeled in this methodology, goals are elastic in the sense that, in most
situations, there exists a continuum of possibilities of degree of goal
attainment.

The control level is responsible for passing low-level actions for
execution to the AV. The control level is also responsible for regularly
polling the state of resources on the robot (e.g., battery, camera, motors) and
communicating that information to the appropriate level.

 All the software modules of the current system are implemented in SRI's
Procedural Reasoning System (PRS), a reactive control system based on the
belief, desire, and intention (BDI) agent model.

5.2 Team organization and blending

 Each robot is architected in the manner just described. Teams, however,
are organized hierarchically in order to manage the complexity of the team
activity. Within a team, any robot is able to take on either a leadership role
or a supporting role in the collaborative activities of the team. Task and
resource management is distributed in several stages. Our approach is based
on a system called the distributed dispatcher manager (DDM) [Yadgar et al.
2002]. DDM has been tested in environments consisting of thousands of
mobile, cooperative (possibly noisy) sensor agents in which thousands of
tasks, in the form of targets that must be tracked, must be managed. Each
DDM agent has direct access to only local and partial information about its
immediate surroundings. DDM organizes teams hierarchically, which
reduces the degree of communication necessary between agents. DDM
processes can very quickly combine partial results to form an accurate global
picture. Each successively higher level narrows the uncertainty about the
solution based on the data obtained from lower levels. We have shown that
the hierarchical processing of information reduces the time needed to form
an accurate global solution and have also derived analytical bounds on the
amount of information collected with respect to the ideal depth of the
hierarchy.

DDM is loosely based on a metaphor for task distribution modeled on the
activity of a "taxi dispatcher" who assigns taxis to incoming calls (tasks).
The taxi dispatcher dispatches taxis in terms of their general proximity to
passenger pickups. The dispatcher need not have complete knowledge of the
location and state of each taxi. Similarly, in DDM, a team leader or dispatch
agent distributes a problem and its solution among the robot team. The team

18 CentiBOTS

is organized in a hierarchical fashion. In DDM, the dispatcher agent is
called a zone coalition leader. The zone coalition leader can either be
initially assigned or can be dynamically chosen through some voting
process. The lower level of the hierarchy consists of individual robots that
are grouped together according to particular sectors or capabilities. Each
group also has a leader. These group leaders are also grouped according to
their sector. Each such group of leaders is associated with a zone group
leader. Figure 7 illustrates this structure. Zone group leaders are also
grouped according to associated sectors with their own zone group leader.
Individual robots are mobile. They may therefore change their group when
changing their area. The zone group leaders execute a load balancing
algorithm so that if too many tasks appear in a particular sector, agents from
other sectors can be diverted from other sectors through negotiations with
other zone leaders [Yadgar et al. 2002]. DDM is also fault tolerant. If a
zone leader becomes disabled, DDM reorganizes itself so that another agent
will take its role.

The role of a zone coalition leader is to distribute robots of the
appropriate general capability to sectors where they are needed. Just as with
the taxi dispatcher, it need not concern itself at this high level of the details
of how the agents will perform their tasks. This assignment of robots to
sectors can be accomplished in one of several ways, depending on the degree
of global knowledge that the zone coalition leader has. The zone coalition
leader might base the distribution of robots within its sector through:

1. knowledge of the state of coverage of the sector under
reconnaissance, derived from output from the spatial reasoning

Figure 7. The Distributed Dispatch Manager (DDM).

CentiBOTS 19

process described earlier.
2. the distribution of tasks within a sector. For example, the need

for a certain number of patrol and communications relay robots.
3. auction-based mechanisms in which the zone coalition leader

queries team members for their availability and their potential
contribution (utility) to a task.

REFERENCES

B. Bellur, and R.G. Ogier. 1999. “A Reliable, Efficient Topology Broadcast Protocol for
Dynamic Networks,” Proc. IEEE INFOCOMM ’99, pp. 178–186.

R.G. Ogier, M.G. Lewis, F.L. Templin, and B. Bellur. 2002. “Topology Broadcast based on
Reverse Path Forwarding (TBRPF),” draft-ietf-manet-tbrpf-06.txt, (November) (work in
progress).

M.D. Yarvis, W.S. Conner, L. Krishnamurthy, A. Mainwaring, J. Chhabra, and B. Elliott.
2002. “Real-world experiences with an interactive ad hoc sensor network,” Proc.
International Workshop on Ad Hoc Networking (IWAHN), pp. 143–151 (August).

O. Yadgar , S. Kraus and Charles Ortiz. Hierarchical organizations for realtime large-scale
task and team environments. AAMAS 2002.

E. H. Ruspini. On Truth and utility. ECSQAU, Marseille, France, October 1991.
W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot

exploration. ICRA 2000.
A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo in Practice.

Springer-Verlag, New York, 2001.
D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to collaborative

multi-robot localization. Autonomous Robots, 8(3):325--344, 2000.
D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters for mobile robot localization.

In Doucet et al.
J.S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. CIRA

2000.
R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes.

Coordination for multi-robot exploration and mapping. AAAI 2000.
S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with

applications to multi-robot and {3D} mapping. ICRA 2000.
B. Yamauchi. Frontier-based exploration using multiple robots. Proc. of the Second

International Conference on Autonomous Agents, 1998.

