
LACOS: CONTEXT MANAGEMENT SYSTEM FOR A SENSOR-ROBOT
NETWORK

Satoru Satake
Graduate School of Science and Technology

Keio University
3-14-1, Hiyoshi, Kohoku-ku Yokohama, Kanagawa, Japan

email: satake@ayu.ics.keio.ac.jp

Hideyuki Kawashima
Graduate School of Science and Technology

Keio University
3-14-1, Hiyoshi, Kohoku-ku Yokohama, Kanagawa, Japan

email: kawasima@ayu.ics.keio.ac.jp
Michita Imai

Faculty of Science and Technology
Keio University

3-14-1, Hiyoshi, Kohoku-ku Yokohama, Kanagawa, Japan
and Precursory Research for Embryonic Science and Technology

email: michita@ayu.ics.keio.ac.jp

ABSTRACT
The purpose of this paper is to develop a new context man-
agement system software that creates applications easily in
a sensor-robot network. Following four functions are re-
quired to realize a context management system. (1) search
contexts. (2) update the current context. (3) fuse two con-
texts. (4) reject fusion requests. To solve these problems,
this paper proposes LaCoS(Layer of Context Sharing). La-
CoS uses Selection and Insertion function, respectively, to
solve (1) and (2). LaCoS defines new function “FUSE” to
solve (3) and “REJECT FUSION” to solve (4). We imple-
mented LaCoS and conducted experiments to confirm that
LaCoS successfully equips four functions.

KEY WORDS
LaCoS, Sensor-Robot Network, Database System, Context,
Interaction

1 Introduction

This paper proposes a context management system for a
sensor-robot network, Layer of Context Sharing (LaCoS).
The purpose of LaCoS is to manage contexts of human-
robot and human-human interactions in a sensor-robot net-
work for real world context applications such as Communi-
tyware with robots and Groupware with robots. Managing
past and the current contexts of interactions enables human
to find similar contexts in which he/she is interested.

But, managing contexts of interactions in sensor-
robot network is difficult. Because the following functions
are required: (1) search contexts, (2) update the current
context, (3) fuse multiple contexts into one context, and
(4) reject context fusion requests.

There are several works which tried to manage con-
texts of interactions in a sensor network. A network
middleware[1] shares sensor information and provides the
information as spatial structure. The semantic network[2]
collects human interests, connects related interests and pro-

vides them for human as a directed graph.
There are two problems in both of [1] and [2]. The

first problem is that they don’t consider interactions be-
tween robots and human are important in a sensor-robot
network. And the second problem is that they don’t con-
sider dynamically fusing nature of contexts that is a re-
markable with context. Therefore previous works are not
applicable for our purpose.

This paper solves these two questions. To solve the
first problem, we integrate communication robots called
Robovie into our design of LaCoS. And to solve the sec-
ond problem, we introduce operations to fuse and reject fu-
sion for LaCoS. Furthermore, LaCoS provides operations
to search and update contexts of applications.

The rest of this paper organizes as follows. In Section
2, we describe motivation for the research and formalize
the unsolved questions of previous works. In Section 3,
we propose LaCoS and describes how LaCoS solves the
unsolved questions. In Section 4, we evaluate the LaCoS
through experiments. Finally in Section 5, we conclude
this paper.

2 Requirements for applications in a sensor-
robot network

2.1 Motivation

In a sensor-robot network it is essential to provide context
management for human-human and human-robot interac-
tions for applications that use information of human. I’ll
show one situation of which such an application is needed.
Let robotR1 show a result of an experiment to humanH1

and humanH2 in a room. And let humanH3 study in an-
other room with a robotR2. SupposeH1 andH2 found a
problem in the experiment and began discussing about it.
ThoughH3 doesn’t know the existence of the discussion,
the problem is related to his research and he is potentially

interested in it.
Without context management, there is no way to tell

H3 the existence of the beneficial discussion. If the con-
texts ofR2 were able to browse byR1, R1 could provide it
with H1, andH1 could join the discussion.

Though management of contexts is beneficial for such
applications, its realization is hard since such contexts not
only rapidly update, but also dynamically fuse with another
context. The purpose of this paper is to present a con-
text management system software LaCoS that supports the
management of dynamically update and fuse of contexts in
a sensor-robot network.

2.2 Conditions to be satisfied

A context management system software should equip the
following four functions. (1)search contexts of other
robots, (2)update from old context to the current context,
(3)fuse two contexts, and (4)reject fusion requests for a
context. Here we formalize them.

2.2.1 Definition

Before formulating the conditions, we give definitions for
several terms in this paper.

Definition 1 (Context) Let a robot beR and let an inter-
action ofR beI at timet. Then we define a tuple consisted
of R, I, andt ascontext(t, R, I).

Definition 2 (Fusion) Let two robots beR1 and R2. We
define fusion ofcontext(t, R1, Iα) andcontext(t, R2, Iβ)
to context(t + 1, R1, Iγ) and context(t + 1, R2, Iγ) re-
spectively as
fusion(context(t, R1, Iα), context(t, R2, Iβ), Iγ).

Definition 3 (Rejection) Let a robot beRi. We define set-
ting contexts ofRi disable to be fused asrejection(Ri).

2.2.2 Formalization of conditions

Condition 1 (Searchablity) We formulate being able to
browse all ofcontext(t, Ri, Ii) at the current and past time
t as searchable.

Condition 2 (Updatablity) Let a robot beRi. We formu-
late enablingRi to updatecontext(t, Ri, Iα) as updatable.

Condition 3 (Fusiblity) Let two robots beRi and Rj .
Then, we formulate being able to execute

fusion(context(t, Ri, Iα), context(t, Rj , Iβ), Iγ)

as fusible.

Condition 4 (Rejectablity) Let a robot beRi. Then we
define being able torejection(Ri) as rejectable.

LaCoS LaCoS LaCoS

Robot1 Robot2 Robot3

Network

Application Application Application Application Application Application

Figure 1. Robots, Network, and LaCoS

.

3 LaCoS

In this section we present a context management system
for sensor-robot network named LaCoS1. Fig. 1 shows the
overview of LaCoS. In Fig. 1, multiple robots are con-
nected with a network and each robot has one LaCoS.

The features of the LaCoS are: (1)It satisfies four
conditions defined in the previous section. We show how
the LaCoS satisfies them through execution samples of La-
CoS. (2)It is designed as a distributed database system to
enhance durability, and (3)It has SQL interface to provide
easy programming for application programmers.

3.1 Design

The system configuration of LaCoS is shown in Fig. 2. A
LaCoS consists of four components. They are application
interface, query issue engine, context data manager and re-
sult collector.

The application interface takes a query from an ap-
plication to the query issue engine and also returns the re-
sult of the query to the application. The query issue en-
gine finds contexts which are designated in the query, by
sending broadcast message to all of LaCoSs on other hosts
through network. The context data manager receives the
query through the network, retrieves the required contexts

result collector

application
interface

query issue engine

LaCoS

broadcast

context data manager

context data

Figure 2. System Configuration of LaCoS

.

1Layer ofContextSharing

and returns the result of retrieval. Finally, the result col-
lector receives the results of the query from all of LaCoSs
and takes the results to the application interface. Both of
the processing and the returning path for a query from an
application are described in the followings.

Using a sample query, here we describe how LaCoS
deals with a query. Suppose an application program issues
a query such as “search contexts around me within 10 me-
ters”. For the query, in the Fig. 2, solid arrows mean pro-
cessing path of the query and broken arrows mean return-
ing path of the query respectively. At first, this query is
received by the application interface and the application in-
terface takes the query to the query issue engine. The query
issue engine requires providing contexts to all of LaCoSs
using broadcast message. When each query evaluation en-
gine receives the requirement via a network, it retrieves ap-
propriate contexts for the query on its LaCoS, and finally
sends the contexts to the LaCoS which issued the require-
ment. For the sample query, Each query manager of LaCoS
executes the query and returns all of its context which sat-
isfies conditions of the query. Then the result collector re-
ceives all of the results. Then the selected results are taken
to application interface and returned to the application pro-
gram.

3.2 Operations that Satisfies Conditions

LaCoS provides the following four types of operations.

1. Searching allcontext(t, Ri, Iα).

An operation to retrieve contexts which are within 10
meters from this robot is written as “SELECT * FROM
contexttable WHERE position< 10”. In this oper-
ation, “contexttable” has historical contexts of each
robot and “position” is one of the attributes in the
“contexttable”. This operation realizes searchability
and hence LaCoS satisfies condition (1).

2. Updatingcontext(t, Ri, Iα) to context(t+1, Ri, Iβ)
onRi at timet.

An operation to update the current context of this
robot is written as “INSERT INTO contexttable (con-
text) VALUES (’newcontext’)”. In this operation, the
current context of this robot at thecontexttable is
modified tonewcontext. This operation realizes up-
datability and hence LaCoS satisfies condition (2).

3. Fusingcontext(t, Ri, Iα) with context(t, Rj , Iβ).

An operation at timet to fuse the current context
of this robot(robotthis) with the current context of
robottar is written as “FUSE TOrobottar INTO con-
text table (context) VALUES (’NEW CONTEXT’)”. In
this operation, LaCoS ofrobottar receives the fusion
request message fromrobotthis to fuse with (“NEW
CONTEXT”). This operation realizes fusibility and
hence LaCoS satisfies condition (3).

¶ ³
1: issue the insertion operation to robot_target;
2: if(robot_target accepts insertion operation){
3: issue the insertion operation to robot_this;
4: print("Fusion is accepted");
5: }else{
6: print("Fusion is rejected");
7: }

µ ´

Figure 3. Codes of the fuse operation

4. Rejecting to be fused with anothercontext(t, Ri, Iα).

An operation to reject a fusion with other contexts
is written as “REJECT FUSION REQUEST TO con-
text table (context)”. On the other hand, an opera-
tion to accept a fusion with other contexts is written
as “ACCEPT FUSION REQUEST TO contexttable
(context)”. This operation realizes rejectability and
hence LaCoS satisfies condition (4).

Therefore LaCoS satisfies four conditions that should be
satisfied as a context management system software for a
sensor-robot network.

3.3 Implementation

In this section, we describe the implementation of La-
CoS. The application interface, the query issue engine, and
the result collector are originally implemented by C lan-
guage and the context data manager is realized by using
PostgreSQL 7.3[3]. The operations “FUSE”, “ REJECT
FUSION”, and “ACCEPT FUSION” are implemented by
SQL[4].

Each context data manager has the same name ta-
ble for contexts, described ascontext table. Each of
context table has the same set of attributes, but its con-
tents are different.robot name, context, position, and
create time are attributes of acontext table. Details are
described table 1 in Section 4.1.

“FUSE” is converted to a SQL representation by “IN-
SERT INTO contexttable (context) VALUES (’NEW CON-
TEXT’)”. The insertion operation is sent to onlyrobotthis

androbottar. The codes are described in Fig. 3. At line 1
and line 3, system issues the insertion operation torobottar

androbotthis respectively. The reason why system issues
the insertion operation torobottar at first is that the inser-
tion operation torobottar may be rejected.

“REJECT FUSION” operation is converted to a SQL
representation by “CREATE TRIGGER RFUSION BE-
FORE INSERT FOR EACH ROW execute PROCEDURE
reject fusion()”. This operation creates event driven func-
tion reject fusion() which is invoked beforeINSERTop-
eration in PostgreSQL. The reason why trigger performs
asreject(Ri) is thatreject fusion()stops execution ofIN-
SERT. Thereject fusion()is written by PL/pgSQL.

“ACCEPT FUSION” is converted to a SQL represen-
tation by “DROP TRIGGER RFUSION”. The operation

cancelsreject fusion().
The communication protocol for a selection operation

between LaCoSs is implemented as followings. At first, the
query issue engine sends an udp broadcast packet which
contains a tcp port number. After receiving the udp packet,
each LaCoS returns an ack message to the result collec-
tor using the tcp port number and invokes the context data
manager component. On the other hand, query issue engine
invokes its result collector component which detects ack
messages and host names of other LaCoSs. Whenever the
result collector detects an ack message and its host name by
waiting the tcp port, the query issue engine issue the selec-
tion operation to the context data manager of the host. The
result collector stops the detection of ack messages, when
it can not detect an ack message for 10 msec. And the re-
sult collector collects results of the selection operation and
takes them to the application interface. If the tcp port num-
ber is already used by another query, the query issue engine
uses the next port.

4 Evaluation

4.1 Behavior of LaCoS

Environment In this paragraph we show environments
of experiments of LaCoS. All of behavior tests were exe-
cuted under Linux 2.6 and FreeBSD 4.8.

In the environment of behavior test, we assume that
there are three robots connected through a network. To test
this assumption, we used three machines which are named
Mars, Cygnus and Antares. Mars is a Linux 2.6.5 ma-
chine which has 4G bytes memories and a 3.0 GHz Pen-
tium 4 processor. Cygnus is a Linux 2.6.5 machine which
has 2G bytes memories and a 3.0 GHz Pentium 4 proces-
sor. Antares is a FreeBSD 4.8 machine which has 2G bytes
memories and a 2.0 GHz Pentium 4 processor. Mars and
Antares are connected with 1G bps Ethernet, but Cygnus
is connected with 100M bps Ethernet. To simplify the be-
havior test, we use one dimension for locational coordi-
nates. Let the location of Mars be at 0 meter, the location
of Cygnus be at 5 meters, and the location of Antares be at
100 meters.

We define contexttables named CTable on each La-
CoS to represent each context. A tuple in the CTable has a
context of a robot, the position of the robot, and time when
the tuple is created(table 1). A context is represented by
text data, such as “Discussion about robot planner”. The
context is bounded with its creation position and time. And
initial states of CTables are shown in table 2.

Searching contexts In this paragraph we describe three
search results of LaCoS. They are simple search, condi-
tional search, and search with trouble.

At first, we show what happens to LaCoS when Mars
requires all of contexts. Then, Mars issues a query to a
built-in LaCoS and get the result as follows. From this re-

Table 1. Context Table and its Attributes

Attribute name Attribute type Explanation
robot text data the name of robot

context text data key word of context
pos real number position of robot
time timestamp creation time

Table 2. Initial CTable

robot pos context time
mars 0.0 Introduce partner mars 15:20
cygnus 5.0 Discussion about LaCoS 15:00
antares 100.0 Explain about LaCoS 15:15

sult, Mars could have known that “Cygnus is discussing
LaCoS” and “Antares is explaining about LaCoS”.
¶ ³

mars> select robot, pos, context from CTable;
--
robot pos context
mars 0.0 Introduce partner mars
cygnus 5.0 Discussion about LaCoS
antares 100.0 Explain about LaCoS

µ ´
Secondly, we show what happens to LaCoS when

Mars requires all of contexts that are located less than 10
meters from Mars. Then, Mars issues a query to a built-
in LaCoS and get the result as follows. From this result,
Mars could have known that “only Cygnus is near Mars”
and the result didn’t include the inappropriate context of
Antares. This result shows that LaCoS can remove inap-
propriate contexts.
¶ ³

mars> select host, pos, context \
from CTable where pos < 10.0;
--
robot pos context
mars 0.0 Introduce partner mars
cygnus 5.0 Discussion about LaCoS with mars

µ ´
Finally, we show what happens to LaCoS when Mars

requires all of contexts when a robot is in trouble. Assume
that a trouble occurred at Cygnus and therefore Cygnus
isn’t connected to network. We simulate the network trou-
ble of Cygnus by stopping its LaCoS daemon. In this case,
the result of a query is influenced by the trouble. This ex-
ample shows LaCoS performs even when network trouble
exists. What we’d like to note here is that LaCoS is a dis-
tributed system and hence it is more durable compared with
concentrated system architecture.
¶ ³

mars> select host, pos, context from CTable;
--
robot pos context
mars 0.0 Introduce partner Mars
antares 100.0 Explain about LaCoS

µ ´

Fusing contexts(acceptance and rejection) In this para-
graph we show two fusions of LaCoS. They are a accep-
tance of a fusion and a rejection of a fusion.

At first, we describe what happens to LaCoS when
Mars requires to fuse its context with the context of
Cygnus. Note that, a rejection of a fusion is not set on
Cygnus in this case.¶ ³

mars> fuse to cygnus into CTable (context) values \
(’Discuss about LaCoS with Mars & Cygnus’);

--
Fusion is accepted

µ ´
In this case, Cygnus accepts the fusion request. Therefore
Mars can invite its partner to the discussion. After that,
CTable is updated as follows.¶ ³

mars> select host, pos, context from CTable \
where time=’latest’;

--
robot pos context
mars 0.0 Discuss about LaCoS with Mars & Cygnus
cygnus 5.0 Discuss about LaCoS with Mars & Cygnus
antares 100 Explain about LaCoS

µ ´
Secondly and finally, we show what happens to La-

CoS when Mars requires to fuse its context with the context
of Antares. Note that, however, a rejection of a fusion is set
on Antares in this case since Antares wants to continue the
current context. In this case, the fusion request is rejected
and CTables of Mars and Antares weren’t changed.¶ ³

antares> reject fusion request to CTable (context)
mars> fuse to antares into CTable (context) values\

(’Explain about LaCoS with Mars’);
--
Fusion is rejected.

mars> select host, pos, context from CTable \
where time=’latest’;

--
robot pos context
mars 0.0 Discuss about LaCoS with Mars & Cygnus
cygnus 5.0 Discuss about LaCoS with Mars & Cygnus
antares 100 Explain about LaCoS

µ ´

4.2 Scalability

We had two experiments to evaluate scalability of LaCoS.
In the first experiment, we evaluated execution time for a
query that searches contexts when the number of robots in-
creases. And in the second experiment, we evaluated the
execution time of a query when the number of queries is-
sued simultaneously increases in the condition that all of
the queries are issued to the same robot. We used four ma-
chines which are Mars, Cygnus, Antares and the machine
that has the same spec as Antares.

For these two experiments, we stored 10000 contexts
in each LaCoS. To simplify experiments, we used text data
such as “1”, “2”,. . . , “9999” and “10000” as context and
queries that partially matches between contexts. And a
query is set to search one of the contexts randomly. We
measured an execution time of a query 100 times and cal-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4

tim
e[

se
c]

number of server

LaCoS
postgres

Figure 4. The relation of number of LaCoS and searching
time

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

1 2 3 4 5

1 2 3 4 5

tim
e[

se
c]

number of queries

LaCoS with 4 robot
LaCoS with 1 robot

Postgres

Figure 5. The relation of number of queries and its search
time

culated the average.
The result of the first experiment is shown in Fig. 4.

In Fig. 4, the x axis shows the number of LaCoS and the y
axis shows the search time for a query. And Fig. 4 shows
as the number of LaCoS increases, search time of a query
increases. The result of PostgreSQL in Fig. 4 shows the
execution time of the context data manager component in
LaCoS.

Fig. 4 clearly indicates that LaCoS can be useful for
a few robots, but it doesn’t have high scalability. When
the number of robots is four, LaCoS returns the result of a
query within 0.14 sec. In case of one robot, LaCoS needed
about twice as much search time as PostgreSQL. And with
four robots, LaCoS needed about seven times as much costs
as PostgreSQL.

The result of the second experiment is shown in Fig.
5 and Fig. 6. In both of Fig. 5 and Fig. 6, x axis shows
the number of queries issued simultaneously. In Fig. 5,
y axis shows search time with four robots, one robot, and
PostgreSQL. In Fig. 6, y axis shows the search time of

2

3

4

5

6

7

8

9

1 2 3 4 5

1 2 3 4 5

fa
ct

or

number of query

LaCoS with 1 robot
LaCoS with 4 robot

Figure 6. The relation of number of queries and factor
compared with PostgreSQL

LaCoS divided by the search time of PostgreSQL.
Fig. 5 seems to indicate that LaCoS with four robots

has few scalability. However, Fig. 6 indicates that LaCoS
with four robots has more scalability compared with one
robot. In Fig. 6, as the concurrency of queries increases,
the difference of factors becomes smaller. When the con-
currency of the query was one, the difference of the factor
was 6.5, but when the concurrency was five, the difference
decreased to 3.6.

The reason why this phenomenon occurred is because
of applying broadcast messages. LaCoS makes connection
in the order of return messages. The order depends on net-
work and the host condition, therefore it may be changed
at the query time. That is why it showed higher utilization
in case of four robots than in case of one robot.

5 Conclusion

In this paper, we proposed the context management sys-
tem in a sensor-robot network called LaCoS. LaCoS was
designed to achieve four functions, (1) context searchable,
(2) context updatable, (3) context fusible and (4) context
rejectable. To support (1), LaCoS provided“SELECT” op-
eration. To support (2), LaCoS provided“INSERT” oper-
ation. To support (3), LaCoS provided“FUSE” operation.
And to support (4), LaCoS provided“REJECT FUSION”
operation. It should be shown from the results of exper-
iments that LaCoS equips four functions and has higher
durability, but a few scalability compared with concen-
trated architecture.

There are several future works for LaCoS. First, we
should introduce the context division function to LaCoS,
which is a reversing idea of context fusions. It is also
future work to solve few scalability. And we must im-
prove the performance. Then, we must introduce LaCoS
to Robovie[5] to evaluate effects of LaCoS, because we
evaluated the performance of LaCoS without motor con-
trol modules and sensor modules which require high CPU

power. When these works were done, robots in the same
context would share sensor data from a sensors network
and the sensors equipped by the robots to accomplish their
interactions. And finally, we will create applications of
communication robot with LaCoS.

References

[1] Hiroshi NOGUCHI, Taketoshi MORI, and Tomomasa
SATO, Network Middleware for Utilization of Sensors
in ROOM, Proc. of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Las Ve-
gas, USA, pp. 1832-1838, 2003

[2] Stephen Peters and Howard E. shrobe, Using Semantic
Network for Knowledge Representation in an Intelli-
gent Environment,In PerCom ’03: 1st Annual IEEE
International Conference on Pervasive Computing and
Communications, Ft. Worth TX, USA, March 2003.

[3] PostgreSQL,http://www.postgresql.org

[4] Abraham Silberschatz, Henry F. Korth, and S. Su-
darshan, SQL,DATABASE SYSTEM CONCEPTS 4TH
EDITION, (New York, McGraw-Hill, 2002) pp. 135-
187

[5] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R.Nkatsu,
Development and Evaluation of an Interactive Hu-
manoid Robot “Robovie”,IEEE International Confer-
ence on Robotics and Automation, Washington D.C.,
USA, pp. 1848-1855, 2002

