
A Distributed Architecture for Interactive

Robots Based on

a Knowledge Software Platform

Pattara Kiatisevi

DOCTOR OF

PHILOSOPHY

Department of Informatics,

School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI)

2005 (School Year)

September 2005

A dissertation submitted to the Department of Informatics,
School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies (SOKENDAI)
in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Advisory Committee:

Advisor Prof. Haruki Ueno National Institute of Informatics (NII),

SOKENDAI

Sub-advisors Assoc. Prof. Tomoko Matsui Institute of Statistical Mathematics

Assoc. Prof. Nigel Collier NII, SOKENDAI

Members Assoc. Prof. Nobuhito Furuyama NII, SOKENDAI

Prof. Shin’ichi Satoh NII, SOKENDAI

Prof. Yoshiaki Shirai Osaka University

Abstract

Robots have taken more and more important roles in human life. That is, they are not only

working in factories and hazardous environment but also being introduced in applications

like welfare services and amusement agents, where interaction with human is crucial. In

the future, we envision interactive robots assisting humans especially the elderly and the

disabled in daily life. Such robots coexist and interact with humans in a human-friendly

manner.

To develop such robots we need to address challenging problems of how to integrate

various robotic components, and how to control robot behaviors so that it interacts with hu-

mans reasonably. The first problem involves architectural design of the system in the compo-

nent level, i.e., how various types of robotic components can be combined into a functional

integrated system. The second problem involves designing the brain part of the system,

which manages robot actions and interactions with human. There are several approaches

in designing robot architectures to accommodate these problems, e.g., behavior-based, plan-

based, and knowledge-based approaches. In our research group, we have been focusing

on the knowledge-based approach with the emphasis on the frame model, and have devel-

oped a frame-based software platform for robots called the Software Platform for Agents and

Knowledge or SPAK.

In this work, we extended SPAK to overcome the problems of representing changing

knowledge and limitations in managing human-robot interactions. New extensions to the

conventional frame model, namely, time-based layer, periodical task evaluator, and priority

support for frame-related actions, are proposed and added to SPAK. With the time-based

layer, the SPAK-based knowledge manager keeps track of changes in the knowledge con-

tents and provides methods to access this history data. One can, for example, query frames’

age, old values of slots at absolute or relative points in time, and specify frames’ condition

based on this history data. The periodical task evaluator regularly checks the validity of the

knowledge contents, fixes it if needed, and executes actions. Designers can specify actions

to be done periodically in a special event-driven slot whose contents will be executed by the

evaluator. Priority support for frame-related actions gives the knowledge designer a con-

trol over the execution order of frame-related actions. Each frame can be assigned a priority

value. The inference engine in SPAK will respect these values when conducting actions like

3

4

frame instantiation, updating, deactivation, and evaluation. These new extensions can be

used via new special system and event-driven slots, and slot flags.

To very the utility of SPAK and to illustrate how a robot system can be built based on this

platform, a demonstration system on a humanoid robot was developed, with a sample dia-

logue management application. The knowledge model for the dialogue manager is shown.

The current knowledge-based dialogue manager can handle basic human commands, state-

based and form-based dialogues. A multi-agent technique is employed to connect various

robotic hardware and software components designed as agents together on the network.

The prototype system was set to make dialogue interactions with a human in three scenar-

ios: basic learning, greeting, and future welfare robot.

This dissertation makes three contributions to the fields of knowledge engineering, dia-

logue systems, and robotics.

First, the thesis proposes a design concept for the knowledge manager, the brain part of

the robot. We based our design on the frame knowledge model because of its simplicity and

naturalness, and introduced three dynamic extensions to the conventional frame model to

support robot behaviors control. Various robotic applications can run and share knowledge

among each other on the platform.

Second, the thesis proposes a novel design of a knowledge-based dialogue manager for

robot as an application on the platform. We show that the design and the internal mechanism

of the system are natural and easy for developers to understand. With tight integration

to the knowledge base, the dialogue manager can easily make use of the knowledge and

knowledge-related facilities provided.

Third, the thesis contributes a knowledge-based robot architecture with an implementa-

tion of a robot system that interacts with humans in the laboratory environment. The system

components include SPAK, the designed dialogue manager running in SPAK, various robot

software and hardware components, and a Robovie humanoid robot. With SPAK, we show

that it is simple and intuitive to develop a multi-modal interactive robot system.

A SPAK-based robot system has an important feature of frames and agents being inte-

grated seamlessly in a distributed environment. A prototype system with a sample dialogue

management application has demonstrated interesting functions for future symbiotic robots.

Ultimately, this dissertation demonstrates the concept of employing a knowledge platform

as the base layer of a robot system. The platform works as glue connecting various robotic

devices and applications together. We believe that this is a major step towards achieving

intelligent future robots.

Acknowledgement

I would like to thank many people for their support, encouragement and guidance during

my years as a graduate student at Sokendai/NII.

First and foremost, this dissertation represents a great deal of effort not only of mine,

but also my advisor, Haruki Ueno. He has helped me shape my research from day one,

guided and pushed me to get through all the inevitable research setbacks. Without him, this

dissertation would not have happened.

I also thank my sub-advisors Tomoko Matsui, Nigel Collier, and the committee members,

Nobuhiro Furuyama, Shin’ichi Satoh, Yoshiaki Shirai, and Seiji Yamada and other professors

at NII, for valuable discussions and comments regarding my research.

This research is indeed a group effort. I deeply thank Vuthichai Ampornaramveth for

his valuable advice and supports to making my research possible. I also thank other Ueno

laboratory members, Md. Hasanuzzaman, Alexander Kovacs, Chikahito Nakajima, Zhang

Tao, for helps, valuable and fruitful discussions in the “Friday” meetings and during the

course of my research.

My life at NII would not have been smooth without great support from many NII staff. I

thank all of them, especially Tami Nakata, Miyoko Taylor, Nahoko Iwanaga, Sayo Eibahara,

Aiko Kawamura, and the previous members of NII: Fuyuki Matsushita, Yumi Imai, and

Aiko Uchida.

On a more personal note, I have been lucky to have many close friends and classmates,

especially my fellow students at NII, who have made my times as a graduate student in

Japan very enjoyable. I specially thank Vuthichai Ampornaramveth (again) and Panrit To-

sukowong for their great supports of my living in Japan since the very first days.

Most of all, I would like to thank my mother, father, and brother, who have always been

and continue to be there for me all the time. And lastly Supavadee Monsathaporn, for your

patience and supports during my years in Japan.

27 September 2005

Pattara Kiatisevi

5

Contents

Abstract 3

Acknowledgement 5

Contents 7

List of Figures 10

List of Tables 13

1 Introduction 15

1.1 Motivation . 15

1.2 Objectives and Approach . 18

1.2.1 Thesis Question . 18

1.2.2 Approach . 18

1.3 Contributions . 20

1.4 Organization of the Thesis . 21

2 Background 22

2.1 Interactive Robot Architecture . 22

2.1.1 Architecture Design Approaches . 23

2.1.2 Distributed Systems . 25

2.1.3 Interactive Robot Systems . 27

2.1.4 Concerned Difficulties and Issues . 28

2.2 Frame-based Knowledge Systems . 28

2.2.1 Frame Knowledge Model . 29

2.2.2 Frame-based systems . 31

2.2.3 Applications of Frame-based systems in Robotics 32

2.2.4 Concerned Difficulties and Issues . 34

2.3 Dialogue Systems . 35

2.3.1 Dialogue Systems Components . 36

7

8 CONTENTS

2.3.2 Dialogue Management Approaches . 37

2.3.3 Dialogue Systems . 42

2.3.4 Frame-based Knowledge Technique and Dialogue Systems 46

2.3.5 Concerned Difficulties and Issues . 46

3 Knowledge-based Distributed Robot Architecture 48

3.1 Introduction . 48

3.2 System Architecture . 49

3.2.1 Primitive Agent . 49

3.3 Agents Collaboration . 51

3.4 Knowledge Manager Agent . 52

3.5 Technical Design . 53

3.5.1 Communications among Primitive Agents 54

3.5.2 Primitive Agent Abstraction . 55

3.6 Summary . 56

4 Frame-based Knowledge Manager 57

4.1 Frame Model . 57

4.2 Knowledge Manager Roles . 58

4.3 Frame Model Extensions . 59

4.3.1 Special Slots . 60

4.3.2 Slot Flags . 63

4.3.3 Time-based Layer . 65

4.3.4 Evaluator . 66

4.3.5 Priority Support for Frame Actions . 67

4.4 SPAK Knowledge Platform . 68

4.4.1 Graphics User Interface (GUI) . 69

4.4.2 Knowledge Base . 69

4.4.3 Inference Engines . 75

4.4.4 JavaScript Interpreter . 76

4.4.5 Network Gateway . 76

4.5 SPAK Reasoning Mechanism . 77

4.5.1 Scene Understanding . 80

4.5.2 Robotic Tasks Planning . 82

4.6 SPAK Knowledge Design Policy . 82

4.7 SPAK Programming Interfaces . 88

4.8 Summary . 89

CONTENTS 9

5 SPAK Application: Knowledge-based Dialogue Manager 90

5.1 Design of the Dialogue System for Robots . 90

5.2 Knowledge-based Dialogue Manager . 92

5.3 Dialogue Management . 98

5.3.1 Handling of Human Commands . 99

5.3.2 Asking a Question . 100

5.3.3 Handling of State-based Dialogues . 103

5.3.4 Handling of Form-based Dialogues . 103

5.3.5 Robot Learning from Human Instruction 105

5.4 Summary . 106

6 Prototype Development 109

6.1 Robot Components . 109

6.2 Interaction Scenarios . 114

6.3 Dialogue Manager Internal Mechanisms . 118

6.4 Discussions . 120

6.5 Summary . 121

7 Evaluation 122

7.1 SPAK Extended Frame-based System . 122

7.2 Knowledge-based Dialogue Manager . 125

7.3 Distributed Knowledge-based Robot Architecture 126

8 Conclusions and Future Work 130

8.1 Contributions . 130

8.2 Limitations and Future Directions . 131

8.3 Concluding Remarks . 132

About Author 133

Related Publications 134

Biblography 136

Index 146

List of Figures

1.1 Platform-based approach for realizing symbiotic robots 19

2.1 Deliberative architecture . 24

2.2 Reactive architecture . 24

2.3 Example of a simplified image in identifying a cup vessel using the knowl-

edge in the Cup Vessel frame in the Shape model inside the world model . . 34

2.4 Classical pipe-line structure of a spoken dialogue system 37

2.5 Multimodal dialogue systems have more modes of input/output, 38

3.1 Robot as a network of primitive agents: speech recognizer, speech synthesizer,

knowledge manager, gesture recognizer, face recognizer, face detector, and

robot posture . 50

3.2 Platform approach for robot architecture . 51

3.3 Four types of collaboration among agents that compose a robot (the big rect-

angle). 52

3.4 Knowledge manager’s knowledge model and interactions with other compo-

nents . 53

4.1 Hierarchy of frames representing lines including an instance Line 1 as a child

of both LongLine and ThickLine frames. In each frame and instance, its slots are

shown in the left column and their values in the right column, optionally with

a condition in the square brackets (e.g., the thickness slot must be greater than

2 for the ThickLine frame). Note that the green tables represent frames and the

red ones represent instances. Red arrows are used to indicate IS A relationships. 58

4.2 Input, output, and actions mechanisms of SPAK knowledge manager 59

4.3 Snapshots of the frame instance representing John at various time points . . . 66

4.4 A screenshot of SPAK loaded with the knowledge contents representing line

frames from the example in Figure 4.1 . 71

10

LIST OF FIGURES 11

4.5 A screenshot of a property window of the Line 1 instance in Figure 4.4. Each

row shows a slot with its name, type, value (frame default value), slot condi-

tion, argument (of the condition), and slot flags (R, BO, S, U). 72

4.6 A screenshot of SPAK showing the knowledge of the Human frame and its

children . 73

4.7 Hierarchy of frames representing humans. The red lines represent HAS A

relationships. 74

4.8 Property of the Child 1 instance . 74

4.9 A flowchart showing algorithm of the SPAK induce and reInduce inference

processes . 78

4.10 A flowchart showing algorithm of SPAK induce and reInduce inference process 79

4.11 Scene understanding with image processing modules and SPAK 80

4.12 A frames hierarchy corresponding to the knowledge contents shown in Figure

4.4. The red and blue lines represent IS A and HAS A relationships respectively 81

4.13 Task scheduler for move-a-cup action . 82

4.14 A knowledge hierarchy showing the SeenHuman 1 instance and its parents . . 83

4.15 Property of the SeenHuman 1 instance . 84

4.16 A knowledge hierarchy starting from the SeenObject node 85

4.17 A knowledge hierarchy starting from the Human node 86

5.1 An overview of the designed dialogue manager. A robot is composed of vari-

ous agents including the SPAK knowledge-manager agent. 91

5.2 A screen-shot of SPAK showing groups of knowledge frames: StatusRegister,

Event, Action, world knowledge (Object and Concepts), that constitute the dia-

logue manager for robots. Note that the frames further down the hierarchies

are not shown. 93

5.3 A SPAK screenshot showing Event and Action frames 94

5.4 StatusRegister frames and Objects frames. Note some multiple-parent frames

that are children of both the Object and StatusRegister frames 95

5.5 A snapshot of the LSE and LSA frames . 96

5.6 Window function used to calculate the significance factor 97

5.7 Concepts frames, as a part of the world knowledge, represent conceptual knowl-

edge like gestures and speech . 98

5.8 Example of the knowledge contents for processing robot commands, and the

content of the SayWhatHumanSaid frame . 99

5.9 A screenshot of a DialogueAsk 1 instance . 100

5.10 A screenshot of a WaitingForAnswer 1 instance created by the DialogueAsk 1

instance in Figure 5.9 . 101

12 LIST OF FIGURES

5.11 A screenshot of an AnswerFound frame used to match between a SpeechRecog-

nized instance representing incoming speech from human and a DialogueAsk

instance . 101

5.12 Related frames to the mechanism of asking a question and their interactions . 102

5.13 Example knowledge contents to realize state-based dialogues 103

5.14 A flow chart showing a task action flow, dialogue state frame updates, and

interactions with human, in a state-based dialogue for greeting a known user 104

5.15 Related frames to the bus reservation dialogue and their interactions 107

5.16 Property of a ReserveBus frame, which is an example of a frame-based dia-

logue with the goal to reserve a bus seat . 108

6.1 The prototype system . 109

6.2 System configuration of the prototype system. Agents in the demonstration

prototype run on five different machines and communicate on a TCP/IP net-

work using the XML-RPC protocol. 110

6.3 Menu selection for starting, testing and killing agents running on the Robovie

robot . 114

6.4 Human robot interaction in the scenarios . 115

6.5 Steps showing changes in SPAK knowledge base during the human-robot in-

teraction scenario . 118

6.6 A SPAK window showing property of the FoundHuman state frame. 119

6.7 Snapshot of a GreetNewUserTaskAction1 1 instance 119

6.8 A SPAK window showing property of the DialogueAsk 1 instance during the

interaction. It asks human according to the text in its question slot (Hello, we

haven’t....) and creates a WaitingForAnswer instance with the expected speech

act according to its answeract and answersubact slots. 120

7.1 Blackboard-based approach (right) to develop robots where a central brain is

employed, compared to the conventional mesh design (left) 128

List of Tables

1.1 Problems and proposed solutions in this work 20

2.1 Description of a Red-cup frame . 33

2.2 Description of a Cup Vessel frame . 34

2.3 An example of a frame representing a red cup in the functional model 34

2.4 Comparison of several dialogue management approaches 41

3.1 Example of an XML-RPC request to a remote function ping with one integer

parameter . 55

4.1 List of special slots supported in SPAK . 60

4.2 List of slot flags in SPAK . 64

4.3 Supported slot types in SPAK . 69

4.4 Some methods to manipulate frames provided by the KFrame Java class . . . 87

4.5 Some properties and methods of the KFrameScript class 88

7.1 Comparison of SPAK to other frame-based systems 124

7.2 Comparison of the knowledge-based dialogue management with the conven-

tional dialogue management approach . 127

13

14

Chapter 1

Introduction

Robots have taken more and more important roles in human life. That is, they are not only

working in factories and hazardous environment but also being introduced in applications

like welfare services and amusement agents, where interaction with human is crucial. We

human need some helps in daily life. However, many countries including Japan [1] are

experiencing aging society, where the average age of population is increasing. In this sit-

uation, it is more difficult to receive helps from other humans such as care takers, nurses.

One solution is to utilize robots and Information Technology (IT). In the future, we envision

interactive robots assisting humans especially the elderly and the disabled in daily life. The

robots coexist and interact with humans in a human-friendly manner.

This research is focused on the design and development of such interactive robots. A

knowledge-based robot architecture is proposed, with a sample application and a prototype

system. This chapter gives an overview of this research, including motivation, objectives,

approach, and contributions.

1.1 Motivation

Despite the explosive development of IT toward the 21st century, instant adoption of such

technologies into everybody’s daily life is still not possible. Although recent development in

information technology has led to more powerful and useful information systems, they also

became more complicated. Access to recent technologies requires some kinds of training for

which not everybody can afford. In order to maintain the citizens’ “right of usage” of any ad-

vanced information technologies, it is necessary to realize an intelligent information system

that is accessible by anybody, regardless of his/her education background or age, anywhere,

and anytime. We believe that instead of training human users to be computer-literate in

order to use the technology, the technology itself should be made intelligent enough to com-

municate and understand users in a human-friendly way. This is the motivation of NII’s

research program on the topic of Symbiotic Information Systems (SIS) [2, 3, 4].

15

16 CHAPTER 1. INTRODUCTION

Symbiotic information system is an information system that includes human beings as

an element, blends into human daily life, and is designed on the concept of symbiosis. De-

velopment and realization of such a barrier-free system are the long-term objectives of SIS.

Researches on SIS cover a broad area including intelligent human-machine interfaces with

vision, speech, natural language, virtual reality, agent technologies, ubiquitous computing,

network system with guaranteed quality of service, and development of supporting runtime

environment. One of our final goals is to achieve symbiotic robots which live together with

and assists humans, especially the elderly and ill persons, in daily life.

The term symbiosis is also used by other researchers and communities for describing re-

lationship between human and robots, e.g., in [5, 6]. Matsuyama views man-machine sym-

biotic systems as a step further beyond conventional machine interfaces [7]. Instead of the

order-response or master-slave model where human acts as an omnipotent master and a

machine as an obedient server, in man-machine symbiotic systems, a human and a machine

are considered to be on equal terms and interact with each other as partners. The machine

should be realized such that it works for humans even if they are not explicitly ordered.

They are focusing on topics like human-robot multi-modal interaction, sensory technolo-

gies to observe human activities, multimedia presentation methods to attract human, and

real-time interaction protocol to interact with humans.

The SIS project of NII has a goal to realize information systems that coexist with humans

and interact with us in the human-friendly manner. We aim to achieve symbiotic robots, i.e.,

the robot based on the concept of SIS that coexists with human at the places of everyday

life, communicates with, and assists human. It is foreseeable that such a robot would be

helpful in aged society, such as Japan, where there will not be enough younger generations

to take care of the aged members. Demand for this kind of care-taking robot is increasing

in high-welfare society of the 21st century. Also intelligent service robots which can execute

works as proxy under dangerous environment are expected. By combining with the Internet

technology these robots become networked intellectual sensors that can not only help people

locally, but also expand the welfare service area by cooperating with the welfare center where

welfare-service professionals are supporting the total service [8].

Inspired by the above concept, this research is focused on the realization of symbiotic

robots. Research in robotics has been progressing rapidly during the last decade. Significant

achievement has been made in the mechanical or sensory-and-motor worlds. The robots

can now imitate human-biped movement. However, most robots developed so far still lack

the ability to interact with human user in natural and ways and act intelligently. There are

several issues to consider when developing robots.

Human-robot interaction is one of the most important issues in realizing symbiotic robots.

There are many possible human-robot interaction modes— e.g., using a monitor, keyboard

and mouse, or more natural means like speech, vision, and gesture— depending on the tar-

1.1. MOTIVATION 17

get application and the person whom it interacts with. Consider these target users of elderly

and disabled persons, it would be inconvenient to ask them to use the keyboard or mouse

in order to communicate with machines as they might not be familiar with computer inter-

faces. Multi-modal natural interfaces like speech and gesture is preferred. Hence, the robot

is required to understand human requests in a natural manner, to recognize environment by

means of multiple sensors, to respond to change of the environment, to talk with him/her,

and so on. We regard this targeted type of robot as socially-interactive robots (similar to the

definition in [9]), in short, interactive robots.

Interactive robots can have different hardware and software configurations, depending

on target capabilities. Consider a robot for household uses, its hardware can include moving

devices (e.g., wheel, legs), display devices (e.g., screen, projector, its arms and bodies for

displaying gestures), object handling devices (e.g., arm, hand, manipulator, carrier), and

processing devices. Also future service robots should be able to work in the networked

environment, where they collaborate with other systems such as a central welfare service

center over the Internet to serve humans at home. How to combine these components to an

integrated robot system is an issue.

A robot equipped with proper sensor and actuator devices is then expected to have some

capabilities. Physical capabilities are, for example, moving, navigating, talking, grasping

and lifting things. Software or computing capabilities are, e.g., speech recognition, face

recognition, scene understanding. Based on these capabilities, the robot exhibits some be-

haviors to provide some services or accomplish some tasks, which we call it a robot appli-

cation. Example of robot applications are dialogue management (which can act also as a

front-end to other applications), security monitoring (e.g. monitor a house and alert if there

is an intruder), fetching and delivering things, room or space exploring.

It would be straightforward if each robot application is independent and does not in-

volve others. However, robot applications need to share robot devices and capabilities. In

order to achieve consistent behaviors from all applications, they need to share the knowl-

edge they gained, e.g., location knowledge from room explorer, human-related information

from dialogue management. To realize this, there must be something that glues every parts

together. In other words, the robot architecture must allow integration of various robotic de-

vices and applications and let them work cooperatively. Robot applications should be able

to cooperate and share the common knowledge.

The question is how do we design such architecture?, what technologies are needed in

the system to fulfill such requirements? In this thesis, we propose the concept of a distributed

robot architecture based on a knowledge software platform. To illustrate how a robot system

can be built using this concept, a demonstration system on a physical robot is developed.

Dialogue management is selected as a sample application on the system as it is a crucial

function of symbiotic robots.

18 CHAPTER 1. INTRODUCTION

1.2 Objectives and Approach

In this section we outline the thesis question and the approach used in this work.

1.2.1 Thesis Question

The principal question addressed in this thesis is:

What is a suitable robot architecture for socially-interactive robots that in-

tegrates various robotic devices and applications, and allows intuitive devel-

opment process of and collaboration among various robot applications?

More specifically this thesis contributes a robot architecture for interactive robots that can:

• integrate various robotic sensor and actuator components, e.g., head, body, cameras,

microphone, speakers;

• integrate various robotic software components, e.g., image processing software, speech

processing software;

• maintain the robot knowledge about the world of interest, which changes over time;

• manage robot behaviors including the dialogue interaction with humans

1.2.2 Approach

To solve the thesis question, we took the platform approach based on multi-agent and knowl-

edge techniques. We argue that the combination of knowledge techniques with multi-agent

technology on a single general-purpose platform is needed to meet these requirements.

Multi-agent technique allows developers to break down the system into independent but

collaborative components. The system is thus modular. Development of each components

can progress independently and re-using the existing technologies is easy, provided that

abstraction of these components is well-defined. Managing human-robot interactions us-

ing natural interfaces like speech requires machines to process symbols such as words and

sentences used by human, e.g., in natural language speech, as well. We human-beings use

symbols as well as knowledge related to them in understanding such as speech and ges-

tures, and in planning actions based on understanding. Therefore the use of symbol-based

techniques like logic and other knowledge techniques is beneficial. Lastly there is a problem

of integration. Some autonomous software systems have an architecture that allows inter-

connection of several software modules and results in a too complicated system structure.

Addition of new functions is difficult. Instead, we propose to integrate all robotic modules

using multi-agent techniques on a networked knowledge-based platform. The development

1.2. OBJECTIVES AND APPROACH 19

of such a new general-purpose platform is needed for developing interactive robots. Figure

1.1 depicts the concept of our platform-based approach to developing symbiotic robots. A

symbiotic robot is a fusion of various hardware and software functions on the platform.

SoftwareHardware Hardware

integrate and interconnect various components
General Purpose Software Platform to

Robot Applications

Motion Dialogue Manipulation

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���
��������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 1.1: Platform-based approach for realizing symbiotic robots

In our design, a robot is composed of networked agents. A special agent knowledge

manager, which features a knowledge base, inference engine, and newly added dynamic

extensions, manages the robot’s actions and interactions with human and environment. We

emphasize on the knowledge platform approach and have developed a general purpose

knowledge software platform called Software Platform for Agents and Knowledge Management

or SPAK [10]. Instead of having a dedicated system for each robot application, the platform

serves as basis infrastructure for all, ensuring interoperability among them and easy sharing

of knowledge.

To represent knowledge in our system, the frame knowledge presentation (“Frame” for

short) [11] is used. Frame is preferred over other techniques (e.g., first-order logic) because

it can represent the world in a meaningful and natural way. Frame is cognitively simple,

intuitive and understandable for domain experts. Limited expressiveness of frame enables

tractable inferencing [12]. Frame has been used in many researches, including in robotic sys-

tems, e.g., [13]. Uses of frame in other systems are mostly limited to representing knowledge.

However, in our system, frame is used both for representing knowledge and for managing

20 CHAPTER 1. INTRODUCTION

Problems Proposed Solutions

Representing changing knowledge and
management of robot behaviors

Extensions to the frame model and the
frame-based knowledge manager (Chap-
ter 4)

A show-case multi-modal robot applica-
tion

A knowledge-based dialogue system
(Chapter 5)

Verification of the proposed concepts A demonstration prototype on a hu-
manoid robot (Chapter 6) with a dis-
tributed multi-agent robot architecture
(Chapter 3)

Table 1.1: Problems and proposed solutions in this work

robot behaviors.

In this work, we extended SPAK to overcome the problems of representing changing

knowledge and limitations in managing human-robot interactions found when deploying

SPAK in a robot system. New extensions to the conventional frame model, e.g., time-based

layer, periodical task evaluator, are proposed to solve the issues. To verify the utility of SPAK

in an interactive robot system, a sample multi-modal dialogue management application is

designed and developed. A prototype system on a humanoid robot was also built and set

up to interact with a human in three interaction scenarios. Table 1.1 summarizes the concrete

problems and solutions proposed in this thesis.

The contents of this thesis covers the proposed distributed architecture, the extended

frame model and the knowledge platform, a sample dialogue management application, and

the development of a prototype system on a humanoid robot.

As a conceptual note, the term robot in this work is considered as an engineering device,

not in the sense of artificial creatures with evolving general intelligence. Although it should

have some learning abilities to improve itself in order to to serve human better, emerging

behaviors that can not be explained how and why they happened are not desired.

1.3 Contributions

This dissertation makes three distinct contributions to the fields of knowledge engineering,

dialogue systems, and robotics.

• Extended Frame-based Knowledge Model: we propose dynamic extensions to the

conventional frame model and realize it on our in-house SPAK software platform.

• Knowledge-based Dialogue Manager: based on the proposed robot architecture and

SPAK, a novel knowledge-based dialogue manager is designed and developed.

1.4. ORGANIZATION OF THE THESIS 21

• Multi-Agent Knowledge-based Robot Architecture: we propose an architecture for

interactive robots and show a working implementation on a humanoid robot system.

The design is based on multi-agent and knowledge platform.

1.4 Organization of the Thesis

Following is a general description of the organization of this thesis. Chapter 2 provides

background information and reviews of researches in related fields. Chapter 3-6 present the

core of this work: the robot architecture, the knowledge manager, the dialogue manager, and

their implementations in a prototype system. Chapter 7-8 evaluate and conclude this work.

More details of contents in each chapter are shown as follows:

• Chapter 2 Background: provides background information and recent progresses in

the research of interactive robot architectures and systems, knowledge-based systems,

and dialogue systems, with the focus on dialogue system architectures and dialogue

management approaches.

• Chapter 3 Knowledge-based Distributed Robot Architecture: gives an overview of

the proposed robot architecture. Overall architecture design, system structure, agents,

and interaction among agents are described.

• Chapter 4 Frame-based Knowledge Manager: introduces the design concept of the

knowledge manager, the brain part of the robot. First the frame knowledge model is

introduced and later we described our dynamic extensions we proposed to the con-

ventional frame model to support robot actions management. Implementation of the

proposed concepts in SPAK follows in this chapter.

• Chapter 5 SPAK Application: Knowledge-based Dialogue Manager: introduces a

knowledge-based dialogue manager as a sample application on the above proposed

platform. Concepts and design of the dialogue manager is present and contrasted

with other dialogue manager approaches.

• Chapter 6 Prototype Development: describes technical details of prototype develop-

ment and the output system. Development of SPAK-based dialogue manager on a

humanoid robot is discussed and the result human-robot interaction in three sample

scenarios is shown.

• Chapter 7 Evaluation: evaluates the work in thesis and compares it with related work.

• Chapter 8 Conclusions and Future Work: presents conclusions and future work.

Chapter 2

Background

In this Chapter we provide the background knowledge and a review of the state-of-the-art

in three related fields: robotics, knowledge engineering, and dialogue systems technology.

The focus is on three main topics: interactive robot architecture, knowledge-based systems

and dialogue systems.

2.1 Interactive Robot Architecture

The term robot was coined in 1921 by a Czech writer Karel Capek (”Robot” in Czech comes

from the word ”robota”, meaning ”compulsory labor”). Nowadays robot generally refers to

an entity that performs certain tasks automatically. The term robot usually implies a certain

level of autonomy and intelligence.

Robots have been used for decades in the form of industrial robots working instead of hu-

mans in factories, manufacturing lines, hazardous environment, and even in space. Robots

can have physical parts, i.e., hardware components, like body, hands, grip, and wheels, and

logical parts, i.e., software programs that control robots to perform some tasks. However, a

robot can also exist purely in the logical form, i.e., as a software, e.g., search engine robots

and personal software agents. A robot can be programmed to do certain tasks without in-

teractions with humans, or it can be interactive, communicating with human during its op-

eration. Fong et al., in his survey [9], defined a socially interactive robots as a robot for

which social human-robot interaction is important. In this work we are concerned with such

interactive robots.

Research in robotics has made significant progress in the past few decades. Although

most researches are concerned with industrial robots, recently more interests has been given

to interactive robots. In this chapter we summarize approaches in designing architectures

for such interactive robots and present some interactive robot systems that have been devel-

oped.

22

2.1. INTERACTIVE ROBOT ARCHITECTURE 23

2.1.1 Architecture Design Approaches

In this thesis, the term robot architecture refers to the internal organization of a robotic system,

similar to the definition in [14]. Architectures of robots can be classified in many ways.

They can be biologically inspired, i.e., it is designed based on the structure of some biological

systems, or functionally designed, where functionalities of the system are concerned, rather

than having similar structures to biological systems. Considering robot internal components,

a robot can have a single monolithic component where all sensors and actuators are managed

by a single centralized element, or it can have a distributed or modular architecture, where the

system is divided into several modules interacting with each other. Each module might have

a certain level of autonomy. They can communicate with each other either directly or via a

central blackboard that facilitates and controls communications among modules. When the

robot makes some actions as a reaction to some input events, the process of this event-action

behavior might involve the use of some symbols to represent such events and actions, or it

can process in the signal level, without the use of any symbols.

For robot designers, robot internal design and mechanisms to manage robot behaviors

are of interest. To this aspect, researchers often classify robot systems into three types: de-

liberative (systems with intermediate symbolic representation and reasoning, e.g., the sense-

plan-act paradigm), reactive (layered architecture, with direct connections between sensors

and actuators), and hybrid (combination of both).

Deliberative Architecture

The key of the deliberative architecture is the use of explicit representation in a central com-

ponent. Symbols are used to represent concepts and objects in the world of interest and in

reasoning. Systems using this approach have typical components as shown in Figure 2.1

(partly based on the ideas in [15]). Status or changes in the environment are measured by

sensors and transformed into some kinds of symbolic representations. Planner, the central

processing element, decides the next action(s) to be done in the form of symbolic operations,

and optionally updates the world model, the symbolic model of the world of interest. Action

synthesizer translates the symbolic operation into action commands and sends to actuator.

Finally, actuators generates physical action(s) to the environment. This model is also called

the sense-plan-act model according to the steps of processing.

By using symbols, we can develop complex systems based on these abstracted notions.

Human can easily understand what the system is doing and why. And as human’s languages

also use symbols, the use of them in robot systems might benefit in applications like human-

robot dialogue interaction [16]. It has also been shown that learning in robots is much more

effective if the robot is operated at the symbolic level [17].

The main drawback of this approach is that the system usually has slow response time

because of its sequential processing of information and the need to maintain the world

24 CHAPTER 2. BACKGROUND

Planner

symbolic

Symbolic
Interpreter

symbolic action commandsmeasurements

Action
Synthesizer

operationrepresentation

Model
World

Sensors

environment
input

Environment

Actuators

action

Environment

Figure 2.1: Deliberative architecture

model. It is also difficult to make a complete and accurate model of the world which is com-

plex and changing spontaneously. The system is brittle — they can fail in situations only

slightly different from those for which they were programmed. Failure in single element can

cause a blockade or collapse of the whole system. Also, such problems like symbol ground-

ing and anchoring problem need to be considered [18]. Consistency is required between the

real and symbolic world.

A classic example of robot systems that use deliberative architectures is the Shakey robot

by Stanford Research Institute (SRI).

Reactive Architecture

Layer 0

Layer 1

Layer 2

Layer 3

Environment

environment
input

Sensors

measurements

Actuators Environment

actionsaction commands

Figure 2.2: Reactive architecture

Because of the problems of deliberative architecture, another group of researchers pro-

posed direct sensory-motor associations without intermediate symbolic representation and

reasoning. The most obvious example of this approach is Brooks’s layered architecture

[19, 20]. In this architecture, the centralized world model is not necessary. The system is

decomposed into layers of control as shown in Figure 2.2. Each layer contains a number

of finite state machines. It operates asynchronously and gives the system a set of behaviors.

Lower level layers do not rely on the existence of higher levels. Layers are combined through

2.1. INTERACTIVE ROBOT ARCHITECTURE 25

mechanisms of suppression and inhibition, resulting in priority based arbitration [20]. The

behavior of the system as a whole is resulted from many interacting simple behaviors.

The major advantage of these systems is that the system is responsive and robust. The

overall behavior emerges when it is placed in the environment. No explicit knowledge rep-

resentation is needed. However, it is very hard to engineer the system to fulfill some specific

tasks, and to make it learn from experience [21]. There are also problems of lacking of natural

ordering of layers and competence clashes [15].

Since reactive systems are limited by their lack of internal state, the behavior-based ap-

proach, as an extension of reactive approach, overcomes this limitation by allowing the un-

derlying unit of presentation, behaviors, to store state [22].

Hybrid Architecture

Since both deliberative and reactive architectures have their own advantages and disadvan-

tages in certain domains and problems [23], some researchers tried to compromise both ap-

proaches and proposed hybrid architectures. There are a lot of variations of architectures in

this category, depending on the design details, e.g., what techniques are used and how they

are combined. An example of a hybrid architecture is SSS (acronym for servo, subsumption,

symbolic) architecture for robot navigation [24]. SSS architecture has three layers: Servo,

Subsumption, and Symbolic. It tries to combine features of conventional servo-systems and

signal processing with multi-agent reactive controllers and state-based symbolic AI systems.

More examples of hybrid architectures are [25], [26], [23], and [27].

2.1.2 Distributed Systems

In the previous section, we discussed robot architectures in the control level, addressing the

question of how a robot can be designed to act and re-act to the environment through its

sensor and actuator modules. Interactive robots are usually integrated systems composed

of several hardware and software modules1. Based on the architecture, these modules co-

operate and form robot behaviors. In this section, we take a brief look at organizations of

these modules inside the robots: how a robot system is decomposed into several modules

and how these modules interact with each other.

There are several ways to decompose a robot system into multiple modules. Many ideas

can be borrowed from the field of Distributed Systems where researchers are focusing on

linking several systems together with the purpose to provide global sharing of computa-

tional resources, bridge geographic distances, improve performance and availability, allow

1There are also some robot systems which a robots is regarded as a single inseparable system, i.e., no de-
composition into modules. Parts of the system are connected together according to the need of transferring data.
However, such systems are rather small. The complexity usually increases rapidly when the size of such systems
grow.

26 CHAPTER 2. BACKGROUND

distributed problem solving and parallel execution of separate tasks, etc. In a robot system,

modules can be sub-systems responsible for complicated tasks with a certain level of au-

tonomy, or simple components that are only responsible for some small tasks or computing

resources without any high-level processing. Communications among these modules can

be signal-based data transfer or high-level symbolic commands, depending on the design-

ers. Based on the communications among modules, distributed systems can be classified as

follows:

• Distributed Shared Memory (DSM): A distributed shared memory is a mechanism

aimed to allow processes on different modules to access shared data without having to

use inter-process communications. Each module is a processing element with its own

processor. In fact there are inter-process communications to facilitate this data shar-

ing, but DSM makes these communications transparent to developers. In this scheme,

modules are tightly coupled via the shared memory. It is suitable for systems with

large data sharing among components. However, adding or removing a module might

result in modification of other modules and the whole shared memory structure. Ex-

ample of distributed shared memory systems are Stanford’s SAM [28] and Dosmos

[29].

• Remote Procedure Call (RPC): Each module has a control over its resource and usu-

ally offers services to other modules through a provided interface. This is a mechanism

to call remote functions (or procedures) residing on other computing elements instead

of within the same program, hence the name “Remote Procedure Call”. The toolkit for

implementing RPC usually provides abstraction for remote access, making it transpar-

ent to the caller. Remote procedure calls can be made directly to the remote module or

via a directory server. RPC is suitable for systems where most of communications are

service requests among modules and such requests can be fulfilled by using a function-

call mechanism. Example of RPC techniques are Sun RPC, Sun’s Java RMI, Microsoft

DCOM, OMG’s CORBA [30], XML-RPC [31], and SOAP [32].

• Message-passing: In this scheme, modules are higher-level computing elements with

a certain level of autonomy. Each module has a control over its resource and has a

goal to accomplish some tasks. They communicate by exchanging messages, usually

using high-level symbols. This design is suitable for systems with non-primitive mod-

ules cooperating to accomplish some tasks. However, each module must be able to

interpret and understand high-level messages exchanging among modules. In this de-

sign, modules are often called as agents, indicating some levels of autonomy of them,

and systems are called multi-agent systems. Example of message-passing systems are

OAA and FIPA [33].

2.1. INTERACTIVE ROBOT ARCHITECTURE 27

When designing a robot system, there are issues to consider like how should the robot be de-

composed into sub-components and how should they communicate. The autonomous-level

of modules must also be considered, should they be only primitive and passive computing

elements, or higher-level active components with own goals and a certain level of auton-

omy. In the next section we present some recent interactive robot systems and their internal

designs.

2.1.3 Interactive Robot Systems

Ishiguro et al. proposed a robot architecture based on situated modules and episode rules for

interaction-oriented robots with large number of behaviors, and a visualizing tool for under-

standing the developed complex system [25, 34]. The approach is to continue implementing

behaviors until humans think the robot has an animated and lifelike existence beyond that

of a simple automatic machine. With some influences from behavior-based robot architec-

ture, a behavior-based hybrid architecture is proposed and implemented on a humanoid

robot Robovie [35]. The robot interacts with humans based on situated modules. The situ-

ated module is an action-reaction pair with pre-condition specifying a robot interactive or

reactive behavior. The robot executes one situated module at a time. Episode rules control

sequential transitions among situated modules. Priority can be assigned to episode rules.

Network of situated modules governed by episode rules forms a complicated switching of

robot behaviors. The prototype system has more than 100 behaviors, 102 situated modules

and 884 episode rules.

Jijo-2 mobile robot interacts with and learns from humans in the office environment

[36, 37]. It features a natural language dialogue system for office services, and can answer

queries about people’s location. It can conduct route guidance and delivery tasks. The robot

accepts human direction commands to reach places and guide people through an office envi-

ronment. The dialogue manager supports form-based dialog type and maintains the current

dialogue state and a list of salient entities referred to by the preceding utterances.

Kawamura et al. proposed a multi-agent robot control architecture called the Intelligent

Machine Architecture (IMA) [38]. The system is decomposed into several agents communi-

cating using a distributed software component technology and sharing heterogeneous data

structures where information about surrounding entities and actions to be performed are

stored. Agents are used to represent hardware, behavior, environment, human, the robot

itself, etc.

The Carl interactive service robot can navigate around and make spoken dialogues with

human as well as learn new things [39, 40]. It was developed with the aim to integrate

communications, action, reasoning, and learning. The multi-process software architecture

features a central manager which is an event-driven system using a Prolog inference engine.

Human can teach the mobile robot to move around the object.

28 CHAPTER 2. BACKGROUND

Minerva tour guide robot [41], the successor of the Rhino museum guide robot [42], is a

mobile robot designed to educate and entertain people in public places. The robot navigates

in the museum and interacts with people. The robot architecture is distributed and layered.

Etani discussed an architecture for an autonomous, interactive robot based on a multi-

agent system [43]. A robot navigation system that can guide people through halls was de-

veloped. The system is based on the layered architecture and composed of three layers:

Communication, Behavior, and Action. The communication layer maintains the system’s

internal states, and displays graphical character with voice guidance. The behavior layer

manages several environment inputs and executes path planning. The action layer controls

the mobile robot, manages input information from location system, and has tasks like colli-

sion avoidance.

More reviews of interactive robot systems are available also in Section 2.3.3.

2.1.4 Concerned Difficulties and Issues

Although robotics and AI technologies have made impressive progress in the recent decades

— we have now humanoid robots that can walk, and computer programs that can beat hu-

mans in some problems —, the fact that no systems can interact with humans intelligently

clearly shows that a lot needs to be done, especially on the integration side. A robot ar-

chitecture that allows efficient combination of sensory-and-motor devices and their control

software, i.e., the robotics part, and the brain of the robot, i.e., the intelligence part, is needed.

Consider the intelligence part, until now there is no such model that provides general

intelligence for all robot tasks, instead we have many developed techniques that are good

in certain particular tasks. These techniques need to be combined. The question is, what is

a suitable general substrate layer that combines various techniques into an integrated robot

system. As we cannot expect everything to finish at once, it should be easy to add new

techniques and components to the system along the course of research and development.

2.2 Frame-based Knowledge Systems

Frame knowledge representation is one of the primary technologies used for large scale

knowledge representation in AI [44]. Frame theory is a theory of representation that stresses

a rich symbolic fabric woven out of shared terminals, prerequisite conditions, viewpoint

transformations, defaults, expectations, and information retrieval ideas [45]. Frame knowl-

edge technique is used to represent knowledge in many information and experts system.

Frame captures the way experts typically think about the knowledge. It is cognitively sim-

ple, intuitive and understandable for domain experts. Limited expressiveness of frame-

based systems enables tractable inferencing [12].

2.2. FRAME-BASED KNOWLEDGE SYSTEMS 29

The theory of frame is introduced by Minsky in [11] in 1974. As it has inspired quite

a number of later work in AI, here we quote some selected parts originally explained by

Minsky in his paper:

When one encounters a new situation (or makes a substantial change in one’s

view of a problem), one selects from memory a structure called a frame. This

is a remembered framework to be adapted to fit reality by changing details as

necessary.

A frame is a data-structure for representing a stereotyped situation like being in

a certain kind of living room or going to a child’s birthday party. Attached to

each frame are several kinds of information. Some of this information is about

how to use the frame. Some is about what one can expect to happen next. Some

is about what to do if these expectations are not confirmed.

We can think of a frame as a network of nodes and relations. The “top levels” of

a frame are fixed, and represent things that are always true about the supposed

situation. The lower levels have many terminals – “slots” that must be filled by

specific instances or data. Each terminal can specify conditions its assignments

must meet. (The assignments themselves are usually smaller “subframes.”) Sim-

ple conditions are specified by markers that might require a terminal assignment

to be a person, an object of sufficient value, or a pointer to a subframe of a certain

type. More complex conditions can specify relations among the things assigned

to several terminals.

Collections of related frames are linked together into frame-systems. The effects

of important actions are mirrored by transformations between the frames of a

system. These are used to make certain kinds of calculations economical, to rep-

resent changes of emphasis and attention, and to account for the effectiveness of

“imagery”.

The theory, however, provides a rather abstract idea. To use frame in real applications, a

more concrete design is required. There are surprisingly large numbers of frame-based sys-

tems nowadays. In this chapter we describe a typical frame knowledge model and high-light

some interesting frame-based systems that are comparable to our work.

2.2.1 Frame Knowledge Model

In the past few decades, AI researchers in knowledge representation have implemented over

50 frame knowledge representation systems [46]. Typical features of the frame-based knowl-

edge model are:

30 CHAPTER 2. BACKGROUND

• Structural features: Frames are connected together in an IS A hierarchy. Frames in

the lower level down the hierarchy inherit properties from their parents and contain

more specific information). Attached to each frame are slots or properties of the frame,

usually listed in feature-value pairs with some constraints or facets.

• Behavioral properties: Some actions can be triggered when certain events happen.

One can attach a procedural script or method to a slot (also called in this case active

values), which then will be invoked when the slot value is accessed or modified.

• Reasoning services: Frame systems usually provide some sorts of inferencing, e.g.,

forward and backward chainings [47], and inheritance and slot constraints checking.

In this section, we try to cover some common parts of the frame model which are shared by

many systems. We base the explanation on the knowledge model of the Open Knowledge Base

Connectivity or OKBC which aims to give a common standard on the design of knowledge

models and access interfaces for frame-based knowledge systems.

OKBC is a protocol for accessing knowledge bases (KBs) in knowledge representation

systems (KRSs) [48]. It consists of set of (local or network) operations that provide a generic

interface to the underlying KRSs. OKBC has implementations in several computer lan-

guages. OKBS specifies elements of the frame-based knowledge model, e.g., constants,

frames. Constants are data of basic type integer, floating point, string, symbol, list, and

class. A frame is a primitive object that represents an entity in the domain of discourse. A

frame that represents a class is called a class frame. A frame that represents an individual is

called an individual frame. A frame has associated with it a set of own slots. A slot can have

facets, which specifies some conditions about the slot. A slot can be provided with a default

value. A class is a set of entities. Each entity in a class is an instance of the class. A class frame

has associated with it template slots and template facets that describe own slot values for each

instance of the class represented by the frame. A class can be considered non-primitive if its

template slot values and facet values can specify a set of necessary and sufficient conditions

for being an instance of the class. Otherwise it is considered a primitive class, which can

have many properties specified but will typically not contain sufficient conditions to be con-

cluded that an entity is an instance of this class. OKBC provides the detailed specification of

the knowledge model and a rich set of programming interfaces, e.g., class creation, and slot

value retrieval or modification.

Frame shares some similarities to the Object-Oriented Programming (OOP) concept. Ob-

jects and their properties are similar to frames and slots. However, the purposes of the

two models are different: OOP is targeted for programming while Frame is for representing

knowledge. The taxonomy and hierarchy concepts of frames are also common in Ontology

fields, which has gained much interest recently. In many cases, they are comparable.

2.2. FRAME-BASED KNOWLEDGE SYSTEMS 31

2.2.2 Frame-based systems

In this section, we review some selected frame-based systems.

Protege-2000 is an OKBC-compatible knowledge-base-editing environment [49, 12]. The

goals of this system is to achieve interoperability with other knowledge-representation sys-

tems, and an easy-to-use and configurable knowledge acquisition tool. The first goal is ac-

complished by making the knowledge model compatible to OKBC [48]. Also Protege-2000

extends some features of OKBC in a way that is not prohibited by OKBC, e.g., the use of

metaclass. The knowledge model of Protege-2000 is frame-based, with units like classes,

slots, facets, axioms, and instances. Classes are concepts in the domain of discourse. Slots

are properties or attributes of classes. A slot can be attached to a frame either as a template

slot or an own slot. Facets describes properties including constraints of slots, e.g., cardinal-

ity (single, multiple), type (integer, string, instance), and maximum and minimum values.

Axioms specify additional constraints. Instances are classes with specific slot values. A

frame in Protege-2000 can be an instance of only one class. Every class, slot, facet is a frame.

Protege-2000 introduced metaclass, or a template for classes that are its instances. Metaclass

describes own slots (and constraints) of a class that instantiates this template. In other words,

the template slots defined in the metaclass will become own slots in classes that are instances

of this metaclass. The key features of Protege-2000 are (1) the metaclass architecture, (2) the

ability to define specialized user-interface components to display and acquire slot values

(Protege-200 can automatically generate forms for inputting data), and (3) the component

architecture, which allows it to work as an editor for other knowledge-representation sys-

tems, e.g., RDF.

FramerD is a distributed object-oriented database designed to support maintenance and

sharing of knowledge bases [50]. Unlike typical object-oriented databases, FramerD is opti-

mized for pointer-intensive data structures used by semantic networks, frame systems, and

many intelligent agent applications. FramerD is aimed to be robust, high-performance and

able to handle large-scale multi-domain contents. Its databases readily include millions of

searchable frames and may be distributed over multiple networked machines. The archi-

tecture is divided into three layers: Data layer (Dtypes), Object (OIDs) and INDEX (IDX)

layers, and Tools (Framer) layer. The lowest data level provides recursively compose-able

structures and primitives like vectors, lists, numbers, strings, and also provides object IDs

for object references. The object layer provides for the mapping of these references into data

layer values. The index layer provides for the maintenance of large inverted indices whose

keys and values are arbitrary Dtypes. The top tool layer uses the object and index layers to

provide representation facilities via a frame-based “representation language language” (RLL).

FramerD provides basic operations on units and slots: getting slot value, testing whether the

slot includes a value, adding an object to the slot values, and removing an object from the

slot values. When the slot is itself an object, the default behaviors are modified by demons

32 CHAPTER 2. BACKGROUND

associated with the slot description. These demons are expressions in a scripting language

stored in symbolic slots specifying what to be executed in case of these actions: get the slot

value, test the slot value, add a value, and remove a value.

CODE4 (Conceptually Oriented Design/Description Environment) is a general purpose

knowledge management system intended to assist with the common knowledge process-

ing needs of anyone who desires to analyze, debug, and retrieve conceptual in applications,

e.g., specification, design and user documentation of computer systems, development of on-

tologies for natural language understanding [51]. The aim is to develop a tool which helps

people to originate, organize, define concepts, understand and communicate ideas at the

knowledge level, rather than a system designed to run autonomously. CODE4 is designed

to be easily adaptable to many applications, such as natural language processing, software

specification and design, expert systems, general terminological analysis, or teaching sub-

jects such as biology or Unix. It features a graphical user interface and claimed to be used by

non-computer people in a few days. The knowledge representation used in CODE4 is based

on concepts of frame, conceptual graph, object-orientation and description logic. It differs

from typical frame-based systems in the generality and uniformity of the knowledge unit

in CODE, called concept. The role of slots in typical frame-based systems are performed by

properties in CODE4, which are also concepts themselves. Statement are treated as concepts

(with the subject role) that link properties (with the predicate role) to concepts.

Soshnikov [52, 53] proposes a JULIA software toolkit for building embedded and dis-

tributed knowledge-based systems. The architecture is based on frame knowledge represen-

tation and production rules. The approach allows combining in one model static knowledge

in the form of slot values, structural knowledge in the form of frame hierarchy, and dynamic

knowledge in the form of attached procedures. The main feature of this toolkit is the ability

to be distributed over the network and share different knowledge types through the mecha-

nisms of distributed frame hierarchies and remote rules. Distributed knowledge processing and

sharing takes place when different nodes exchange static or dynamic knowledge. The im-

plementation uses Java for representing frames, CORBA for interfacing with other systems,

JFMDL (Julia Frame Model Description Language) and XML for knowledge formulation. It

also provides an expert system shell in the form of Java applet. Backward chaining inference

is supported and a web interface to access the system is planned.

2.2.3 Applications of Frame-based systems in Robotics

Since the frame technique is useful for representing the structure of the world, it has been

used in quite a few robot systems. Back in 1971, the SHRDLU natural language under-

standing system [54] also employed this technique. Humans can enter commands in natural

language to manipulate the simulated block-world. An example use of Frame-based knowl-

edge technique with a physical robot is the HARIS robot system [55, 13]. The system con-

2.2. FRAME-BASED KNOWLEDGE SYSTEMS 33

sists of model-based 3D vision, intelligent scheduler, computerized arm and hand controller,

HARIS arm/hand unit and human interface. The system is aimed to help the aged and dis-

abled persons manipulate objects on the desk. The world model is a shared knowledge base

working as a communication channel among software modules. It consists of Shape model,

which includes shape-related attributes of all potential objects within the scene; Functional

model, which represents functional attributes of each potential object and is used in task

scheduling and motion control; and Spatial model, which is generated as a result of scene

understanding and used for task and motion scheduling and monitoring of robot’s motions.

Another is the Scheduling model, which contains the knowledge about tasks and motions.

In the HARIS robot system, user can issue commands like “Put a red cup onto a white

tray” or “Put a red cup and a black cup onto a white tray”. The goal task is added to the task

scheduler, which will generate a sequence of primitive tasks to achieve the goal, such as,

“reach”, “hold”, “move”, and so on. The motion scheduler generates a sequence of motion

primitives to accomplish each primitive task. The command generator receives the motion

primitives and executes the motions to the robot arm. Planning of the path of robot arm to

avoid obstructing objects on the expected path is done as a part of the motion scheduling

using the knowledge stored in the functional and spatial models.

Frame-based knowledge representation is used in the world model. Example of frames

that represent a red cup, a cup vessel, and an instance of a cup in the shape model and

functional model are shown in the following Table 2.1 and Table 2.2. A cup is composed of a

cup vessel and a cup handle. To detect a cup vessel, it requires parallel lines and an ellipse.

Based on this knowledge, when a cup is detected, a corresponding class frame is instantiated

in the functional model. Description of an example Cup-1 frame is shown in Table 2.3. The

simplified image of a cup vessel is shown in Figure 2.3.

Frame: Red-cup:

A-kind-of Cup

Color Red

Has-parts (Cup Vessel Cup Handle)

External diameter 7

External height 12

.......

Table 2.1: Description of a Red-cup frame

Spatial descriptions and relationship among objects as well as tasks are represented simi-

larly using the frame technique. The system is implemented on the generalized frame-based

knowledge engineering environment ZERO++ [56].

34 CHAPTER 2. BACKGROUND

Frame: Cup Vessel

A-kind-of Vessel

Color (Red Black Yellow)

Has-parts (parallel line ellipse)

.......

Table 2.2: Description of a Cup Vessel frame

Frame: Cup-1

a-kind-of Cup

has-parts (container 1 handle 1)

state empty

roles (contain drink)

color red

accept tasks (reach hold lift carry put release leave)

accept htypes (hook grasp nip)

default htype hook

Table 2.3: An example of a frame representing a red cup in the functional model

2.2.4 Concerned Difficulties and Issues

Frame model has been extensively and successfully used in representing knowledge in many

systems. Researchers have improved it in many ways to make it able to represent various

types of knowledge in the world of interest. We are concerned with the issues of knowledge

updating. If the model is to represent the changing world, first the representation model

itself must be able to handle temporal changes and, as a knowledge base, provide accesses to

the history data. Second, mechanisms to update the knowledge contents must be provided,

i.e., the system must be able to accept new information that represents changes in the world

and incorporate them into the knowledge base.

Figure 2.3: Example of a simplified image in identifying a cup vessel using the knowledge
in the Cup Vessel frame in the Shape model inside the world model

2.3. DIALOGUE SYSTEMS 35

Integrating the knowledge part into a robot system is another issue that has not been

much explored. Knowledge base should be there to support intelligent tasks. The problem

is how to combine it with other robot components. There are also other techniques that can

provide intelligence to the robot; how can they be integrated to the knowledge part and

other parts of the robot remains an unsolved issue. It must also be easy and intuitive to

development robot applications on the system after the knowledge part has been included.

2.3 Dialogue Systems

Development of machines that are able to sustain a conversation with a human being has

long been a challenging goal. The need for a dialogue component in a system for human-

machine interaction arises from many reasons including that the user does not always ex-

press his requirement in a single sentence, rather in a flow of several dialogue turns. Two

related research goals adopted by researchers of dialogue [57]. First is the goal of developing

a theory of dialogue, generally with the objectives to understand properties of utterances and

acts characterizing a dialogue being studied, assumptions about participants’ mental states

and context for the dialogue to be considered rational, and possible rational and coopera-

tive extensions to the currently observed behavior. The second research goal is to develop

algorithms and procedures to support a computer’s participation in a cooperative dialogue.

Such a human-interacting system in dialogues is called a dialogue system. In this work, this

second goal is concerned.

Interaction between humans and dialogue systems are usually expected to resemble

human-human dialogue, though with less complexities. Levin et al. formalizes a dialogue

system as a sequential decision process in terms of its state space, set of possible actions, and

strategy [58, 59]. The state space is defined by the collection of all variables that characterize

the state of the dialogue system at a certain point in time. The actions describes what the

system can do. For any possible state, the strategy prescribes the next action to perform. As a

result of the action and its interaction with the external environment, the system gets some

new observations. The new observations are registered and modify the state of the system.

This process continues until a final state Sf is reached. The system starts in the initial state S1.

St denotes the system state at turn t. Following this formalization, the process of a dialogue

system can be summarized as follows:

St = S1

while(St 6= SF){

At = NextAction(St)

invoke(At)

Ot = environment response to At

St+1 = NextState(St, At, Ot)

36 CHAPTER 2. BACKGROUND

t = t + 1

}

The field of dialogue systems started to receive more interests in the past few decades.

Researchers are considering various features of dialogue systems. For example, man-machine

interaction can be system-initiative, where the system directs the conversation; user-initiative,

where human initiates the dialogues; or mixed-initiative, a combination of both. The dia-

logue domains are usually information retrieval and resource reservation, e.g., in systems

like Kyoto bus schedule information system [60], MIT Jupiter weather information system

[61], and travel planning system [62]. The interaction goal is usually clearly defined, i.e., to

obtain desired information or services. Most dialogue systems use speech as a sole commu-

nication media. However, multi-modal systems are considered as well, e.g., in SmartKom

[63], MATCH [64], CommandTalk [65], and in [66]. There are systems that operate over re-

mote interface like telephone, e.g., Kyoto bus schedule information system [60], [61], as well

as embodied systems, e.g., August [67], Jijo-2 [37], Rhino [42], [68], and [40].

Design of a dialogue system is a complex task. Related research areas are speech recog-

nition, speech generation, language understanding, intention recognition, dialogue man-

agement, turn-taking, topic management, dialogue context maintenance, etc. For multi-

modal systems, topics like gesture-recognition and understanding, synchronization between

modes should be considered as well.

In this work, the dialogue management part of the dialogue systems is concerned. Next,

we discuss components of dialogue systems and introduce several approaches to dialogue

management.

2.3.1 Dialogue Systems Components

A traditional components structure of spoken dialogue systems is pipe-line-based as shown

in Figure 2.4. Speech input (1) is processed by speech recognition module which gives out

a text (2), corresponding to the input speech. The parser and language understanding ele-

ments parse and interpret the text, usually resulting in some kinds of communicative acts

(3) [69]. The dialogue manager determines these acts and decides the next action to be done

in the form of communicative acts (4), which will be transformed to text to be spoken out

(5) by the text generation module. Finally, the text-to-speech module generates a speech

output (6) from the text in (5). Components like speech recognition, understanding, text-to-

speech, and text generation modules might optionally consult the dialogue manager during

their operations (7), (8), (9), (10) to ask about conversation history, current context, and other

information that is useful to them.

In short, tasks of the dialogue manager can be reduced to two basic actions [70]. First, it

interprets observations (usually user input) in context, and updates the internal representa-

tion of the dialogue state. And second, it determine the next action of the dialogue system

2.3. DIALOGUE SYSTEMS 37

according to some dialogue policy. The dialogue manager is also expected to take care of

identifying and recovering from possible communications errors, e.g., from speech recogni-

tion and language understanding [71].

Recognition
Speech1

4

6

8

9

5

7

32

10

Generation
TextText to

Speech

Manager
Dialogue

Parsing,
Understanding

speech input

communicative act

speech output text

text communicative act

Human System

Figure 2.4: Classical pipe-line structure of a spoken dialogue system

Multimodal dialogue systems handle various modes of input and output apart from

speech, e.g., visual input via image processing element, input tactile sensors, and robot poses

as output. The structure in Figure 2.4 can be generalized to support multi-modal input and

outputs. This is shown in Figure 2.5. Instead of sequential processing, the central com-

ponent dialogue manager might also have a blackboard architecture where other systems

components can communicate with each other via the central blackboard.

While these steps are common to almost all the dialogue manager, each step is not trivial

and hence has led to a proliferation of different approaches [70]. Next we discuss approaches

available to date.

2.3.2 Dialogue Management Approaches

Several surveys of dialogue systems report different categorization schemes [72]. Cohen de-

fines three approaches to modeling dialogue: dialogue grammars, plan-based models, and

joint action theories of dialogue [57]. However, Xu treats joint action theories of dialogue as

a further development of the original plan-based approach, and presents only two groups of

approaches: pattern-based (dialogue grammars) and plan-based approaches [73]. McTear

classifies dialogue systems into finite-state-based, frame-based, and agent-based systems

[74]. Allen grouped dialogue systems into systems that use schema or frames, planning,

models of rational interaction, and finite-state models [75]. Robinson stated in [70] that apart

38 CHAPTER 2. BACKGROUND

Speech Processing

Image Processing

Tactile Sensors

Manager
Dialogue

speech input

speech output

. . .

visual input

tactile input

. . .

communicative act

robot poses

Human System

communicative act

Gesture Generation

Speech Generation

Figure 2.5: Multimodal dialogue systems have more modes of input/output,

from the grammar-based approaches, more sophisticated approaches to dialogue manage-

ment can be characterized by a separation between the data structure that stores the current

state of the dialogue, and the specification of the dialogue policy. There seems to be no

consensus on how to classify dialogue systems. However, everybody seems to agree on

the two common grammar-based models: finite-state-based, and form-based (also known

as form-filling and frame-based) models. The rests are usually considered “more sophisti-

cated” models, e.g., plan-based and information-state approaches.

In this section we explain these approaches, followed by selected examples of developed

systems.

Finite-State Model

In this model, a dialogue is represented by a finite state network. Each node in the network

represents a state of the interaction. Attached to each node is a dialogue prompt and gram-

2.3. DIALOGUE SYSTEMS 39

mar at that point of conversation. User input results in transition to a different node, which

has a link from the previous node. The dialogue has an explicit flow governed by this tran-

sition network, i.e., the dialogue policy is embedded in the network topology. This model

is simple and suitable for simple system-initiated dialogues. The fact that every possible

states and transitioned must be prepared beforehand makes it difficult to handle complex

dialogues where there are a large number of states and transitions.

Examples of systems that use this model are MATCH [64], CommandTalk [65], and MA-

LIN [66]. There are also toolkits for dialogue system development using this approach, e.g.

CSLU [76] and SpeechBuilder [77].

Form-based Model

Although finite-state-based systems have advantage that they are relatively straightforward

to design and their behavior is predictable, the disadvantages are that the dialogue tends to

be inflexible and machine-initiated [78]. User cannot deviate from the system’s plan. Form-

based systems (also known as frame-based- and form-based-systems) is based on the policy

that the system tries to fill an electronic form by prompting the user for unfilled slots [78].

Each slot in the form has an associate prompt that guides the user through the dialogue.

However, the user is not restricted to always follow the system’s lead and can take the ini-

tiative in the dialogue, e.g., he or she can provide the system with the information that has

not yet been requested. Once the form is filled, i.e., all the required input information is

received, an action to do something, e.g., reserve a bus seat, is fired.

Form-based model allows mixed-initiative interactions and more flexible dialogues. Ex-

ample of systems that use this model are the August spoken dialogue system [67], the CMU

Communicator [79], and the STAR dialogue manager [80]. Forms are also used as the key

component in the Voice Extensible Markup Language (VoiceXML) documents [81, 82].

Plan-based Model

Although the form-based model allows more flexibility than the finite-state one, it is still lim-

ited in case that the next system action depends much on the system context or state, which

may change dynamically during the course of dialogue, and is difficult to be determined be-

forehand, for example, in case of negotiation dialogue in the tasks that involve planning and

collaborative interaction. Plan-based models of dialogue [83, 84] are based on the observa-

tion that utterances are not simply strings of words, but rather the observable performance

of communicative actions or speech acts [69], such as requesting, informing, warning, sug-

gesting, and confirming [85]. Humans do not perform things randomly, but rather they plan

their actions to achieve various goals. Hence an utterance is not to be interpreted only liter-

ally but also the intention must be considered. A key element of this approach is the mod-

eling of utterances as speech acts, consisting of roles, preconditions, constraints, and effects

40 CHAPTER 2. BACKGROUND

[74]. A plan to achieve a goal typically involves chaining together a series of speech acts (of

both parties) in the correct sequence. The grammars-based dialogue model describes what

happens in dialogues at the speech act level and cares little about why. While plan-based

model tries to explain why agents act in dialogues, but at the expense of complex represen-

tation and reasoning. In other words, the first is shallow and descriptive and the latter is

deep and explanatory [73].

The problems of planning approach are that it is difficult to recognize of the utterance’s

communicative, and wrong recognition can lead to incorrect interpretation of speaker’s plan;

the processes of plan recognition and planning, which involves chaining from preconditions

of plans to actions, can in complex cases become combinatorially intractable [74]. Examples

of plan-based dialogue systems are [86], [87].

Information State Approach

Considering that the grammar-based approach is suitable only for simple and structured

dialogues, and the plan-based approach has drawbacks as being opaque, given the large

amount of procedural processing and lack of a well-founded semantics for plan-related op-

erations, the information-state approach [88, 89] is intended to combine the strengths of each

paradigm. The information state may include aspects of dialogue state as well other things

like obligation, commitment, beliefs, intentions, plans, etc. The key to this approach is identi-

fying relevant aspects of information in dialogue: how they are updated and how updating

processes are controlled [89]. In grammar-based models, the dialogue proceeds, based on

the result in the current state, to another pre-defined allowable states. Instead, in informa-

tion state approach, the next move relies not only on the current state but other information

available as well. It is characterized by the following components: a specification of the

contents of the information state of the dialogue, the data-types used to structure the infor-

mation state, a set of update rules covering the dynamic changes of the information state,

and a control strategy for information state updates [90].

The first implementation of the information-state approach was the Prolog-based TrindiKit

[89]. Derivative work in this approach are for example DIPPER [90] and WITAS [91].

Table 2.4 summarizes advantages and disadvantages of the previously mentioned dia-

logue management approaches.

2.3. DIALOGUE SYSTEMS 41

Dialogue

Management

Approaches

Advantages Disadvantages

State-based

• simple and robust

• user’ responses are restricted,
easy for speech recognition and
understanding

• a lot of toolkits available, e.g.

CSLU [76], SpeechBuilder [77]

• inflexible and not natural
dialogue flows

• only supports system-initiative

dialogues

Form-based

• more flexible than state-based,
support mixed-initiative
dialogues

• a lot of toolkits available, e.g.

CMU Communicator [79]

• inefficient for less structured

dialogues where the next

system’s action is difficult to be

determine beforehand

Plan-based

• suitable for dialogues involving

planning or negotiating to

achieve some task, where the

next dialogue depends much on

the context and system state

• difficult to infer communicative
acts and speaker’s plan

• process of plan recognition and

planning is

computing-intensive and can be

intractable

Information State

• Combination of both

grammar-based and plan-based

approaches, using aspects of

dialogue states as well as

allowing detailed semantic

representations and notions of

obligation, commitment, beliefs

and plans. [90]

• High complexity (the TrindiKit

implementation), and testing

and debugging is difficult [90]

Table 2.4: Comparison of several dialogue management approaches

42 CHAPTER 2. BACKGROUND

Other approaches

To avoid the use of a general algorithm to define the dialogue policy, Robinson et al. stated

in [70] that more sophisticated approaches to dialogue management attempted to separate

between the data structure that stores the current state of the dialogue, and the specification

of the dialogue policy. A dialogue model based on frames, transition networks and list

structures is proposed. The dialogue states are represented using frames. However, these

frames do not imply anything about dialogue policy, instead dialogue policies are defined

separately for each task frame, thus gives the designer more freedom and flexibility.

The Circuit-Fit-It Shop system [92] helps users fix an electronic circuit by engaging in

a spoken dialogue with the user. Dialogues are used in the acquisition of axioms that are

missing but required to complete a task step. The next dialogue is determined dynamically

based on the current situation and the user’s current state of knowledge. Theorem prover is

used to determine task completion.

Most dialogue systems are function-based, composed of series of inter-processing units

interfacing each other via representations. However Lemon et al. stressed the importance

of interaction level phenomena and introduced parallelism by proposing multi-layered dia-

logue architecture separating the content and interaction layers [93].

2.3.3 Dialogue Systems

Dialog systems have been developed by many groups and are now in use in many applica-

tions. Here we some systems that have interesting features related to our work.

SmartKom is a virtual communication assistant, visualized as a life-like character on a

graphical display. It features a multimodal dialogue system that supports spoken dialogue,

graphical interfaces and gestural interaction modes [63]. The aim is to propose new com-

putational methods for the seamless integration and mutual disambiguation of multimodal

input and output on a semantic and pragmatic level. It supports situated understanding

of possibly imprecise, ambiguous, or partial multimodal input, and the generation of coor-

dinated, cohesive and coherent multimodal presentations. The underlying integration soft-

ware is based on the previous work in the Verbmobil’s testbed [94]. The dialogue manager

has a multi-blackboard architecture with parallel processing threads that support media fu-

sion and media design processes. Multiple modules in the system communicate via multiple

blackboards. Interaction management includes representing, reasoning, exploiting models

of the user, domain, task, context, and the media. An XML-based markup language M3L

modality-free semantic representation is used for representing multimodal content.

The FaSiL Project proposed a practical conversational dialogue management approach

with a list-like structure [70]. It supports mixed-initiative dialogues, i.e., the user can barge-

in at anytime, while the system-driven backbone is provided to guide new users. Compo-

nents are highly modularized and independently specified. The User Intention Set (UIS) is a

2.3. DIALOGUE SYSTEMS 43

list structure used to manage commands that are currently being processed. Dialogue states

are represented using frames: Task frames and Command frames. In contrast to form-based

approach, these frames do not imply anything about the dialogue policy. Separate dialogue

policies are specified for each task and command frames.

The Queen’s Communicator project investigates the use of the Object Oriented (OO)

technique in spoken dialogue management [95]. Generic and domain-specific dialogue be-

haviors are separated. Dialogue components are modeled using objects, e.g., dialog man-

ager, discourse manager, enquiry expert, dialog frame, discourse history, and dialog server,

and set of rules, e.g., heuristic rules, user-focused rules, and database-focused rules. It uses

the DARPA Communicator architecture and the Galaxy hub [96, 97].

The August project delivered a spoken dialogue system with a goal to collect sponta-

neous speech data from people with no experience with the speech technology or computers

by putting the system as a kiosk in public place. [67]. It features a simple dialog manager

using form-based approach. The form has feature/value pairs with pre-defined answers.

Allen [87] discusses an architecture for a generic dialogue shell with the focus on practi-

cal dialogues, dialogues with an aim to accomplish some specific tasks. A new architecture

for TRIPS (The Rochester Interactive Planning System) is designed to support plan-based

tasks in multiple domain, as an improvement from the previous train route finder TRAINS

system. The new architecture follows the plan- and agent-based approach and has six mod-

ules: discourse context management, reference resolution, intention recognition, behavioral

agent, plan manager and response planning. All modules have accesses to a common se-

mantic hierarchy and a world knowledge manager containing domain specific reasoners and

knowledge bases. The behavioral agent, upon receiving a notification stating that the user

has initiated a problem solving act, can choose to find out the answer, ask for clarification,

notify a failure, or ignore the question (if other more important information is waiting). Ba-

sic dialogue system components, e.g., the plan manager and behavioral agent, are separated

from more domain-specific components. Components communicate using a KQML-based

message-passing communication scheme rather than RPC or OO method calls.

Galaxy-II [97] is an architecture for conversational system development and a successor

to the Galaxy architecture of the DARPA Communicator project [96]. It supports develop-

ment of client-server systems for accessing on-line information using spoken dialogue. It has

been used in many application domains, e.g., restaurant guide and weather information. The

architecture is client-server-based with a central hub facilitating the communications among

components (also called servers). There are servers for speech recognition, language under-

standing, language generation, speech synthesis, etc. Hub-server interaction is controlled

by a script. A script includes a list of servers (host, port, and operations that the server

supports) and a set of programs. Each program is a set of rules, where each rule specifies

an operation, a set of conditions in which the rule will fire, and a list of input and output

44 CHAPTER 2. BACKGROUND

variables for the rule as well as other variables. When a rule fires, the input variables are

packaged into a token and sent to the server that handles the operation. The hub expects

the server to return token containing the output variables at a later time. Semantic frames

which are named and typed data structure with fields like clause (high-level request act, e.g.,

display, record, repeat, reserve, topic (noun phrase), and predicate (attributes), are used as

representations shared between servers.

RavenClaw features dialogue management using a hierarchical task decomposition and

an expectation Agenda [98]. It is a successor to the Agenda architecture used in the CMU

communicator [79]. It is a two-tier architecture with a clear separation between domain-

specific dialog task specification and domain-independent discourse behavior specification.

Hence it is rather domain-independent and at the time of writing has applications in five

domains, e.g., F/A 18 aircraft maintenance tasks, Pittsburgh bus schedules information, and

conference room reservation. A dialogue task is represented using a hierarchical tree with

a notion of context (parent-child) and a default ordering of actions (left-to-right traversal

or more sophisticated policy). Leaf-nodes in the tree are fundamental dialog agents. There

are four types of fundamental agents: Inform, Request, Expect, and DomainOperation. Each

agent has execute routine and holds a set of pre-conditions and triggers, and a completion

criterion. Non-leaf nodes are called dialog agencies, for example Login and GetQuery. They

control the execution of the subsumed agents and capture the higher level temporal and log-

ical structure of the dialogue task. RavenClaw provides a rich set of conversational strategies

in the form of dialog agencies. These include grounding behaviors (e.g. confirmations, dis-

ambiguations, and channel re-establishment), turn-taking and timing behaviors, as well as

other generic dialog mechanisms like the ability to handle requests for help, repeat the last

utterance, suspend and resume the dialog, start over, and re-establish the context [98]. The

dialog engine has a task execution stack which captures temporal and hierarchical structure

of the current dialog. Topic switching is possible, e.g., by saying “suspend”. Expectation

agenda is a data structure describing what the system expects to hear (top down traversal)

useful in reference resolution.

JASPIS [99] is an adaptive speech application architecture for synchronized distributed

spoken dialogs. It is based on agents and provides mechanisms for distribution, coordina-

tion, dynamic selection of agents, and a common structure for shared information manage-

ment. The architecture introduces the agents, managers, and evaluators paradigm. Agents

are atomic, stateless, and compact, hence support highly modular systems and reusability.

Managers coordinate agents. Each manager uses an evaluator to select which agent is the

most suitable in each situation. JASPIS has two logical levels: core infrastructure and collec-

tion skeletons (modules). Core infrastructure is much similar to the Galaxy-II [97] and OAA

[100]. The architecture uses a combination of the blackboard-based and message-based tech-

niques. Agents do not communicate directly but use shared hierarchical blackboard-type

2.3. DIALOGUE SYSTEMS 45

information storage for indirect communication. How the information is actually stored in

this storage is not defined, but accesses to it are governed by the Information Access Protocol,

which is an XML DTD. Interaction manager, like Hub in the Galaxy-II architecture and Fa-

cilitator in TRIPS, is more like a coordinator than controller. Interaction manager gives local

managers possibilities to act based on triggering events received from the Information Man-

ager. XML-RPC is used in infrastructure level communication. Annotation graph is used for

storing and exchanging linguistics information.

Lemon et al. discusses a dialogue system for WITAS UAV (Unmanned Aerial Vehicle),

a small robotic helicopter with on-board planning and deliberative systems and vision ca-

pabilities [91, 101]. The robot can carry out activities like flying to a location, following a

vehicle, and landing. Human operators can specify mission goals and these activities dur-

ing the dialogue interaction. Emphasis is placed on multi-tasking and interleaved dialogues,

and collaborative activities. The dialogue system is based on the information state and di-

alogue move concept. System components, namely, natural language parser and generator

(NL), speech recognizer (SR), text-to-speech (TTS), interactive display with deictic reference

support (GUI), dialogue manager (DM), and Activity Layer for robot control, are designed

as agents connected to each other using OAA (Open Agent Architecture) [100]. Activity

model, used by the Activity Layer, contains the knowledge about how higher-level activi-

ties can be decomposed into sequences of atomic actions (which the robot innately under-

stands) with pre- and post-conditions. For example, a LOCATE activity can be decomposed

into three steps of WATCH-FOR (looking for an object), FOLLOW-OJB (follow it), and ASK-

COMPLETE (ask the user if the mission is complete). The Conversational Intelligence Ar-

chitecture (CIA) defines the components inside the dialogue manager. The Dialogue Move

Tree (DMT) is a tree-based data structure used as a message board to keep a record of the

utterances made by both the system and user. Each sub-tree of the root node represents a

thread in the conversation and each node represents an utterance. The Active Node List

(ANL) keeps track of which nodes in the DMT tree are active, sorted by their relevances

to the current discourse. The Activity Tree (AT) represents the current, past, and planned

activities of the system such as moving to a location. Each node in the tree describes an

activity in terms of slots and values, similar to in the frame model. The System Agenda col-

lects all of the utterances that the system intends to produce, which will be synthesized (and

optionally aggregated) by the generation module. The Pending List collects questions that

the system has asked but the user has not yet answered. The Salience List keeps track of all

the noun-phrases used in the conversation so far, ordered primarily by recency for anaphora

and deictic resolutions. Lastly the Modality Buffer stores graphical display gestures by the

user, for resolution of deictic expressions if necessary. Incoming utterance from user is trans-

lated to a logic form representing its syntax and semantics. Each node in the ANL is checked

if it matches the utterance. When the match is found, a new node representing the new di-

46 CHAPTER 2. BACKGROUND

alogue move is created as a child of the matched node, because the new utterance from the

user was relevant to this particular conversational thread, i.e., this sub-tree in DMT. Lemon

also explored further in the area of context-sensitive speech recognition and interpretation

of corrective fragments [91].

Hygeiorobot is a mobile robotic assistant for hospitals [102]. It features a spoken dialogue

system intended for people with little or no computing experience. The robot performs sim-

ple tasks in hospitals like delivery of messages and medicines to particular rooms and inter-

acting with hospital staff via spoken dialogues. The dialogue system architecture is similar

to that in Figure 2.4. The system adopt the state-based dialogue management approach and

based the development on the CSLU Toolkit [76]

2.3.4 Frame-based Knowledge Technique and Dialogue Systems

Uses of knowledge back-end in dialogue systems are prevalent in dialogues systems. In the

Prolog-based Sundial [103] system, multiple languages and tasks are supported by the use

of multiple static knowledge bases. There are also uses of frame-like hierarchical knowledge

technique. A common one is to store the world or domain knowledge, e.g., the common

semantic hierarchy in TRIPS [87]. In the form-based approach of dialogue management,

frames with slots are used as dialogue forms. The general dialogue policy is to try to fill

these slots; once all slots are filled, an action like database query can be started.

In Vox’s FASiL system, separation of data structure that stores dialogue states from dia-

logue policies is proposed [70]. Frames are used to store dialogue states, and state transition

network is used to specify dialogue policy. The Jaspis architecture is designed to support

distributed spoken dialogs using multi-agent techniques [99]. Shared system knowledge

is organized hierarchically and made accessible via an access protocol defined using XML-

DTDs.

Other use of frames is, for example, in the Galaxy-II dialogue architecture, semantic

frame representation is used for inter-server communications [97]. RavenClaw dialogue

manager in the CMU Communicator project has another use of tree-like structure to store di-

alogue tasks to be executed [98]. Similar to Frame model, object oriented technique is used in

the Queen’s communicator [95]. Things like dialogue frames, domain experts are modeled

as objects. Set of user- and database-related rules are used to manage system behaviors.

2.3.5 Concerned Difficulties and Issues

We are concerned with the issue of integration of the dialogue management function into

a knowledge-based robot system. While there are many uses of knowledge techniques in

dialogue systems, most of them are to employ a task-dependent knowledge base to store

some dialogue-related data. This made it difficult to share the knowledge with other robot

applications (which might have another sets of knowledge bases) running on the same robot

2.3. DIALOGUE SYSTEMS 47

system. If we are to integrate many robot applications in a single platform, we need a general

shared knowledge layer that will be the playground for all applications including the dia-

logue management and enable efficient knowledge sharing among them. This knowledge

layer, on the other hand, must provide necessary facilities needed in managing dialogues.

Chapter 3

Knowledge-based Distributed Robot

Architecture

This chapter introduces a distributed architecture for robots where several robotic hardware

and software components are designed as agents and connected on the network.

3.1 Introduction

Research on humanoid robots has progressed rapidly during the last decade. The robots can

now even imitate human’s biped movement. Also we observed major progresses in the re-

search fields of Artificial Intelligence (AI) and man-machine interfaces, e.g., advancement in

face recognition, voice recognition, voice synthesis, and natural language processing. How-

ever, most robots developed still lack the ability to interact with humans in a natural way.

Robots can barely interact with humans autonomously and intelligently. One reason for this

might be that researchers tended to focus on various different components of intelligent be-

havior (e.g., reasoning, learning, and problem solving) in isolation [21]. Integration of these

components, hardware and software, to achieve an intelligent integrated robot is a challeng-

ing but often neglected topic. In this work, we proposed a platform-based robot architecture

which allows integration of robotic devices and intelligent software components with var-

ious functional modules, and at the same time provides a mechanism for managing robot

behaviors as a whole based on these combined elements.

Various robot architectures have been proposed. Prevalent in traditional AI researches

are symbol-based systems which make use of symbols to representation things in the world

of interest and in reasoning. In contrast, reactive systems consider direct sensory-motor as-

sociations without intermediate symbolic representation and reasoning. Both symbolic and

non-symbolic approaches have advantages and disadvantages in certain domains and prob-

lems. Some researchers proposed hybrid architectures mixing both approaches. Although

48

3.2. SYSTEM ARCHITECTURE 49

these systems are effective in individual applications they are targeted for (e.g., dialogue

management, behaviors switching, path learning from human instruction), it is difficult to

add new applications to the system and share the knowledge among applications. The un-

derlying architecture is usually influenced by target applications and system components.

In case that the target goal is changed, which might require new applications and new

components in the system, the architecture needs to be adjusted. When an architecture is

very application-oriented, developers have to learn specific features found only in that sys-

tem. Hence, designing an application is more complicated, compared to the systems with

application-independent general design.

We propose a robot architecture based on a general knowledge platform serving as com-

mon ground for various robot applications. The architecture is distributed. Various robotic

hardware and software components are designed as agents and connected on the network.

This allows easy modification of system parts. The architecture is hybrid: symbol-based at

the center and behavior-based in the agent-level. Agents can have their own low-level be-

haviors and can communicate with each others directly. The special agent knowledge manager

is a central module for higher-level task planning and execution.

This chapter discusses an overview of the architecture and roles of the knowledge man-

ager, the symbolic part. The frame knowledge model is used as the presentation in the

knowledge manager.

3.2 System Architecture

In this section, an overview of the proposed robot architecture is given. A robot is composed

of various software and hardware components. These components usually have different us-

ages and programming interfaces depending on their types, programming languages, com-

puting platform and manufacturers. Since all these components are to be combined into one

integrated system, the robot architecture should allow efficient cooperations among them.

And to cope with rapid changes of technology, developments in different parts should be

independent, i.e., they can proceed without having to wait for other parts.

3.2.1 Primitive Agent

To accommodate these needs, in our architecture, a robot is divided into small networked

components called primitive agents1. Each primitive agent is either responsible for a specific

task, e.g., speech recognition, face detection; or representing a certain robotic device it is con-

nected to, e.g., a video camera and speakers. Primitive agents offer services to other agents

on the network through its interface. Technically, a primitive agent is a software performing a

1The term agent here means an individual computing element that performs a specific task using the resource
it controls. It can be autonomous or non-autonomous, intelligent or not intelligent.

50 CHAPTER 3. KNOWLEDGE-BASED DISTRIBUTED ROBOT ARCHITECTURE

Microphone

Robot Hardware

Gesture
Recognizer

Speaker

Speech
Recognizer

Dialogue
Manager

Robotother robot applications

Human

Knowledge

Manager

Speech
Synthesizer

Robot
Posture

3D sensors

Recognizer
Face Face

Detector

Video Camera

images

Network

Figure 3.1: Robot as a network of primitive agents: speech recognizer, speech synthesizer,
knowledge manager, gesture recognizer, face recognizer, face detector, and robot posture

certain task wrapped by a network server. The server waits for procedure call requests from

other agents. When a request arrives, it accepts and forwards to the appropriate code that

performs the real processing. Figure 3.1 illustrates our prototype robot system as a network

of seven primitive agents.

This architecture allows integration of existing and future components easily. Commu-

nication between agents should be in a standard protocol which is independent from the

agent’s computing platform and programming language. The system is scalable as work-

load can be distributed to many machines.

As an example, a part of the interface of a face detector primitive agent is as follow:

• string getStatus(): check agent’s status

• string ping(): check agent’s reachability

• void setImage(base64 imagecontents): set the input image contents

• string getFaceLocations(): do the face detection, and return face location(s)

Other primitive agents can make use of the face detector agent by calling the provided pro-

cedures, e.g., setImage, getFaceLocations to find faces in the image.

3.3. AGENTS COLLABORATION 51

Vision Module

Robot Brain

Blackboard

Memory, Judgment

 Planning, Execution

Voice Module

Robot Movement Arm Control

Other Modules

Figure 3.2: Platform approach for robot architecture

3.3 Agents Collaboration

Agents are classified as sensor agents, actuator agents, and a special agent knowledge manager

(KM), which acts as the brain of the system, handling higher-level tasks. Other agents are

primitive and passive. KM functions as a blackboard, knowledge processing brain, mem-

ory, and does the judgement, task planning and execution. The architecture is considered a

shared-knowledge multi-agent system, since the knowledge of the whole system is stored in

the KM and shared by all agents. The topology of our platform-based robot architecture is

shown in Figure 3.2.

However, a low-level agent can also handle some tasks by itself. For example, the face

detector agent continuously processes images received from video cameras. When a face is

found, it sends a message to the knowledge manager. At the same time, if the detected face

is not in the middle of the image, the agent directly contacts the robot posture agent to move

the robot’s neck so that it follows the human face. Agents can communicate directly, e.g., the

face detector agent transfers detected face images to the face recognizer agent.

Agents collaborations are illustrated in Figure 3.3. The big rectangle represents a robot.

Inside the robot there are a knowledge manager agent, which is considered in the knowledge

(or symbolic) layer, and other agents, which are considered in the sensor (or non-symbolic)

layer. In case (1), an event is received by the agent A, and causes it to response by gener-

ating an action back. This event-action mechanism is managed solely by the agent A. This

can be used in the behaviors that only one agent is involved and it can make a decision

immediately, e.g., safety protection behaviors. For example, a robot wheel should not try

52 CHAPTER 3. KNOWLEDGE-BASED DISTRIBUTED ROBOT ARCHITECTURE

1 2 3

4

. . .Sensor Layer

Knowledge Layer

Human and Environment

Knowledge Manager

Agent

Agent B Agent CAgent A Agent Z

Figure 3.3: Four types of collaboration among agents that compose a robot (the big rectan-
gle).

to move further if it is obstructed by some objects, otherwise it might cause damages to its

own hardware. In case (2), the sensor agent A receives an event but can not make actions

by itself. It sends the information to the knowledge manager for higher knowledge-level

processing. The knowledge manager generates actions to be carried out by agent(s), e.g., to

the agent B and C. An agent can also contact other non-knowledge-manager agents directly

without having to go through the knowledge manager. This is illustrated in the case (3) in

the diagram, and is similar to the previous example of a face detector agent. In case (4), the

knowledge manager can generate actions to be done by an agent Z without any events from

agents, but instead from other internal triggering events, e.g., clock tick.

The next section discusses the conceptual design of the knowledge manager.

3.4 Knowledge Manager Agent

The knowledge manager agent is designed to have three primary responsibilities. First,

with the information from sensory agents, KM makes sure that the representation of the

world of interest, i.e., the World model in its knowledge base, is up-to-date. As shown in

Figure 3.4, when things changed in the real world and those changes are captured by sensor

agents, KM will update its World model to reflect those changes. Second, from changes in

the knowledge contents and/or passing time, KM generates proper actions as output via

actuator agents based on the knowledge in the Tasks/Actions model. This task can be also

shared by external knowledge manipulators in case that the action management mechanisms

provided in KM do not suffice. Lastly, as a knowledge base, KM answers queries from other

agents using the knowledge it has.

3.5. TECHNICAL DESIGN 53

��
��
��
��

��
��
��
��

��
��
��

��
��
��...

...

...
...

Knowledge

Tasks/Actions
Model

��
��
��
��

��
��
��
��

��
��
��

��
��
��...

...

...
...

Knowledge

Sensor agents

Actuator agents

events

actions

input
information

World Model

Other Models ...

Knowledge query from agents

External Knowledge Manipulator

Knowledge Manager

Figure 3.4: Knowledge manager’s knowledge model and interactions with other compo-
nents

Based on the above concepts, robot actions are generated by the KM in four ways:

1. Event –> Action: Incoming event(s) from sensor agents directly causes output ac-

tion(s)

2. Event + Current state –> Action + New state: In a certain system state, incoming

event(s) from sensor agents causes updates to the existing knowledge, e.g., the World

model, changing the system into a new state and consequently generating output ac-

tions.

3. Passing time –> Action: With no incoming event form outside, the passing time trig-

gers KM to generate output actions.

4. External manipulator –> Action: Actions are generated by external knowledge ma-

nipulators.

3.5 Technical Design

The design goal is to have an architecture in which various components or agents cooperate

with each other effectively. The architecture is chosen to be distributed because these com-

ponents might reside on different machines. Interaction between components developed

54 CHAPTER 3. KNOWLEDGE-BASED DISTRIBUTED ROBOT ARCHITECTURE

in different programming languages must be supported. Also the use of the architecture

should be intuitive and simple.

3.5.1 Communications among Primitive Agents

Software in each primitive agent has different programming interfaces depending on their

languages, usages, and manufacturers. Some runs only on some specific platforms. In our

demonstration system, for example, the knowledge server primitive agent is written in Java

and hence multi-platform, while the face recognizer software is written in C and developed

on UNIX machines. Since all these primitive agents are to be integrated, they must be able to

communicate with each other effectively. Therefore an effective communications mechanism

in this heterogeneous and distributed system is needed.

There are a large number of research and development in the area of agents communica-

tions and agents software platform [104], ranging from the distributed software frameworks

like CORBA, DCOM, to the more comprehensive agent platforms like FIPA-OS, ZEUS. FIPA

[33] aims to create standards among agent platforms. In the DARPA Communicator project,

the Galaxy Architecture [96] was used in the spoken-dialogue system where various kinds

of components are communicating.

We evaluated various technologies and finally selected XML-RPC [31] as the communi-

cation protocol between primitive agents. XML-RPC enables remote-procedure-call (RPC)

across various computing platforms and programming languages. It is simple and light-

weight. XML-RPC messages are transported in the text-based XML format which is open,

standardized, and easy for human inspection. There are many XML-RPC implementations

in various computer languages, e.g., C/C++, Java, Perl, and Python, and for various op-

erating systems, e.g., GNU/Linux, Microsoft Windows, and Sun Solaris. We consider the

simplicity and the cross-platform features of XML-RPC as its main advantages. XML-RPC is

very light-weight in term of resource consumption and is less complex, compared to other

techniques like CORBA and SOAP, and it provides the necessary functions [105].

On the other hand, by using XML as data format, the amount of data to be transfered is

much larger than that of binary protocols. Using gzip extension of HTTP-1.1 might alleviate

the problem but more computing power is needed to compress and decompress the data.

Moreover, as XML is a text-based protocol, all data are sent unencrypted over the network.

More security, if needed, can be achieved by the use of HTTPS at the price of computing

resource for encryption and decryption. However, these issues are not critical in our system.

An example of an XML-RPC message representing a remote-procedure-call to the remote

function ping(int) passing a parameter of type integer with the value 1 is shown as follow:

A primitive agent is therefore basically a piece of software performing a specific task

(e.g., speech recognizer) or representing the hardware (e.g., robot’s neck) wrapped by an

XML-RPC server. This server waits for requests from other agents. When a request arrives,

3.5. TECHNICAL DESIGN 55

<?xml version="1.0"?>

<methodCall>

<methodName>ping</methodName>

<params>

<param>

<value><i4>1</i4></value>

</param>

</params>

</methodcall>

Table 3.1: Example of an XML-RPC request to a remote function ping with one integer pa-
rameter

it accepts the request and pass it to the appropriate part of code that performs the real pro-

cessing.

3.5.2 Primitive Agent Abstraction

Although primitive agents can be very different, they share some common properties. For

example, all primitive agents should provide a mechanisms for other agents to check their

status and test the reachability. Therefore we designed the generic interface for such com-

mon tasks. Two generic functions getStatus() and ping() are for checking agent’s status and

testing the reachability respectively. The verbosity of the status messages can be set by func-

tion setDebug(). An example generic interface (in pseudo code) for all primitive agents is as

follow:

• string getStatus()

• string ping(integer i)

• void setDebug(boolean setDebug)

Moreover, similar primitive agents might also share some properties, e.g., two face detector

agents using different face detection algorithms would have the same interface that accepts

the image and returns the location(s) of the detected face(s). Therefore primitive agents are

categorized into classes and some class-specific methods are commonly defined. Example of

an interface for face detector primitive agent class is as follow:

• void setImage(base64 encoded data imagecontents): set input image contents

• string getFaceLocations(): do face detection, and return face location(s)

• string setSPAKIP(string ip address): inform the knowledge server at the specified IP ad-

dress if a face is found

56 CHAPTER 3. KNOWLEDGE-BASED DISTRIBUTED ROBOT ARCHITECTURE

• base64 encoded data getProcessedImage(): return input image with a rectangle around

each face

More technical details on the architecture will be discussed in Chapter 6 in the topic of pro-

totype development.

3.6 Summary

This chapter presents an overview of the proposed architecture for robots. The architecture is

modular. Robot components are designed as agents. The architecture is hybrid; lower-level

tasks are conducted by primitive agents and higher-level tasks are managed symbolically

by a special agent knowledge manager. The knowledge manager maintains the knowledge

about the world of interest in its knowledge base. It perceives changes in the environment,

updates the knowledge base accordingly, and generates output actions. The next two chap-

ters discuss more details of the knowledge manager and development of a robot application

based on the architecture. Discussions and comparisons to other work are presented after-

wards in Chapter 7.

Future work on agents development includes improvement of primitive agents’ wrapper

code to be multi-threading and reentrant to support concurrent requests. In such cases that

many requests arrive at the same time, task priority should be supported. This includes

the ability to pause and resume (or cancel) the current task while processing other higher

priority requests.

Chapter 4

Frame-based Knowledge Manager

This chapter presents the knowledge manager (KM), a crucial component in the knowledge-

based interactive robot. KM maintains the knowledge about the world of interest and its

knowledge base and manages robot actions. Frame-based technique is used to represent

knowledge in KM because it can represent the world meaningfully and naturally for both

robots and human-beings, and is flexible to maintain a variety of knowledge and informa-

tion. In this work we extended the frame model with new extensions to better support

representation of dynamic knowledge and management of robot actions.

This chapter presents the frame model used in our KM, newly proposed dynamic exten-

sions, and the implementation of the concept on the SPAK knowledge platform.

4.1 Frame Model

A frame is a data-structure for representing a stereotyped situation [11]. Based on the con-

cept of frame proposed by Minsky in [11], many variations of frame-based systems have

been developed. In this work we started from the model used in SPAK [10] and introduced

new extensions to it.

In SPAK (and actually in almost all frame-based systems), each frame has a set of slots

with values (optionally filled with default values). Slot values can be of type scalar, e.g.,

string, integer, real, array, instance (as a link to other frame instance), or procedure (JavaScript

language is supported), and can have a slot condition attached. For example, the slot Length

of the LongLine frame shown in Figure 4.1 is of integer type (not shown in the diagram) and

has a condition stating that the value must be greater than 0: (s.Length > 20)1.

Frames inherit properties from their parents, i.e., parent and child have an IS A rela-

tionship (relationship names will be written in capital letters). The Line frame in Figure 4.1

has three children: LongLine, ShortLine, and ThickLine. Instance is a realization of frame(s).

1In SPAK, the variable s means the current frame being evaluated (similar to this in Java).

57

58 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

FRAME: Line

line_X1

line_Y1

line_X2

line_Y2

Length

onTry

condition

thickness

-

-

-

-

-

s.Length=lineLength(s)

s.Length > 0

1

FRAME: LongLine

Length [cond: > 20] -

FRAME: ShortLine

Length [cond: <= 20] -

FRAME: ThickLine

thickness [cond: > 2] -

INSTANCE: Line_1

Color

line_X1

line_Y1

line_X2

line_Y2

Length

thickness

-

0

0

20

20

28

3

Figure 4.1: Hierarchy of frames representing lines including an instance Line 1 as a child of
both LongLine and ThickLine frames. In each frame and instance, its slots are shown in the
left column and their values in the right column, optionally with a condition in the square
brackets (e.g., the thickness slot must be greater than 2 for the ThickLine frame). Note that the
green tables represent frames and the red ones represent instances. Red arrows are used to
indicate IS A relationships.

A sample instance Line 1 has two parents, ThickLine and LongLine, as its properties match

conditions of both parent frames.

4.2 Knowledge Manager Roles

KM is designed to perform three main roles. First, by means of inputs from sensory agents,

it maintains representations of the world of interest in the World model. Second, it manages

the actions as specified in the Tasks/Actions model. Actions can be updates of knowledge

contents or output actions to human and environment. Third, it answers knowledge query

from other agents.

Internal mechanisms inside KM are shown in Figure 4.2. KM is usually started with some

pre-defined knowledge. Sensory agents detect changes in the world and submit information

4.3. FRAME MODEL EXTENSIONS 59

����

��
��
��
��

��
��
��
��...

...

...
...and instances

Frames

−instantiation,
−frame/instance
update/transition
−instance deactivation

Frame actions

outgoing actions
through special slots

Tasks/Actions
Model

����

��
��
��
��

��
��
��
��...

...

...
...and instances

Frames

...

Sensor agents

Actuator agents

events

actions

induce!

Updates
Knowledge

Knowledge query from agents

re−induce!

Evaluator

External Knowledge Manipulator

World Model

Knowledge Manager

Figure 4.2: Input, output, and actions mechanisms of SPAK knowledge manager

to KM, followed by the induce command to trigger the reasoning process. KM reasoning en-

gine is started and it updates the knowledge contents, e.g., the World model, according to the

newly received data. The updates can be instantiation, modification, or deletion of frames,

frame instances, and their slot values. Along with these updates, some output actions might

be generated through the use of special slots in related frames.

Note that although in Figure 4.2 there seems to be a clear distinction between the World

and Tasks/Actions models. However, in practice, it is up to the designer to decide how

knowledge contents should be arranged.

4.3 Frame Model Extensions

By using the conventional frame-based knowledge model in our robotics environment, we

encountered some limitations, especially when dealing with changing knowledge. Thus we

enhanced it with new dynamic extensions namely, time-based layer, evaluator, frame ac-

tions priority, and new special slots and slot flags. In the next two sub-sections, we describe

unique features of SPAK, special slots, and slot flags. Then we go on through each extension

to the frame model.

60 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Special slot Details

condition must be evaluated as true for the instance to exist

priority indicates the priority of the frame

singleparent indicates that the frame should have at any time only one parent

needfirstparent indicates that the first parent (that the frame has since instantiated) must always exist,

otherwise this frame will be deactivated

directcreate indicates that the frame must be directly instantiated only, i.e., other frames can not be

reinduced to become children of this frame

onTry executed when trying to instantiate a frame (forward chaining), must return true, other-

wise the instantiation process stops

onBTry similar to onTry but for backward chaining

onInstantiate executed when the frame is instantiated

onUpdate executed when a slot value is updated

onEvaluate executed when the instance is evaluated

onDestroy executed when the instance is deactivated

onLoad executed once when the knowledge manager loads the knowledge contents

onTransition executed when an instance does not represent its parent frame(s) anymore

onTransitioned executed when an instance becomes a children of new parent frame(s)

Table 4.1: List of special slots supported in SPAK

4.3.1 Special Slots

In our use of KM to manage robot behaviors, output robot actions generated by KM are

specified in procedural script (in JavaScript language) in special slots. In other words, special

slots can be used to specify possible outgoing actions from the frame. They can be also used

to specify frame characteristics like condition to exist and priority.

Some of the SPAK special slots, namely condition, onInstantiate, onDestroy, onLoad, have

been already discussed in [10]. However, for completeness and ease of understanding, here

we describe not only newly added special slots but also those previously introduced. Special

slots whose names begin with “on” are on-event or event-driven slots. Their procedural

contents will be executed when the corresponding events occur, which then might generate

requests to actuator-type agents, causing output actions. Table 4.1 lists all special slots in

SPAK knowledge manager.

Details and usages of each special slot are as follows:

condition:

The special slot condition of type “procedural” must be evaluated as true for the frame to

exist. It can be also used in combination with slot conditions discussed earlier. JavaScript

expressions specified in the condition slot will be executed and the evaluation result must

be true, otherwise the frame can not be instantiated. In case of instance, if its condition slot

4.3. FRAME MODEL EXTENSIONS 61

evaluation becomes false, the instance has to be moved to be a child of the Root frame or

other frames whose condition can be evaluated as true. If such frames can not be found, the

instance will be deactivated.

Frames hierarchy defines the order of frames’ conditions evaluation. Conditions are eval-

uated from the top-most ancestor to the current frame down the knowledge tree in sequential

order. However, this can be overridden by manually specifying frames’ priority.

priority:

The importance level of a frame can be specified by setting an integer value to the priority

special slot. The higher the value is, the higher the priority the frame has. This will be

described more in the subsequent section.

singleparent:

If this slot is set to true, the instance will have, at any time, only one parent and will be

deactivated if the number of parent becomes zero. This means: 1) When reinducing, if it lost

its parent, it will be tried against all parents up the hierarchy. If no suitable parent is found,

the instance will be deactivated, 2) When reinducing, if it still has a parent, it will be tried

only against more specialized children of that parent.

needfirstparent:

If this slot is set to true, the first parent of this instance, i.e., the parent it was first instantiated

from, must always exist. If the condition for this parent becomes invalid, the instance is

deactivated.

directcreate:

This slot indicates that the frame can be instantiated only in the induce process, not the

reinduce one. That is, other frames can not be reinduced to become children of this frame.

onTry:

The onTry slot is executed when the inference engine tries to check whether the frame can

be instantiated. For example, the Line frame in Figure 4.1 has an onTry slot containing pro-

cedural script to calculate the line’s length from its starting and ending points and update

the Length slot accordingly. When trying if a frame can be instantiated, the expression in its

onTry slot is executed. This is useful in case that some calculations are needed before eval-

uating the condition of the frame. For example, a LongLine frame is a Line frame with the

62 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

length of more than 50 cm. In order to verify this condition when trying to instantiate the

frame, the code to calculate of line length is specified in its onTry slot.

Also the onTry slot can be used to check some conditions when instantiating a frame. If

the conditions are not valid, it can put false the return value. The inference engine will stop

instantiating the frame. This is similar to the condition slot, except that onTry is only executed

once in the trying phase, while the condition slot is checked at the trying phase as well as

during the instance’s life by the reInduce process and Evaluator.

onBTry:

In case of backward chaining where it is necessary to know what it takes in order to instan-

tiate a frame, the information on how to find the value of those required slot values can

be specified in this onBTry (short for on-Backward-Chaining-Try) slot. For example, when

booking the bus ticket, it is required that the travel time and destination are known before

proceeding with the booking process. To obtain this information, the system can ask a user

by making a speech dialogue, for example. These procedures can be specified in the onBTry

slot.

onInstantiate:

Once a frame is instantiated, the procedural code specified in its onInstantiate slot is executed.

For example, the onInstantiate slot of the Say Action frame contains the code to send a given

text to the text-to-speech agent, which will generate and output the corresponding speech

sound to robot’s speakers.

onDestroy:

Similar to the onInstantiate, actions to be done when a frame is deactivated can be specified

in the onDestroy slot. Note that for the instantiation case, the onInstantiate slots of the upper

parent frames will be executed first, followed by those of other frames down the hierarchy.

But for the deactivation case, it is reverse: the onDestroy slot of the current frame itself will

be executed first, then traversing up to the parent in the hierarchies.

onUpdate:

When a slot value of a frame is changed, the JavaScript code specified in the onUpdate slot

will be executed. For example in a Line frame, when the line starting or ending point changes

its position, the line length can be recalculated by putting the appropriate script in the onUp-

date slot.

4.3. FRAME MODEL EXTENSIONS 63

onEvaluate:

In many cases, some frames need to be updated or some actions need to be done without

having any incoming events from outside. The designer can specify in this slot what to

do periodically (e.g., recalculate something or check if things are still valid). The Evaluator

thread will be started at a certain period, and check and execute this code.

onLoad:

When KM starts loading the knowledge contents from a file. The content of this slot (usually

we have it in the Root frame) will be executed. This is used mainly for the initialization of

variables, and loading of JavaScript functions.

onTransition:

When the condition of a certain parent of an instance became invalid (i.e., it is evaluated

to false), the instance no longer represents this parent frame and will be removed from the

parent frame’s children list. Before removing, the contents of the parent frame’s onTransition

slot is executed. With this, knowledge designer can specify what to be done in case of frame

parent changing.

onTransitioned:

In the reInduce process, when an instance has slots’ values that match a certain frame (that

it has not been a child of before), generally (see special slots singleparent and needfirstparent

for exceptions) it will become a child of that frame. The contents of that new parent frame’s

onTransitioned slot will be executed.

A sample usage of some special slots is as follows. For the sample Line frame shown in

Figure 4.1, if we want the line length be recalculated when the line starting or ending point

changes, we can add an onUpdate slot with the content similar to the onTry slot’s. When a slot

value of a frame is changed, the code in the frame’s onUpdate slot will be executed. Output

actions from the system can be obtained through these special slots of related knowledge

frames. When a frame is updated, frames that depend on this frame (i.e., frames that have

this instance as a value in their instance-type slots) will be updated as well.

Some special slots are discussed in more details in the following sub-sections.

4.3.2 Slot Flags

A frame and its instance slot(s) are usually considered to represent HAS A relationships, e.g.,

“a car has four wheels”. There are other useful relationships and parameters of relationships.

64 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Slot flag Stands for Meaning

R Required a valid slot value is required

BO Beginning Only a valid slot value is required, but at the beginning only

DF Do not Fill do not automatically fill a value for this slot

S Shared (instance slot only) the instance value can be shared

U Unique the slot value must be unique in all frame instances

Table 4.2: List of slot flags in SPAK

For example, a triangle is composed of three lines, representing a COMPOSED OF relation-

ship, which is different from the HAS A relationship in that if these lines are missing, the

triangle does not exist anymore, while a car without wheels can still be considered a car.

In managing robot behaviors, an action can be TRIGGERED BY an event. There are cases

that once an action is done in response to that event, other actions should not be triggered

anymore. Hence, the action is exclusively triggered by that event. This EXCLUSIVENESS

can be considered a parameter of relationships.

If we represent these relationships and parameters as frames, there is no limitation on

representing any relationships in the knowledge base. However, for convenience, we pro-

pose the slot-flag mechanism to specify some often-used relationships. Available flags are

shown in Table 4.2.

The R flag indicates that this slot must have a valid value in order for this frame to

be instantiated, e.g., the Human frame has a birthdate slot as a required slot. The BO flag,

only in case that the R flag is set, indicates whether the slot is required during the whole

instance life (i.e., COMPOSED OF) or just at the beginning when instantiating the frame

(TRIGGERED BY). For example, a Triangle frame always requires three Line frames during

its life, so the BO flag should not be set. On the other hand, suppose a PickObject action frame

has a required instance slot whose value must be a PickUpRequest event frame instance. Even

if the request frame expires (more detail about this in the next section), the action frame

should still exist until the task is accomplished or there is a cancel message from a human.

In this case the BO flag of the PickObject slot should be set.

The DF and S flags are used in instance-type slots only. If the DF flag is set, it means

that during the induce process, do not find a value automatically for this slot (which the

inference engine will normally do – find a valid instance in the system that can match the

slot condition). This is useful in case that the designer would like to force specification of the

value in order to instantiate the frame. The S flag indicates that, for this slot value (which

is an instance name), if this instance has already been used in instantiating other frames, it

can be used again in this frame or not, i.e., checking the EXCLUSIVENESS. For example, the

Triangle frame needs instances of Line frames in its three slots. If the S flag of these slots is not

set, these Line frames must not have been used in the instantiation process of other frames

4.3. FRAME MODEL EXTENSIONS 65

(e.g., they can not be part of other triangles or other objects). The U flag specifies if the value

of this slot must be unique. In case that the U flag is set, the new slot value for this slot will

result in new instantiation of the frame, otherwise the instance of this frame, if it exists, will

be updated instead, i.e., no new instance is created.

4.3.3 Time-based Layer

By using the conventional frame-based knowledge model in our robotic environment, we

encountered some limitations. First, the conventional frame-based model is found not able

to handle temporal information well. Frame hierarchies reflect the structural view of the

current world of interest. The current set of instances represent existing things in the world

at the current time. Changes in the environment triggers KM to make appropriate changes

to its knowledge contents. The knowledge is therefore up-to-date according to the current

situation.

However, sometimes it is necessary to access history information. For example, consider

a knowledge hierarchy containing a Human frame and its sub-class frames: Professor, Asso-

ciate Professor, Lecturer. The robot met a human named John, learned that he was a lecturer,

and added the information into its knowledge. Some years later John’s position changed

from lecturer to associate professor and finally to professor. With proper updates every

times John’s position changed, the robot could answer questions like “What is the position of

John now?”, but it would have a hard time answering questions like “What was the previous

position of John?” and “When did John get promoted from lecturer to associate professor?”. Keeping

track of temporal information is crucial in order to answer such questions.

In robot applications, temporal information is crucial. Frames representing events or

states of the world are continuously updated to reflect the changes. Some conditions for

frame actions depend not only on the current frames and slots but also on the past ones.

We propose that this temporal information should be properly handled by keeping track

of all changes in the knowledge contents. Frame instances, which can change over time,

become layers of snapshots of a frame at each point in time, stacking on top of each other.

One can argue that we can simply create a special slot PreviousPosition in the Human

frame to keep the old status information and probably another slot for keeping the time

when the status changes, or even treat John’s human frames with different positions as dif-

ferent frames. However, with this, we will end up with either having an overwhelming

number of slots for every information changes we would like to keep track of, or having

extremely large amount of frame instances in the system.

Time-based layer support in SPAK is illustrated using the previous example of Mr. John

in Figure 4.3. SPAK KM provides methods to access this history data, e.g., the old slot values

with the modification time, old parent frames and the instance age.

When the value of a slot is changed, the old value is added to a slot value history vector.

66 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Name: John
Birthday: 19700101
Position: Lecturer

. . .

. . .

IS_A: Human, Man

IS_A: Human, Man

Name: John
Birthday: 19700101
Position: Assoc. Prof.

IS_A: Human, Man

Name: John
Birthday: 19700101
Position: Professor

. . .

t (time)

t = 20050202

t = 19981010

t = 19960501

Figure 4.3: Snapshots of the frame instance representing John at various time points

Old slot values can be retrieved by calling the function KFrame::getSlotValue(sl, t)2, which

will return the value of slot sl at an absolute time t or past time t if t is negative. Frame

instantiation time is also kept and the age of a frame can be retrieved by calling the function

KFrame::getAge().

With this time-based layer, we can create robot behaviors that vary depending on the his-

tory. For example, the current value of the slot length of a frame S is S.getSlotValue(“length”)3.

That value at 10 seconds ago can be obtained by calling S.getSlotValue(“length”, -10). It is

also possible to specify the frame’s condition based on time. For example, we want a robot

behavior: Do Action A if the face has been present since 2 seconds ago. Assume that myFace is an

instance of a Face frame, and status is a slot of Face frames indicating the status of the face

(absent or present) from the face detector agent. The condition slot of the action frame A can

be set as follow:

myFace.getSlotValue(“status”) == “present” && myFace.getSlotValue(“status”, -2) == “present”

4.3.4 Evaluator

Over time, some frames need to be updated and some actions need to be done without any

triggering events from outside. The simplest example is human age, which increases over

time. Frames that represent tasks or actions can also be updated so that they generate differ-

ent actions at different times. This gives the idea of active frames, where frames themselves

are not only used to store knowledge and waiting for updates by external agents, but they

can be active by themselves.

We propose that the knowledge base must provide mechanisms to accommodate this

idea. KM has a special process called Evaluator, which is executed periodically by the system.

2A frame or an instance in SPAK is represented by a KFrame Java class.
3As a a notation used in SPAK, the symbol S and s means the current frame represented by KFrame or

KFrameScript objects accordingly.

4.3. FRAME MODEL EXTENSIONS 67

The knowledge designer can add procedural code in the onEvaluate special slot to specify

what is to be done when it is evaluated. The Evaluator process will check and execute the

contents of this slot.

When a frame is being evaluated, its slots’ conditions and its condition special slot are

also checked with those of its parent frames whether they are still valid or not. Should

they become invalid, which means the instance no longer represents the parent frame, the

inference engine will remove the IS A connection to that parent frame, and find out what

other frames it can be a child of. If it can not be a child of any frames, it will be moved to be

a child of the Root frame (top of the hierarchy). In the case that the condition is still valid, the

frame will be checked further if it can be more specific (e.g., Child or Adult instead of Human).

In the case of a frame parent changing, the content of another special slot onTransition will

be executed.

4.3.5 Priority Support for Frame Actions

Incoming events and clock ticks can trigger actions in KM, e.g., instantiation, slot modifica-

tion, and time-based evaluation. In some cases, there is more than one candidate frame to

be processed at the same time, all caused by the same event. The question is, which frame

should be processed first? The order is important, since a frame action can change the knowl-

edge contents itself. It might even invalidate the condition of another frame that is about to

be processed at the same time.

We propose that it should be possible to assign a priority value in each frame in order to

indicate which frame would win in the case that many frames are simultaneously qualified

for frame actions. This can be manually assigned in each frame, or defined as a general

policy.

The design of SPAK adopts a general policy that gives higher priority to more specific

frames, i.e., frames that are further away from the Root frame. If some frames are equally spe-

cific, the oldest frame wins, to prevent newer frames, which might not have been thoroughly

tested, from overriding old behaviors unintentionally. If a newer frame should precede the

older, then it should be explicitly defined by specifying the value of the special slot priority

manually or the older one should be deleted first. This is also to maintain the system con-

sistency and ease of design, e.g., in case that certain data can trigger instantiation of many

frames, the system should always choose the oldest one unless specified otherwise, if not,

the system would keep changing its behavior, resulting in difficult design process. However

this issue depends much on the designer. This general policy can be overridden anyway by

using the special slot priority. With this mechanism, the knowledge designer can control the

order of frame actions as desired.

As an example, imagine a robot that is programmed to normally say “Good bye” to the

human when he is leaving the laboratory at the end of the day. However, in the case it knows

68 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

that it is going to rain this evening and notices that he forgot to take his umbrella with him,

another action to warn him like “It is going to rain this evening, would you like to take your

umbrella?” should have higher priority and be done first.

4.4 SPAK Knowledge Platform

SPAK is a modern software platform for knowledge processing and coordination of tasks.

First introduced in [10], SPAK features multiple-inheritance frame-based knowledge man-

agement with forward and backward chaining inference engines. It is written in Java, and

has a GUI knowledge editor for manual manipulation of the knowledge contents, and a

network interface allowing collaborations with other agents.

SPAK was originally inspired by the ZERO++ frame-based knowledge engineering envi-

ronment used in the HARIS project [56]. The desired features of SPAK are platform-independent

as existing robots and software modules often rely on different platforms or OS’es, network-

aware as the modules must interact on a network with other agents, and user-friendly so that

developers can intuitively access the system.

The current version of SPAK consists of the following software components:

• GUI User Interface: A user-friendly Graphical User Interface (GUI) to the internal

knowledge base and the inference engines. It provides users direct access to the frame-

based knowledge hierarchies.

• Knowledge Base: The core module of SPAK, which maintains the frame systems as

Java class hierarchy and performs knowledge conversion to/from XML format for ex-

porting knowledge data to other applications.

• Inference Engines: The engine to verify and process information from external mod-

ules, which may result in instantiation, modification, and deactivation of frame in-

stances in the knowledge base, and execution of actions specified in related special

slots.

• JavaScript Interpreter: An interpreter for JavaScript [106] code used for defining con-

dition and procedural slots in a frame. It provides an access to a rich set of standard

Java class libraries that can be used for developing SPAK applications.

• Network Gateway: A daemon program allowing networked software agents to submit

new slot-value pairs information to the knowledge base and to access the knowledge

stored in SPAK.

4.4. SPAK KNOWLEDGE PLATFORM 69

4.4.1 Graphics User Interface (GUI)

The graphical user interface of the SPAK knowledge editor is shown in Figure 4.4. All basic

knowledge manipulation tasks can be performed via the interface. The left window displays

the current knowledge frame hierarchies. Each frame is represented as a click-able button.

These frame buttons are linked with red lines indicating IS-A relationships among them.

Clicking on the frame button brings up a new frame property window showing the frame’s

slots. For example, a property window of the Line 1 frame instance is shown in Figure 4.5.

4.4.2 Knowledge Base

This section describes the definition of frames hierarchy inside SPAK, and the specification

of frame and slot.

Frames and Instances

Frames and their instances are represented as objects of Java class KFrame inside SPAK. Each

object contains two sets of pointers pointing to other frame objects in order to form IS-A

relationships. One set points to all the children, the other points to the parents. The frame can

have multiple parents in case of multiple-inheritance. All KFrame objects contain a property

flag indicating if the object is a frame (a subclass of its parents), or an instance (of its parents).

In case of an instance, the slots are copied from all its parents and values are filled in. In case

of a frame, there can be only a small number of slots which augment or override the slots of

its parents.

Type Description

String An arbitrary character string.
Integer An integer numeric value.
Real A real number value.
List An array of slot objects of any types.
Instance An instance of a frame. The Argument field must contain the name of that

frame.
Procedure A storage for arbitrary JavaScript expressions, which can be called as a

method in JavaScript context.

Table 4.3: Supported slot types in SPAK

Slots

Included in the frame object is a set of slots. Frame slots can be considered member variables

or member functions of a KFrame object, depending on the slot type. Slot type determines

how the slot value can be accessed in JavaScript context. For example, a procedural slot can

70 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

be called as a JavaScript method; while data type slots can be accessed as member variables.

Some properties of a slot are: Name, Type, Value, Condition, and Argument.

A slot can be accessed via its Name. Currently SPAK supports slot of types: String, Integer,

Real, List, Instance, and Procedure, as listed in table 4.3. For a slot of type String, Integer, and

Real, a comparative condition, together with its argument(s), can be applied to the slot value.

The slot value must satisfy the condition specified here for an instance of this frame to be

created.

SPAK supports all special slots and slot flags as discussed in Section 4.3. Extensions to

the frame model proposed in Section 4.3 were added to SPAK. SPAK supports special slots

as listed in the previous section. Time-based layer is supported and programming interfaces

to access history information are provided. Frame-actions priority is supported in SPAK via

the use of the special slot priority. The default policy gives priority to instances with longer

distance from the Root frame.

Example Knowledge Contents

A sample screenshot of SPAK is shown in Figure 4.4. The right part displays console mes-

sage of input and output information to and from SPAK. The left part displays the knowl-

edge contents, in this example, a hierarchy of frames representing geometry shapes like line,

parallel lines, and other objects. The Line frame has children of LongLine, ShortLine, Thick-

Line, and Line 1 instance. This knowledge frames is a SPAK realization of the knowledge

hierarchy shown previously in Figure 4.1.

As we can see from Figure 4.4, the Line 1 instance is a direct child of both LongLine and

ThickLine frames. When clicking at the rectangle represent Line 1 instance, a SPAK window

showing its property (slots list and values) is brought up, as shown in Figure 4.5. Each row

represents a slot, with columns showing slot type, value, condition, argument (in case the

condition is not null), and slot flags R, BO, DF, S, U. Slots which begin with “ ” are used

internally by SPAK, e.g., the slot ID is used to store a unique frame/instance ID, the ISA

slot is used to store current parents of this frame/instance, and the WASA slot is used to

store old parents of this frame/instance.

Another example is shown in Figure 4.6. A hierarchy of frames represents fictitious hu-

mans with classification into subframes representing adult, child, etc. The corresponding

knowledge tree is shown in Figure 4.7. We can see that the frame Human has children of

Child, Adult, and 30up with different conditions that check the value of the age slot. Note

that the checking can be done by either using the slot condition (e.g., age<15 and age>30) or

using the special slot condition (e.g., s.age >=20).

The property of the Child 1 instance is shown in Figure 4.8. Note that the condition of

its parent Child frame requires that the slot age must be less than 15 (otherwise it cannot

be considered a Child frame instance). In the onEvaluate slot of the Human frame, there is a

4.4. SPAK KNOWLEDGE PLATFORM 71

Figure 4.4: A screenshot of SPAK loaded with the knowledge contents representing line
frames from the example in Figure 4.1

JavaScript expression to increase the value of the age slot by one to simulate the increasing

of human age. The Evaluator thread will check this onEvaluate slot and execute it. Thus this

Child 1 frame instance will have an increasing age over times and will be moving from an

instance of the Child frame to the Human, Adult and finally the 30up frame.

Knowledge Storing

SPAK stores the knowledge contents in XML. XML is an open and standardized storage for-

mat. Hence it is easy to share the knowledge with other applications. In SPAK, the knowl-

edge frame hierarchies are serialized into the text-based XML format for storing in local file

storage or exporting to other applications.

Example of an XML-encoded knowledge content from the human and children frames

example shown in Figure 4.6 is as follow:

<?xml version=’1.0’ encoding=’utf-8’?>

<FRAMELIST>

<FRAME>

<NAME>Root</NAME>

<ISINSTANCE>FALSE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

<SLOT>

<NAME>onLoad</NAME>

<TYPE>TYPESTR</TYPE>

72 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Figure 4.5: A screenshot of a property window of the Line 1 instance in Figure 4.4. Each row
shows a slot with its name, type, value (frame default value), slot condition, argument (of
the condition), and slot flags (R, BO, S, U).

<CONDITION>CONDANY</CONDITION>

<ARGUMENT></ARGUMENT>

<VALUE>load("ottbot2/common.js")</VALUE>

<REQUIRED>FALSE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>FALSE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

<FRAME>

<NAME>Human</NAME>

<ISA>Root</ISA>

<ISINSTANCE>FALSE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

<SLOT>

<NAME>age</NAME>

<TYPE>TYPEINT</TYPE>

<CONDITION>CONDANY</CONDITION>

<ARGUMENT></ARGUMENT>

<VALUE></VALUE>

<REQUIRED>TRUE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>TRUE</UNIQUE>

</SLOT>

<SLOT>

<NAME>onEvaluate</NAME>

<TYPE>TYPESTR</TYPE>

<CONDITION>CONDANY</CONDITION>

<ARGUMENT></ARGUMENT>

<VALUE>s.age++</VALUE>

4.4. SPAK KNOWLEDGE PLATFORM 73

Figure 4.6: A screenshot of SPAK showing the knowledge of the Human frame and its chil-
dren

<REQUIRED>FALSE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>FALSE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

<FRAME>

<NAME>Adult</NAME>

<ISA>Human</ISA>

<ISINSTANCE>FALSE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

<SLOT>

<NAME>condition</NAME>

<TYPE>TYPESTR</TYPE>

<CONDITION>CONDANY</CONDITION>

<ARGUMENT></ARGUMENT>

<VALUE>s.age >= 20</VALUE>

<REQUIRED>FALSE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>FALSE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

<FRAME>

<NAME>30up</NAME>

<ISA>Adult</ISA>

<ISINSTANCE>FALSE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

74 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

FRAME: Root

onLoad load("ottbot2/common.js")

FRAME: Human

age

onEvaluate

-

s.age++

FRAME: Adult

condition s.age >= 20

FRAME: Child

age [cond: < 15] -

FRAME: 30up

age [cond: > 30] -

INSTANCE: Child_1

age 14

Figure 4.7: Hierarchy of frames representing humans. The red lines represent HAS A rela-
tionships.

Figure 4.8: Property of the Child 1 instance

<SLOT>

<NAME>age</NAME>

<TYPE>TYPEINT</TYPE>

<CONDITION>CONDGT</CONDITION>

<ARGUMENT>30</ARGUMENT>

<VALUE></VALUE>

<REQUIRED>TRUE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>FALSE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

<FRAME>

<NAME>Child</NAME>

<ISA>Human</ISA>

<ISINSTANCE>FALSE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

<SLOT>

4.4. SPAK KNOWLEDGE PLATFORM 75

<NAME>age</NAME>

<TYPE>TYPEINT</TYPE>

<CONDITION>CONDLT</CONDITION>

<ARGUMENT>15</ARGUMENT>

<VALUE></VALUE>

<REQUIRED>TRUE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>FALSE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

<FRAME>

<NAME>Child 1</NAME>

<ISA>Child</ISA>

<ISINSTANCE>TRUE</ISINSTANCE>

<SHOWCHILDREN>TRUE</SHOWCHILDREN>

<SLOTLIST>

<SLOT>

<NAME>age</NAME>

<TYPE>TYPEINT</TYPE>

<CONDITION>CONDANY</CONDITION>

<ARGUMENT></ARGUMENT>

<VALUE>14</VALUE>

<REQUIRED>FALSE</REQUIRED>

<REQUIREDB>FALSE</REQUIREDB>

<DONTFILL>FALSE</DONTFILL>

<SHARED>FALSE</SHARED>

<UNIQUE>TRUE</UNIQUE>

</SLOT>

</SLOTLIST>

</FRAME>

</FRAMELIST>

4.4.3 Inference Engines

SPAK has two inference engines for forward and backward chainings:

• Forward chaining: Forward chaining is usually used when a new fact is added to the

knowledge base and we want to generate its consequences, which might result in new

other facts.

• Backward chaining: For a certain thing we want to prove, the backward chaining in-

ference finds implication facts that would allow us to conclude it. It is used for finding

all answers to a question posed to the knowledge base.

For example, the forward chaining is used in the event-driven scenario of a robotic applica-

tion. When the user pushes a switch on the robot, an instance of a Switch frame is created,

and the scripts embedded in the onInstantiate slot are executed.

76 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

In contrary, backward chaining is used in such a case as image processing. For instance,

if the camera agent is asked to locate a cup in the image, the frame definition of a cup may

contain an oval shape, and a pair of parallel lines as required components. This forces the

backward chaining engine to try to search for an oval shape, and parallel lines before decid-

ing if a cup exists in the image. Similarly, it can also be used in robot task planning as well,

which will be described in Section 4.5.2.

4.4.4 JavaScript Interpreter

JavaScript is used as the scripting language for specifying frame conditions and actions. It

is also used to implement additional function libraries required by applications. The library

can be loaded together with the knowledge hierarchy by adding a “load” command in the

onLoad special slot of the knowledge root node. SPAK uses an external library Rhino [107] to

interpret the scripts. Inside the JavaScript context, SPAK provides a number of classes and

methods for manipulating the knowledge frames.

4.4.5 Network Gateway

SPAK is network-accessible through its network gateway module. The module accepts com-

mand for submitting slot values to SPAK, starting inference process, and querying and ma-

nipulating the knowledge frame hierarchies. Agents can enter a Javascript code to be exe-

cuted by SPAK inference engine and obtain the result.

SPAK accepts network access via its direct TCP-input (port 9900) and XML-RPC (port

9901) interfaces. A sample access to the TCP port is as follow:

$ telnet localhost 9900

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’ˆ]’.

help

--HELP--

help: This message

frames: List all frame names and slots

Frame-Slot=value: Enter a slot value

Instancename-Slot=value: Modify a slot value of an instanc e

list: Show current slot buffer

induce: Try to instantiate frame from given slot value(s)

reinduce: Try to reinduce the existing instance(s)

remove: Try to remove instance with given slot value(s)

show: Show instances with given slot value(s)

removeall [framename]: Remove all instances of type Framen ame

reset: Reset the induction engine

$ xxx: Run JavaScript code xxx, e.g., $ i=1;i

xxx: Comment Line

--ENDHELP--

4.5. SPAK REASONING MECHANISM 77

A remote agent can connect to this port and input information for the inference engine in

the format of Frame-Slot=Value. For example, the input of SpeechRecognized-text=Yes means

that the value of the slot text of the frame SpeechRecognized is Yes, which might cause an

instantiation of the SpeechRecognized frame (if the condition is satisfied).

Slot values of existing instances can be also modified by inputting in the format of Instance-

Slot=Value. For example, by entering SpeechRecognized 1-text=Yes, it means that the value of

the slot text of an instance SpeechRecognized 1 should be set to Yes. In this case an instance

name SpeechRecognized 1 must exist, otherwise SPAK will treat this input as a new Frame-

Slot=Value information.

Inputting JavaScript to query and manipulate the knowledge contents via the network is

also possible by prefixing the input text with $. For example, to query the age of the Child 1

instance, one can do as follow:

$ telnet localhost 9900

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’ˆ]’.

$ var child = Root.findFrame("Child 1");

$ child.getSlotValue("age");

14

4.5 SPAK Reasoning Mechanism

The reasoning mechanism of SPAK is based on a simple and natural concept that frame and

instances integrity must be validated at all time. In other words, the forward chaining

mechanism ensures that, when a new information arrives at the system (e.g., via the net-

work or the GUI interfaces), all knowledge frames will be checked if any frames or instances

should be created, modified, or deactivated. This mechanism allows SPAK to incorporate

new facts to the knowledge base according to information from other networked software

agents. The consequence can be also that actions that are defined in special slots like onIn-

stantiate, onUpdate, onTransition, onTransitioned, onDestroy slots will be executed.

SPAK’s forward chaining inference engine can be started by supplying the command

“induce” via its network gateway, JavaScript code, or the Tool menu of the SPAK GUI editor.

This induce process will use the available slot-value information (received from other agents

via the network gateway) to find out if it can induce or update any new instances. After that,

to make sure that the created or updated instances are in a valid condition, another process

called reInduce checks existing instances if their conditions are still valid, i.e., whether it

should be given a new parent or its existing parent should be removed. Algorithms for

Induce and reInduce processes are shown in a flowchart in Figure 4.9. Normal arrow lines

show process flow and dashed lines represent data flow.

78 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Start

Hierarchies
Knowledge

Knowledge

Base

Process
Induce

need to
update?

instances?
any more

Stop

Process
reInduce

Yes (update)No
Changes

found?

Yes (instantiate)

validity)

reInduce
(check instance’s

Yes

No

Yes

No

update instances

Yes (update)

Yes (parent(s) changed)

update instances

run OnUpdate
and/or onDestroy
and/or onTransitioned
run OnTransition

Create instance
run onInstantiate run onUpdate

Update instance

run onTry/onBTry
Induce frames

via network
from agents
New information

or from user input
JavaScript method

Figure 4.9: A flowchart showing algorithm of the SPAK induce and reInduce inference pro-
cesses

4.5. SPAK REASONING MECHANISM 79

Knowledge

Base

Start

instances?
any more

not empty?
Slot value

Execute it

Stop

Induce

Check instance’s
onEvaluate slot

Yes

No

Yes

reInduce

Figure 4.10: A flowchart showing algorithm of SPAK induce and reInduce inference process

SPAK has an Evaluator thread that can be either set to run periodically (e.g., every 3

seconds) or in one-shot (for debugging). As shown in the flowchart in Figure 4.10, when the

Evaluator thread is started, it checks all instances and executes their onEvaluate slots, if exist.

Then, as there might be changes in the knowledge contents, it makes sure the integrity of the

knowledge base by launching an Induce process followed by a reInduce process.

Through the backward-chaining inference, SPAK can tell what are the required slots for

80 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

a frame to be instantiated, and prompt the user or other network agents to provide informa-

tion regarding those slots. This can be used in applications like an expert system providing

diagnosis of a disease given the user symptoms.

The following subsections briefly discuss how this reasoning mechanism can be used to

implement some robot applications.

4.5.1 Scene Understanding

It is necessary that human-interacting robot be able to understand surrounding environ-

ment. One way to achieve this is by submitting the images captured by a video camera to

a number of image processing modules such as geometry shape detection, facial detection,

and facial recognition, as shown in Figure 4.11. Then the results from these modules can be

processed by the frame-based knowledge module to identify the objects in the scene.

Camera

Line

Detection

Face

Detection

Oval

Detection

SPAK

Server

Figure 4.11: Scene understanding with image processing modules and SPAK

Frames of physical objects and their features can be created on SPAK server to perform

this task. We reuse again the example frames hierarchy shown in Figure 4.4. Its correspond-

ing knowledge tree is shown in Figure 4.12. Various frames are used to represent geometry

shapes like line (Line), parallel lines (Parallel), cup’s side (CupSide), circle (Circle), and objects

like cup (Cup) and face (Face).

The Line frame contains slots like line X1,line Y1, line X2, line Y2 (representing coordi-

nates of its starting and ending points), Length, and Thickness. A Parallel is defined as two

lines whose properties meet a certain condition. A CupSide is a Parallel with small difference

in line lengths. The frame representing a Cup object requires instances of a Cupside, and a

top Circle.

The geometry detection modules keep looking for objects they are responsible for, e.g.,

“line”, “oval”, and “face”. If they find any, they send information about the object to SPAK.

Based on this information, the co-ordinates of these objects and their relationships will be

checked and the corresponding frames will be created in SPAK. This new knowledge about

objects in the scene can then be used further by other parts of the system.

4.5. SPAK REASONING MECHANISM 81

FR
A

M
E

: R
oo

t

on
L

oa
d

lo
ad

("
U

N
IT

T
es

t/u
ni

t4
.js

")
;

FR
A

M
E

: G
eo

m
et

ry

C
ol

or
-

FR
A

M
E

: O
bj

ec
t

FR
A

M
E

: L
in

e

lin
e_

X
1

lin
e_

Y
1

lin
e_

X
2

lin
e_

Y
2

L
en

gt
h

on
T

ry

co
nd

iti
on

th
ic

kn
es

s

- - - - -

s.
L

en
gt

h=
lin

eL
en

gt
h(

s)

s.
L

en
gt

h
>

 0

1

FR
A

M
E

: P
ar

al
le

l

L
in

e_
1

L
in

e_
2

co
nd

iti
on

L
en

gt
hD

if

on
In

st
an

tia
te

- -

is
Pa

ra
lle

l(
s.

L
in

e_
1,

 s
.L

in
e_

2)

-

s.
L

en
gt

hD
if

=
pe

rc
en

tD
if

(s
.L

in
e_

1.
L

en
gt

h,
s.

L
in

e_
2.

L
en

gt
h)

;

FR
A

M
E

: C
ir

cl
e

C
en

te
rX

C
en

te
rY

R
ad

iu
s

- - -

FR
A

M
E

: L
on

gL
in

e

L
en

gt
h

[c
on

d:
 >

 2
0]

 -

FR
A

M
E

: S
ho

rt
L

in
e

L
en

gt
h

[c
on

d:
 <

=
 2

0]
 -

FR
A

M
E

: T
hi

ck
L

in
e

th
ic

kn
es

s
[c

on
d:

 >
 2

]
-

FR
A

M
E

: C
up

Si
de

co
nd

iti
on

s.
L

en
gt

hD
if

<
10

FR
A

M
E

: C
up

Si
de

T
op

- -

FR
A

M
E

: F
ac

e

X Y ra
tio

- - -

Figure 4.12: A frames hierarchy corresponding to the knowledge contents shown in Figure
4.4. The red and blue lines represent IS A and HAS A relationships respectively

82 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

4.5.2 Robotic Tasks Planning

A robot action can often be subdivided into a number of small tasks. For example, if we

want the robot to move a cup, the robot hand must reach to it and grasp it prior to lifting it up.

After that the moving, putting, and releasing tasks can be followed [55].

Tasks

Lift

mGrasp

onInstantiate

Grasp

mReach

onInstantaite

Reach

onInstantiate

Move

mReach

mGrasp

mLift

...

Figure 4.13: Task scheduler for move-a-cup action

The subdividing of an action into tasks and relating these tasks with dependency can be

implemented in SPAK frames system by setting the R (required) flag of instance slots among

them. This R slot flag which specifies information needed for instantiating a frame instance

can be used to establish a dependency among the frames. For example, the move action frame

require instances of all task frames. A Lift task requires an instance of a grasping task, which

requires further an instance of a reach task. This dependency is shown in Figure 4.13.

When the user initiates a move action, the backward chaining will check all requirement

dependency and make sure that the reach, grasp, and lift tasks are instantiated and executed

in the correct order before the action can be declared completed. Commands for instructing

the robot to perform each task can be embedded in onInstantiate slot of that task frame.

4.6 SPAK Knowledge Design Policy

A frame in SPAK can have a life cycle as follows. As shown in Figure 4.2, the induce com-

mand following incoming events from agents will cause SPAK to start the induce process,

which will check if there should be any instantiation or updates of knowledge frames.

4.6. SPAK KNOWLEDGE DESIGN POLICY 83

Figure 4.14: A knowledge hierarchy showing the SeenHuman 1 instance and its parents

Should there be any, SPAK will do so and execute the contents of special on-event slots onIn-

stantiate, if it is not empty, which might cause outgoing actions via agents. That an instance

is created, it can be updated both through direct commands from remote agents via net-

work and GUI editor, or manipulation of the knowledge contents by Javascript procedures

embedded in special slots. When it is updated, the onUpdate special slot is executed.

Over time, the Evaluator thread constantly evaluates each instance, executes its onEvalu-

ate slot, checks its condition and induce and re-induces or deactivates the instance if needed.

Modification of instance’s parents, i.e., add or remove parent (s), results in an execution of

the onTransition and onTransitioned special slots. Finally an instance can be deactivated in

which its onDestroy slot will be executed.

Based on the facilities provided by SPAK including these special slots and slot flags, one

can design the knowledge frames hierarchies to represent the knowledge and manage robot

actions. Our policy on designing the knowledge contents is to follow the human’s way of

understanding the world of interest as much as possible but allow exceptions if there is

a technical limitation. For example, Object frames are used to represent tangible things like

84 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Figure 4.15: Property of the SeenHuman 1 instance

human, student, can, beverage. Concept frames are used to represent more abstract things

like speech, gestures. As our use in robot systems involves much on management of robot

event-action behaviors, therefore we have two more groups of frames: Event and Action.

The event-action behavior is achieved by using the Event and Action frames. Event frames

are designed for describing changes in the environment, e.g., SpeechRecognized, FaceDetected,

HeadSensorTouched. When a primitive agent perceives a change in the environment, it passes

the information to SPAK which will trigger instantiation of Event frames. It might further

result in creation of new Action frame(s), e.g., Say, Move, causing action(s) in response.

A sample used of these frames can be shown as follow. When an unknown face is rec-

ognized by a face recognizer agent, an event frame UnknownFaceFound is created in SPAK.

Upon instantiation of this frame, the condition of an Action frame Greet, which requires an

existence of an unknown person in front of the robot (i.e., the UnknownFaceFound frame) is

fulfilled. Therefore a new instance of Greet frame is created and an action, e.g., say greeting

word, is executed according to what specified in its onInstantiate slot.

Another design policy is that multiple-parent frames are allowed and encouraged, be-

cause things in the real world, as typically perceived by humans, are not in a single hierarchy.

Therefore multiple-inheritance is encouraged. From the knowledge contents in Figure 4.4,

one might notice that the Line 1 instance has two parent frames: LongLine and ThickLine,

because its slot values match both frames’ conditions.

Another example is that a human can have many roles, e.g., a human as a living crea-

tures, a registered user to the system, and an object being seen by the robot. For example, a

ConverPartner frame, which represents the current robot’s conversation partner, is a child of

a SeenHuman frame, with a required instance slot of type FoundHuman status register frame

4.6. SPAK KNOWLEDGE DESIGN POLICY 85

FRAME: SeenObject

objectseen [cond: = true] -

FRAME: SeenGesture

FRAME: SeenHuman

FRAME: ConverPartner

foundhuman -

INSTANCE: SeenHuman_1

status

username

firstname

lastname

nationality

profession

feeling

sleepcondition

currentcondition

lastmet

objectseen

objectseentimeout

owner

-

peter

Peter

James

student

-

-

-

0

true

2000

-

FoundHuman

Figure 4.16: A knowledge hierarchy starting from the SeenObject node

(more about status register frame will be discussed in the next chapter). The SeenHuman

frame which represents a human being seen by the system is a child of the Human (repre-

senting a human as a living creature), SeenObject (object seen by the system) and Student (a

human with the profession “student”) frames. Hence an instance of the SeenHuman frame

can be a children of many frames at the same time. As shown in Figure 4.14, the SeenHuman 1

instance is a child of the SeenHuman, KnownUser, and Student frames. Figure 4.15 shows the

slots and slot values of the SeenHuman 1 instance. The knowledge tree of its parent frames

starting from the SeenObject and Human nodes are shown in Figure 4.16 and Figure 4.17 ac-

cordingly. The instance has slots’ values that match conditions of all its three parents (the

SeenObject and SeenHuman frames require that the value of the slot objectseen is equal to true;

the KnownUser frame requires that the value of slot username is not equal to unknown; and

the Student frame requires the profession slot value to be “student”).

86 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

FR
A

M
E

: H
um

an

st
at

us

us
er

na
m

e

fi
rs

tn
am

e

la
st

na
m

e

na
tio

na
lit

y

pr
of

es
si

on

fe
el

in
g

sl
ee

pc
on

di
tio

n

cu
rr

en
tc

on
di

tio
n

la
st

m
et

- - - - - - - - - 0

FR
A

M
E

: S
ee

nH
um

an

FR
A

M
E

: K
no

w
nU

se
r

us
er

na
m

e
[c

on
d:

 !
=

 u
nk

no
w

n]
 -

FR
A

M
E

: U
nk

no
w

nU
se

r

us
er

na
m

e
[c

on
d:

 =
 u

nk
no

w
n]

 -

FR
A

M
E

: S
tu

de
nt

pr
of

es
si

on
[c

on
d:

 =
 s

tu
de

nt
]

-

FR
A

M
E

: P
ro

fe
ss

or

pr
of

es
si

on
[c

on
d:

 =
 p

ro
fe

ss
or

]
-

FR
A

M
E

: C
on

ve
rP

ar
tn

er

fo
un

dh
um

an
-

IN
ST

A
N

C
E

: S
ee

nH
um

an
_1

st
at

us

us
er

na
m

e

fi
rs

tn
am

e

la
st

na
m

e

na
tio

na
lit

y

pr
of

es
si

on

fe
el

in
g

sl
ee

pc
on

di
tio

n

cu
rr

en
tc

on
di

tio
n

la
st

m
et

ob
je

ct
se

en

ob
je

ct
se

en
tim

eo
ut

ow
ne

r

-

pe
te

r

Pe
te

r

Ja
m

es

st
ud

en
t

- - - 0 tr
ue

20
00 -

Fo
un

dH
um

an

FR
A

M
E

: A
le

x

us
er

na
m

e

fi
rs

tn
am

e

la
st

na
m

e

na
tio

na
lit

y

[c
on

d:
 =

 A
le

x]
 -

A
le

xa
nd

er

M
ue

lle
r

G
er

m
an

Figure 4.17: A knowledge hierarchy starting from the Human node

4.6. SPAK KNOWLEDGE DESIGN POLICY 87

Method Description

Frame/Instance Related Methods

KFrame createFrame(fname) create a new frame with the name fname
KFrame createInstance() create an instance of this frame
KFrame findFrame(fname) find a frame or instance which has the name fname
KFrameScript findFrame(fname) find a frame or instance which has the name fname
Vector findInstancesOf(fname) find instances of the frame whose name is fname
void selfDelete() deactivate the current frame or instance
KFrameScript getKFrameScript() get a JavaScript object that represents this frame or in-

stance
Hashtable getHash() get a hash table that represents this frame or instance
boolean tryMe(hash) try if an instance of this frame can be induced by the

provided information in the hash table
boolean isInstance() check whether this object is a frame or an instance
boolean checkCondition() evaluate if the condition of this frame is still valid
boolean isActive() check if this frame or instance is still active
int getAge() get the age of this frame or instance
int getAgeSinceLastUpdate() get the age since the last modification to this frame or

instance

Parents/Children Related Methods

void addParentFrame(KFrame p) add a new parent p to this frame
Vector getChildren() get all children of this frame
void remove(c) remove the frame c from my children list
void removeParent(p) remove the frame p from my parents list
Vector getAllParentsFrames() get all parent frames of this frame up the hierarchies

(including grandparents, etc.)
boolean inParentsList(p) check if the frame p is one of my parents
boolean inChildList(p) check if the frame p is one of my children
void setToNewParent(np) change my parent frame from the current one to np

Slots Related Methods

void addSlot(slname, slval,...) add a new slot to this frame with the name slname,
value slval, ...

String getSlotValue(slname) get the value of the slot slname
String getSlotValue(slname, times-
tamp)

get the value of the slot slname at time timestamp

String getPreviousSlotValue(slname) get the previous value of the slot slname
void setSlotValue(slname, slvalue) set the value of the slot slname to slvalue
boolean checkSlotsCondition() check whether all slots’ conditions are still valid
void runSpecialSlot(slname) execute the JavaScript code specified in the special slot

slname

Table 4.4: Some methods to manipulate frames provided by the KFrame Java class

88 CHAPTER 4. FRAME-BASED KNOWLEDGE MANAGER

Table 4.5: Some properties and methods of the KFrameScript class

Property Description

slotName access the content of that particular non–procedural slot
SlotName() execute the JavaScript code specified in the procedural slot

Method Description

void die() execute the onDetroy special slot and deactivate this instance
void init() execute the onInstantiate special slot

By mimicking the human way of understanding, the system can be easier made to under-

stand symbols used by human compared to the design which focuses only on the function-

alities. However, there are limitations in the expressiveness of the frame model, hence some

exceptions are allowed, and work around to eliminate these limitations should be done. This

policy allows practical knowledge design while still maintaining the similarities to the hu-

man perception of the real world.

4.7 SPAK Programming Interfaces

A knowledge frame in SPAK is technically a KFrame Java object. Table 4.4 lists important

methods of the KFrame Java object. For the JavaScript code in the procedure-type slots or the

input via the network gateway, both the KFrame class and the KFrameScript class can be used.

KFrame is a native Java class exported to JavaScript environment. It is used for manipulate

the frame structure, and the knowledge hierarchy. KFrameScript is a native JavaScript class

representing the frame. It is used for manipulating the frame slot values inside JavaScript

context. It provides conveniences, e.g., slot values can be accessed directly using the dot ex-

pression like object.slotname . Procedural slots can be called as object.procedure() .

Table 4.5 lists some properties and methods of the KFrameScript class.

For example, to query and set the age of the Child 1 instance in the previous example,

one can do like this:
$ telnet localhost 9900

Trying 127.0.0.1...

Connected to otto.

Escape character is ’ˆ]’.

$ s = Root.findFrameScript("Child 1")

Evaluate: s = Root.findFrameScript("Child 1")

Result is [Frame] Name=Child 1

Name=Child 1

ID=9

ISA=[Child]

WASA=[]

age=14

[Frame] Name=Child 1

4.8. SUMMARY 89

Name=Child 1

ID=9

ISA=[Child]

WASA=[]

age=14

$ s.age

Evaluate: s.age

Result is 14

14

$ s.age = 20

Evaluate: s.age = 20

Result is 20

20

$ s.age

Evaluate: s.age

Result is 20

20

$ s.getAgeSinceLastUpdate

Evaluate: s.getAgeSinceLastUpdate

Result is 72

72

4.8 Summary

We introduced in this chapter the proposed extensions to the frame model and the imple-

mentation in our frame-based knowledge software platform SPAK. New extensions namely

time-based layer, evaluator, and priority support are introduced to the frame model to rep-

resent changing knowledge and to support management robot behaviors by means of SPAK

action mechanisms. SPAK is experimentally used in robot applications like dialogue man-

ager (to be presented in the next chapter), scene understanding, tasks planning [10], and in

ongoing work of gesture-based human robot interaction [108], and multi-robot collaboration

[109].

SPAK is still an ongoing project. Latest information is available on the home page [110].

Chapter 5

SPAK Application: Knowledge-based

Dialogue Manager

Now that we have SPAK as a platform for co-ordinating networked agents by means of the

frame-based knowledge engine, in order for a robot to have some functionalities, a SPAK ap-

plication shall be developed. Developing a SPAK application is basically to create the knowl-

edge contents in SPAK, i.e., frame hierarchies, slot properties, and corresponding JavaScript

procedures. This specifies how the system should behave, e.g., how to deal with the infor-

mation received from agents and what actions should be sent to which robot agent.

This chapter presents the development of a sample SPAK application: a knowledge-

based dialogue manager for robots. As our final goal is to achieve symbiotic robots that live

together with and assist humans, especially the elderly and ill persons, considering these

target users, it would be inconvenient to ask them to use the keyboard and mouse in order

to interact with machines. Multi-modal natural interfaces like speech and gesture are more

natural. Hence a dialogue system for robots is desired and it is chosen as a showcase for

SPAK application development.

In this chapter we show the design of a knowledge-based dialogue system with the focus

on the dialogue manager, the decision-making part of a dialogue system.

5.1 Design of the Dialogue System for Robots

An overview of the designed dialogue system is shown in Figure 5.1. The big dashed-

rectangle represents the robot, which interacts with a human and the surrounding envi-

ronment, perceives changes and generates actions in response. Inside the robot there are

sensor-type and actuator-type agents, and SPAK, on which many robot applications are run-

ning, e.g., dialogue manager and gesture recognizer.

A basic task of a typical dialogue manager, as a part of a dialogue system, is to interpret

90

5.1. DESIGN OF THE DIALOGUE SYSTEM FOR ROBOTS 91

Human,
Environment

incoming
events

actions
outgoing

Actions
Register
Status

Knowledge
World

Sensor−type agents

Actuator−type agents

Actions

Robot

Knowledge Manager (SPAK)

Dialogue Manager

Gesture Recognizer

Other components
. . .

. . .

body

neck

speech

gesture

vision

speech

. .
 .

Perceptions

Inference
Engine

knowledge
frames

Events

Figure 5.1: An overview of the designed dialogue manager. A robot is composed of various
agents including the SPAK knowledge-manager agent.

input observations in context, and determine next action(s) to be done. In our robot case, the

dialogs might compose of information queries, resource reservations or commands. Interac-

tions are assumed not to be very complicated or ambiguous, considering our target users and

that the human is aware of robot’s limitation. On the other hand, the dialogue manager for

robots must instead work well with other robotics devices and computing resources. Also

as the robot is an integrated system with many applications running, not only the dialogue

management but also other applications, e.g., movement planning, scene understanding;

cooperation and sharing of knowledge among these applications are crucial.

Hence we propose a dialogue manager architecture based on the knowledge platform.

Instead of having a dedicated system for each robot application, e.g., dialogue management,

movement planning, scene understanding; a single knowledge platform serves as basis in-

frastructure for such applications. By sharing the single base platform, the system is less

complex with single architecture; the dialogue manager can easily make use of the knowl-

edge provided; and the knowledge can be easily shared among various applications.

The dialogue manager is targeted to understand human commands and be able to han-

dle multi-modal state-based and form-based dialogue types, as they are the two most used

92 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

types of dialogues. It interacts with humans by means of various multi-modal sensory and

actuator agents. Moreover, since the robot lives with us in the long term, it needs to maintain

and use the knowledge about the world of interest which is changed during its life. An abil-

ity to update its behaviors through human instruction and feedback is also required because

the robot cannot be pre-programmed with everything.

As the focus is on the dialogue manager, we made an assumption that speech input

from users are sentences expected by the system, to isolate the dialogue management prob-

lems from other problems of natural language understanding, e.g., speech recognition and

parsing problems. Sentences uttered by users will be recognized and parsed by responsi-

ble agents, and arrive in SPAK as an almost error-free communicative act information. In

case of errors, the dialogue manager should inform the user to repeat the speech so that the

dialogues can carry on.

5.2 Knowledge-based Dialogue Manager

A SPAK application is basically a collection of knowledge frames carefully designed to

achieve certain robot behaviors. Knowledge frames that constitute the dialogue manager

can be grouped as follows: Events, Actions, StatusRegister, and the world knowledge (includ-

ing Objects and Concepts), as shown in Figure 5.2. Each group of frames is discussed in the

following parts. In short, changes in the environment are captured by sensor-type primi-

tive agents, forwarded to the SPAK and will be incorporated into the knowledge contents as

Event frames. Adding this new information can result in modification of the StatusRegister

frames, which include state frames indicating the current state(s) the robot is in, and/or other

frames. From these changes, the inference engine might update other knowledge and/or

generate Action frames, causing actuator-type agents to do some physical actions. Inference

process can be triggered by the Evaluator process as well.

Event and Actions Frames

Changes in the environment including the human actions, e.g. a speech is recognized, a face

is detected, a face is recognized, or the user is pointing to the left, are represented in the

knowledge base by Event frames as shown in Figure 5.3. RawEvent frames, whose children

are, e.g., SpeechRecognized, RawVisionEvent, and FaceDetected, represent events frames that

are created only from input information received directly from primitive agents. Other event

frames are WelfareCenterMessage (simulating a message from a welfare center) and GreetEvent

and ByeEvent (abstract frames representing actions of greeting from human which can be in

speech, gestures, etc.).

The actions to be done by the robot are represented similarly using Action frames. In

our design as shown in Figure 5.3, there are BasicAction frames for generating output actions

5.2. KNOWLEDGE-BASED DIALOGUE MANAGER 93

like Say, Look, Pose, and Move; UpdateLSE, UpdateLSA, and UpdateSeenHuman (more details

about this in the following Status Register Frames subsection); SpeechAction for answering

human requests via speech; TaskAction for handling multiple-step tasks including dialogue

management (more details about this in Section 5.3); and Learn and LearnedAction for robot

learning (more details about this in Sub-section 5.3.5).

Figure 5.2: A screen-shot of SPAK showing groups of knowledge frames: StatusRegister,
Event, Action, world knowledge (Object and Concepts), that constitute the dialogue manager
for robots. Note that the frames further down the hierarchies are not shown.

Status Register Frames

During a human-robot interaction, input data from other primitive agents come in continu-

ously. Some actions can be triggered directly from this information, e.g., in case of human

94 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

Figure 5.3: A SPAK screenshot showing Event and Action frames

commands. However, some actions depend not only on a single event but rather on the cur-

rent state or context. Status frames are designed to maintain the context information such

as conversation partner, topic. Similar to the Event frames, they are instantiated when cer-

tain conditions are met. But they do not necessarily cause an action immediately. Instead,

the frames exist and their values are updated over times to reflect the status of the system

and the world of interest. This is realized using the mechanism of special slots and slot

flags available in SPAK. Information provided by these status frames can be shared by other

components of the system.

Status frames used in our demonstration scenarios are shown in Figure 5.4. Next we

describe some of important status frames in our design.

5.2. KNOWLEDGE-BASED DIALOGUE MANAGER 95

Figure 5.4: StatusRegister frames and Objects frames. Note some multiple-parent frames that
are children of both the Object and StatusRegister frames

LSE and LSA

During the interaction, many events and actions occur. In some cases the system needs to

know what events have occurred or what actions it has done in the past. For example, in

the case of learning from implicit instruction or feedback, the robot needs to know what is

the thing human might be referring too. Two status frames: List of Significant Events (LSE)

and List of Significant Actions (LSA) are designed to maintain the lists of the past events and

actions accordingly, sorted by using the algorithm that hi-light rare and newer events. The

action frames UpdateLSE and UpdateLSA are used to update the LSE and LSA accordingly.

Figure 5.5 shows the property of sample LSE and LSA frames. Top ten significant events

are stored in the e1 (most significant), e2, e3, ...,e10 (least significant) slots. Whenever there

is a new Event frame instance, an UpdateLSE action will be created. It will update the LSE

frame according to the policy that newer or rare events have higher priority. The algorithm

to calculate this is as follows. Assume ei
t is 1, if there is an event of type i occurred at the past

time t, and 0 otherwise. The significance score s (value between 0 and 1) of the latest event

96 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

Figure 5.5: A snapshot of the LSE and LSA frames

ei
0 can be calculated using the window function w (see illustration in Figure 5.6) as follows:

s(ei
0) =

∑

j⊂M

w(ei
j)

M∑

t=1

ei
t

, w(ei
t) = (a + (1 − a) cos(

tπ

M
))ei

t

Using this calculation, newer events and rare events are given higher significance score.

The parameters a and M can be adjusted to achieve the optimum result. Given a big enough

size of the LSE and proper parameters, all the related events are likely to be found in the LSE

list (this has yet to be verified). Updates of the LSA frame are done similarly to the LSE.

States Frames

Other important status register frames are State frames. They are used to reflect the current

state(s) of the system, e.g., Error, FoundHuman, and WaitingForAnswer. Some events or ac-

5.2. KNOWLEDGE-BASED DIALOGUE MANAGER 97

a

1

M
past time t

window function w

0 (current time)

Figure 5.6: Window function used to calculate the significance factor

tions create or modify State frames. For example, while a human face is being detected, a

corresponding FoundHuman state frame is created and maintained. After the human is being

asked by the robot, a WaitingForAnswer state frame is created.

In the example screenshot of StatusRegister frames shown in Figure 5.4, the existence

of the instances FoundHuman 1, WaitingForAnswer 1, GreetNewUserTaskDialogueState 1 indi-

cates that a human is now present in front of the robot, the robot has asked a question to

him and now is waiting for an answer, and the robot and human are interacting as a part of

a so-called greet-new-user dialogue. The UnknownUser 1 corresponds to the human inter-

acting with the robot. And that it is a child of ConverPartner and UnknownUser (and, up the

hierarchies, SeenObject, SeenHuman, and Human) indicates that the human is being seen by

the system, is the current conversation partner, and is unknown to the system.

This state information can be used by other parts of the system. Some actions can be done

only if the system is in or not in certain state, e.g., not in the Error state. Note that there can

be more than one state frames at a time, meaning that the system can be in different states at

the same time. The significance of each state can be specified by in its priority special slot. For

example, the Error state has the highest priority of 100, which means that even if the system

is in several states at that time, the Error state overrides other states in case of rule conflicts.

World Knowledge

The general knowledge about the world of interest, e.g., Objects, Concepts, is maintained in

the world knowledge part. The world knowledge used in our dialogue system is shown in

Figure 5.4 (Object frames) and Figure 5.7 (Concepts frames). Objects are used to represent

tangible things like Human and Can, while Concepts are used to represent abstract things like

Gesture and Speech.

98 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

Figure 5.7: Concepts frames, as a part of the world knowledge, represent conceptual knowl-
edge like gestures and speech

5.3 Dialogue Management

In this section, management of dialogue interactions by the designed dialogue manager is

described. The discussion starts with the simplest form of interaction, handling of human

commands, then proceeds to the method to ask a question, handling of state-based and

form-based types of dialogues, and finally a basic robot learning from human instructions.

5.3. DIALOGUE MANAGEMENT 99

5.3.1 Handling of Human Commands

A basic interaction with the robot is to command it to do some actions. The robot can be

pre-programmed to understand commands like say, move, look, and stop. In our design we

use frames to achieve the command-action behavior. Related knowledge frames are shown

in Figure 5.8. Commands like SayWhatHumanSaid and LookWhereHumanSaid are modelled as

HumanCommand frames (which is a child of Speech and Concepts frame). In the bottom part of

Figure 5.8, properties of the SayWhatHumanSaid frame is shown. By using this frame, when

a human instructs “say <text>”, the robot follows the command by uttering that text. The

SayWhatHumanSaid frame needs two instances of the SpeechRecognized event frames (see its

speech1 and speech2 slots). Important is its condition slot, namely:

(s.speech1.recognized text == ”Say” && parseInt(s.speech1.getAge) > parseInt(s.speech2.getAge)

),

which means that if the first speech content is “Say”, this frame can be instantiated. Ac-

tions to be done when the frame in instantiated, e.g., utter the text as requested by the human

(the text can be retrieved from the instance slot speech2, i.e., by calling s.speech2.recognized text)

via a text-to-speech agent by creating a Say frame (a child of the BasicAction frame), can be

specified as JavaScript code in its onInstantiate slot, or by using a separate Action frame that

depends on this frame. Other HumanCommand frames are designed similarly.

Figure 5.8: Example of the knowledge contents for processing robot commands, and the
content of the SayWhatHumanSaid frame

100 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

Figure 5.9: A screenshot of a DialogueAsk 1 instance

5.3.2 Asking a Question

A number of frames are used to facilitate dialogue interaction with human, namely, the

DialogueAsk, WaitingForAnswer and AnswerFound frames. When the system wants to ask a

question to a human, a DialogueAsk action frame is created and filled with a question text

and an expected type of answer. The property of a sample DialogueAsk instance is shown in

Figure 5.9. It has important slots as follows:

• question: the question to be asked to the human, e.g., Where is your destination?

• answeract and answersubact: information about the communicative act that the system

expects after asking the question, e.g., if the answeract is “Tell” and the answersubact is

“Place”, the system expects that a human will say a place name.

• parentframe and parentslot: the parent frame and its slot name that the system should

update with the information received in the answer. In the example in Figure 5.9,

when a human reply is received, the system will update the ReserveBus 1 instance’s

destination slot with the information about place it received.

When a DialogueAsk frame is instantiated, it creates a state frame WaitingForAnswer, which

will ask the specified question to the human (by creating further a Say action frame). The

existence of an WaitingForAnswer instance indicates that the system is now waiting for a

response of the speech act type according to what specified in its answeract and answersubact

slots. A sample WaitingForAnswer instance is shown in Figure 5.10. If the time passes without

any reply, the system will ask the question again through the use of the onEvaluate slot in the

WaitingForAnswer instance.

5.3. DIALOGUE MANAGEMENT 101

Once the human replied, a SpeechRecognized event frame is instantiated and an Answer-

Found action frame, shown in Figure 5.11, will try to check if the SpeechRecognized event

frame’s speech act matches with the expected act specified in the DialogueAsk instance. If

they match, the AnswerFound instance will update the frame specified in the DialogueAsk

instance’s parentframe slot with the answer from human. Finally, the task finishes, the Dia-

logueAsk 1 and WaitingForAnswer 1 are deleted.

Related frames to the mechanism of asking a question and their interactions are illus-

trated in Figure 5.12.

Figure 5.10: A screenshot of a WaitingForAnswer 1 instance created by the DialogueAsk 1
instance in Figure 5.9

Figure 5.11: A screenshot of an AnswerFound frame used to match between a SpeechRecog-
nized instance representing incoming speech from human and a DialogueAsk instance

102 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

q
u

es
ti

o
n

W

he
re

 is
 y

ou
r

de
st

in
at

io
n?

an
sw

er
ac

t
T

el
l

an
sw

er
su

b
ac

t
P

la
ce

p
ar

en
ts

lo
t

de
st

in
at

io
n

p
ar

en
tf

ra
m

e
R

es
er

ve
B

us
_1

p
ri

o
ri

ty

10

D
ia

lo
gu

eA
sk

_1

d
ia

lo
g

u
ea

sk

D
ia

lo
gu

eA
sk

_1

an
sw

er
ac

t
T

el
l

an
sw

er
su

b
ac

t
P

la
ce

w
ai

ti
n

g
ti

m
e

0

p
ri

o
ri

ty

10

W
ai

tin
gF

or
A

ns
w

er
_1

d
es

ti
n

at
io

n

T
ok

yo

ti
m

e

R
es

er
ve

B
us

_1

d
ia

lo
g

u
ea

sk

D
ia

lo
gu

eA
sk

_1

sp
ee

ch
re

co
g

n
iz

ed

S
pe

ec
hR

ec
og

ni
ze

d_
1

o
n

In
st

an
ti

at
e

do
A

ns
w

er
F

ou
nd

(s
)

A
ns

w
er

F
ou

nd

cr
ea

te

cr
ea

te

S
ay

C
re

at
e

an
d

re
-c

re
at

e
if

no

re
sp

on
se

 w
ith

in
 a

 ti
m

e
lim

it
Q

u
es

ti
o

n
 t

o
 t

h
e

h
u

m
an

:
W

he
re

 is
 y

ou
r

de
st

in
at

io
n?

R
es

p
o

n
se

 f
ro

m
 t

h
e

h
u

m
an

:
T

ok
yo

re
co

g
n

iz
ed

_t
ex

t
T

ok
yo

ac
t

T
el

l

su
b

ac
t

P
la

ce

S
pe

ec
hR

ec
og

ni
ze

d_
1

o
n

In
st

an
ti

at
e

do
P

ar
se

(s
)

ch
ec

k

ch
ec

k

U
pd

at
e

T
el

l =
=

 T
el

l
P

la
ce

 =
=

 P
la

ce

M
at

ch
ed

!

Figure 5.12: Related frames to the mechanism of asking a question and their interactions

5.3. DIALOGUE MANAGEMENT 103

5.3.3 Handling of State-based Dialogues

In this section we describe management of state-based dialogues. DialogueTaskAction frames,

children of the Action frame, are used to manage the transition from one dialogue state to

another. Figure 5.13 shows a sample set of the knowledge frames to realize state-based

dialogues of greeting a new user (GreetNewUserTaskAction frames) and greeting a known

user (GreetKnownUserTaskAction frames). Other frames involved are the DialogueState state

frames (shown in Figure 5.4), which is used to maintain the current state and other shared

information among the DialogueTaskAction frames.

Figure 5.13: Example knowledge contents to realize state-based dialogues

Figure 5.14 contains a flow chart showing a task action flow, dialogue state frame up-

dates, and interactions with human, in a state-based dialogue for greeting a known user

(involving GreetKnownUserTaskAction frames and GreetKnownUserTaskDialogueState frames).

The dialogue is started with some initial conditions, in this case, the conditions that a hu-

man is being in front of the robot (corresponding to an existence of a FoundHuman instance)

and that the human is known to the system (corresponding to an existence of a FaceRecog-

nized instance with a non-unknown human name). An instance of the first dialogue task

frame GreetKnownUserTaskAction1 is then created. It sends a greeting message to the human

(in this example, “Hi Alex. How are you today?”), creates GreetKnownUserTaskDialogueState

instance, and sets its currentstate slot to “howareyouasked”. Next, depending on a reply-

ing speech from the human, either a GreetKnownUserTaskAction2 (if the human says “Fine,

thanks”) or a GreetKnownUserTaskAction3 (if the human says “No so fine”) frame is instanti-

ated, which will generate a reply to human, and update the dialogue state frame accordingly.

The dialogue progresses similarly until it reaches the Finished state.

5.3.4 Handling of Form-based Dialogues

The form-based dialogue, where a certain action is done once all the required information is

provided, can be managed by using a Task frame. A small example of a scenario to reserve a

104 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

GreetKnownUser

TaskAction1

GreetKnownUser
TaskAction2

GreetKnownUser
TaskAction3

GreetKnownUser
TaskAction4

A human is found
and he is known to the

system.

Speech: Hi, Alex.

How are you today?

Task Action Flow Interaction with HumanGreetKnownUserTask-
DialogueState

Frame Updates

Dialogue-state =
howareyou-asked

Dialogue-state =
finished

Dialogue-state =
sleep-well-asked

. . .

Finished

Start

Reply from humanFine, thanks! Not so fine...

Speech: That’s not
good. Did you sleep

well last night?

Reply from humanNo

Initial conditions

FoundHuman ,
FaceRecognized

(name == Alex)

DialogueAsk

action frame

DialogueAsk

action frame

Say action
frame Speech: Have a nice

day! See you.

SpeechRecognized

event frame

SpeechRecognized

event frame

. . .

Yes

Figure 5.14: A flow chart showing a task action flow, dialogue state frame updates, and
interactions with human, in a state-based dialogue for greeting a known user

bus seat is given. Involved frames are the ReserveBus task frame, and the DialogueAsk, Wait-

ingForAnswer, AnswerFound frames, similar to in the state-based dialogue case. The steps

are shown in Figure 5.15. The ReserveBus task frame, whose properties are shown in Figure

5.16, needs information stored in its two slots: destination and time in order to proceed with

the reservation process. When it is instantiated, the script in its onInstantiate special slot,

which calls the onInstantiateReserveBus(s) JavaScript function, will create two DialogueAsk

instances: DialogueAsk 1 and DialogueAsk 2 instances, as shown in Figure 5.15, to ask the

human these two pieces of information by means of the WaitingForAnswer and Say frames

with the mechanism similar to what described in Section 5.3.2. However, a WaitingForAn-

swer frame will not ask the question if there already exists another WaitingForAnswer frame

with a higher priority value. Instead, it will wait until that question has got the answer, i.e.,

until that higher-priority WaitingForAnswer instance disappears. This mechanism prevents

two (or more) WaitingForAnswer instances from interfering with each other. If the user pro-

vides both information at once (i.e., the system asks for time but the human provides both

the time and destination information), the system will not ask the rest of the question since

5.3. DIALOGUE MANAGEMENT 105

it has the answer already.

Once the user replied, his speech is represented by a SpeechRecognized event frame. Dur-

ing its instantiation process, the speech text is parsed and the resulting performative act is

stored in the slot value act. Again, the action frame AnswerFound is used to match this with

the existing WaitingForAnswer instance’s. If they match, i.e., their speech acts and subacts are

the same, the AnswerFound instance will update the ReserveBus frame’s corresponding slot

(time or destination) by checking the parentframe and parentslot of the DialogueAsk instance

that created the WaitingForAnswer instance. Then it deactivates the DialogueAsk frame in-

stance. Once all the required information in the ReserveBus frame are filled, the reservation

process can be started. This checking and finalizing are done by the function onEvaluateRe-

serveBus(s) in the onEvaluate slot of the ReserveBus frame.

5.3.5 Robot Learning from Human Instruction

Since our target application is a welfare robot which will live with us in long term, not only

should the robot be able to communicate with humans in pre-defined dialogues, but also

to learn through the interaction in order to improve itself to serve human better. In this

research we are concerned with the robot learning of new facts and rules through the con-

versation. Learning can be done in various ways, for instance: learning from explicit human

instructions (e.g., the human teaches “Alex is a man”); learning from implicit human instruc-

tions (e.g., human points to the right and then teaches the robot to turn to that direction; the

robot has to find out why it should turn to that direction by looking at the previous incom-

ing events and pick up the most promising one); reinforcement learning, and learning by

demonstration.

In the first stage we focus on learning by explicit and implicit human instructions. In

the explicit case, it is simpler; once the system understands human’s teaching messages, it

can simply add the new knowledge into its knowledge base. For example, when the human

says “Alex is a man”, the robot should add an IS A relationship between Alex and Man (it

is assumed that the robot knows what Human is). For the sentence “if you meet Alex, tell

him the books have arrived”, the robot should learn that a Tell action with message content

“the books have arrived” should be executed when it meets Alex. In such cases, the parser

needs to understand the input text and deliver the correct communicative act. After that the

knowledge server should process it and take appropriate actions.

In the implicit human instruction case, the robot has to observe input events from the

environment including human’s teaching messages, and tries to find what the human in-

tends to teach. For simplicity, we started with the learning of rules that has only one single

triggering event, e.g., if the human greets the robot with words “Hello”, it should respond

with “Hello”. The question is, among a lot of incoming input events, how the system knows

which is the right information, e.g., the human’s Hello message in this case.

106 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

In the second demonstration scenario in the next section, we show a simple robot learn-

ing from implicit human instructions. There are two Action frames involved in the learning:

Learn and LearnedAction. The Learn frame takes care of the learning process. It is created

when human issues a command. Then it tries to find an event from LSE (at the moment it

simply takes the top of the list, i.e., the e1 slot) and associates with the command by creating

a new LearnedAction frame with the starting confidence slot value of 1 (means one teaching

sample). For example, human comes to the robot, let his face detected by the robot (i.e., there

will be a FaceDetected event frame) and asks the robot to say “Hello” (i.e., the SayWhatHuman-

Said human command frame will be created). The robot should associate that FaceDetected

event frame with the action saying “Hello” and create a corresponding LearnedAction frame.

This new LearnedAction frame will require an Event frame of type FaceDetected and the action

when it is instantiated is to say the text “Hello”. The robot has learned a new behavior from

human instruction.

Human feedback messages like “Good” or “No, don’t do that” can be made to increase

or decrease the value of the LearnedAction’s confidence slot. We can set a threshold for this

confidence value to control whether this LearnedAction should be enabled or not. Thus by

giving a positive or negative feedback, robot behaviors can be changed accordingly.

This is simply to show that the knowledge contents that controls robot behaviors can be

modified on the fly during the interaction. We are by no means proposing a new learning

algorithm. However, robot learning, especially how to make the robot learn from human

instructions to improve its service, is considered one of our future topics.

5.4 Summary

We proposed the concept and implementation of a dialogue manager that is completely

based on the extended frame-based knowledge platform. The designed dialogue manager

can handle multi-modal state-based and form-based types of dialogues, and following hu-

man commands. It can also do basic learning from human instructions.

5.4. SUMMARY 107

cr
ea

te

S
ay

cr
ea

te
 a

nd

re
-c

re
at

e
if

no
 r

es
po

ns
e

w
ith

in
 a

 ti
m

e
lim

it

R
es

po
ns

e
fr

om

th
e

hu
m

an

ch
ec

k

up
da

te

d
es

ti
n

at
io

n

T
ok

yo

ti
m

e
3

R
es

er
ve

B
us

_1

q
u

es
ti

o
n

W

he
re

 is
 y

ou
r

de
st

in
at

io
n?

an
sw

er
ac

t
T

el
l

an
sw

er
su

b
ac

t
P

la
ce

p
ar

en
ts

lo
t

de
st

in
at

io
n

p
ar

en
tf

ra
m

e
R

es
er

ve
B

us
_1

p
ri

o
ri

ty

10

D
ia

lo
gu

eA
sk

_1

an
sw

er
ac

t
T

el
l

an
sw

er
su

b
ac

t
T

im
e

p
ar

en
ts

lo
t

tim
e

p
ar

en
tf

ra
m

e
R

es
er

ve
B

us
_1

p
ri

o
ri

ty

5

D
ia

lo
gu

eA
sk

_2

cr
ea

te

W
ai

tin
gF

or
A

ns
w

er
_1

W
ai

tin
gF

or
A

ns
w

er
_2

cr
ea

te
 (

if
th

er
e

is
 n

o
ot

he
r

hi
gh

er
 p

rio
rit

y
in

st
an

ce
)

cr
ea

te
 (

if
th

er
e

is
 n

o
ot

he
r

hi
gh

er
 p

rio
rit

y
in

st
an

ce
)

S
ay

S
pe

ec
h

to

th
e

hu
m

an

re
co

g
n

iz
ed

_t
ex

t
T

ok
yo

ac
t

T
el

l

su
b

ac
t

P
la

ce

S
pe

ec
hR

ec
og

ni
ze

d_
1

o
n

In
st

an
ti

at
e

do
P

ar
se

(s
)

T
ok

yo

A
ns

w
er

F
ou

nd
_1

A
ns

w
er

F
ou

nd
_2

up

da
te

re

co
g

n
iz

ed
_t

ex
t

A
t 3

.

ac
t

T
el

l

su
b

ac
t

T
im

e

S
pe

ec
hR

ec
og

ni
ze

d_
2

o
n

In
st

an
ti

at
e

do
P

ar
se

(s
)

A
t 3

.

T
el

l =
=

 T
el

l
P

la
ce

 =
=

 P
la

ce

M
at

ch
ed

!

T
el

l =
=

 T
el

l

T
im

e
=

=
 T

im
e

M
at

ch
ed

!

o
n

E
va

lu
at

e
If

go
t d

es
tin

at
io

n
an

d

tim
e,

 s
ta

rt
 th

e

re
se

rv
at

io
n

ch
ec

k

ch
ec

k

ch
ec

k

q
u

es
ti

o
n

W

he
n’

d
yo

u
lik

e
to

 le
av

e?

Figure 5.15: Related frames to the bus reservation dialogue and their interactions

108 CHAPTER 5. SPAK APPLICATION: KNOWLEDGE-BASED DIALOGUE MANAGER

Figure 5.16: Property of a ReserveBus frame, which is an example of a frame-based dialogue
with the goal to reserve a bus seat

Chapter 6

Prototype Development

In this Chapter, the technical design and implementation of the prototype system is dis-

cussed. The robot is composed of multiple networked agents according to the design in

Chapter 3. The knowledge platform SPAK discussed in Chapter 4 serves as a knowledge

manager agent on the network. On top of SPAK, a dialogue manager application discussed

in Chapter 5 is running.

First we discuss the robot’s components, i.e., the agents that compose the robot. Then

we go on to the knowledge contents design in SPAK. Finally we show the details of three

human-robot interaction scenarios and describe how the system works internally.

6.1 Robot Components

Network of Computers where primitive
agents are running on

Human Robovie

Multi−modal
Interaction

IP Network

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���
��������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 6.1: The prototype system

The Robovie-II humanoid robot [35] is used in the prototype system. It is developed by

ATR, Japan. Robovie has a human-like upper torso and an ActivMedia wheels base. In this

setting, Robovie interacts with human using speech, vision, and gesture, by moving its arms

109

110 CHAPTER 6. PROTOTYPE DEVELOPMENT

Speech
Recognizer

Gesture
Recognizer

Face
Detector

Face
Recognizer

SPAK
Knowledge

Manager

TCP/IP, XML-RPC

ViaVoice/C++/Windows Java/Windows

CMU software/
C+Perl/SGI
Server

RobovieLinux PC

3D-sensor
Wirelss-Mic Dialog

Manager

Robo
Pose,

RoboNeck

Robo
Mouth

Perl/Linux

MIT Eigenface
/C+Perl

Festival/C

Robovie
software
/C+Perl

Figure 6.2: System configuration of the prototype system. Agents in the demonstration pro-
totype run on five different machines and communicate on a TCP/IP network using the
XML-RPC protocol.

and head. It has two eye-cameras and a speaker at its mouth. As it was not equipped with

microphone, a wireless microphone is attached to the human’s head instead. Movement

control software is installed on the Robovie’s internal Linux PC.

Apart from Robovie, there are networked computers running SPAK and other agents.

An overview diagram of the system is illustrated in Figure 6.1. The system is composed

primitive agents, namely, RobovieNeck, RoboPose, FaceDetector, FaceRecognizer, SpeechRecog-

nizer, RobovieMouth, GestureRecognizer, and Knowledge Server, running on different networked

computers.

System configuration of the prototype is shown in Figure 6.2. Details of each agent,

including important functions, are discussed as follows.

FaceDetector

The face detection software developed at the Carnegie-Mellon University [111] is used to

find face locations in images in the FaceDetector agent. The agent receives input images

via the setImage() function. Locations of the detected faces can be retrieved by calling the

getFaceLocations(). The agent can be also set to automatically submit a reporting frame to the

6.1. ROBOT COMPONENTS 111

Knowledge server whenever a face has been found in the image.

The access interface of the FaceDetector agent is shown in Chapter 3. In typical uses,

first SPAK calls the setSPAKIP() function to inform the agent the IP address of the knowl-

edge server. A Perl program is used to regularly access a Robovie video camera, take

snapshot images of size 320x240 pixel (at the moment only 1 eye camera is used) and feed

them to the face detector agent. When a face is found (a face is considered found when

it is continuously detected two times consecutively), the agent submits the information

“FaceDetected-status=present” to SPAK at the provided IP address. When the face disappears

(similarly, this means the result of face not found two times consecutively), it sends the mes-

sage “FaceDetected-status=absent” to SPAK.

FaceRecognizer

This agent performs face recognition using the Eigenface software developed at MIT [112].

FaceRecognizer will not do the face detection, therefore input images are required to contain

only the face area. The recognition result can be either names of the known persons, or

unknown. Its interface includes following functions:

• void resetDB(): clear the database.

• string recognize(base64 encoded data imagecontents): recognize the face in the

imagecontents image data.

• void setName(string name): assign name to the last recognized-as-unknown person and

add to the face database.

SpeechRecognizer

The IBM ViaVoice speech recognition software (command menu mode, limited English vo-

cabulary) is used as back-end in the SpeechRecognizer agent. The agent runs on a PC which

is connected to the wireless microphone worn by the human subject. It has the following

interfaces:

• void setSPAKIP(string ip address): inform the knowledge server at the specified IP ad-

dress if a speech is recognized.

• string recognize(base64 encoded data soundcontents): recognize the speech given in the

soundcontents parameter.

Two mode of usages are possible. If the function setSPAKIP() is called, it enters the automatic

mode. In this mode, the agent keeps endlessly processing the sound input from the micro-

phone. As soon as a speech text is recognized, it sends an information “SpeechRecognized-

text=<text string>” to SPAK. In another mode, i.e., the manual mode, it waits for calls to

112 CHAPTER 6. PROTOTYPE DEVELOPMENT

the recognize() function in which it can get input speech in either compressed Ogg Vorbis

format or uncompressed WAVE format. After that it processes the speech and returns the

recognized text string as output.

Note that for the text parsing task, a SPAK-based simple pattern-matching parser written

in JavaScript is used, no separate parser agent is running.

RobovieMouth

RobovieMouth is connected to the sound device and speakers of Robovie. It accepts strings

of input text and forwards to the Festival Text-to-Speech software [113], which will generate

speech from the text, and output to Robovie’s speakers . RobovieMouth also supports raw

sound input contents. It has the following interface:

• void sayText(string text): output the speech according to the given text string.

• void utter (base64 soundcontent): output the given sound contents

GestureRecognizer

This agent can detect only pointing directions: pointing left, right, and center, using the

Polhemus 3D magnetic sensor. It has the following interface:

• void setSPAKIP(string ip address): inform the knowledge server at the specified IP ad-

dress if a gesture is recognized.

In typical uses, the agent is first given an IP address of the SPAK knowledge server via its

setSPAKIP() function. When it detects a new gesture, it submits a corresponding information

to SPAK, e.g., “GestureRecognized-act=Pointing\nGestureRecognized-subact=left”.

RoboPose

RoboPose offers low level functions to control the movement of Robovie’s mechanical parts.

It interface is as follows:

• void playPose(string pose string): instruct Robovie to pose according to the specified pose

in the form of position values for its 13 joints.

• void goZeroPosition(): reset the Robovie pose to the zero or starting position. Basically

this method will call playPose(”0 -5 0 -5 0 -5 0 -5 0 0 0 0 0”) which gives the playPose()

function the zero-position values for all joints.

Apart from these two functions, more functions are provided to instruct Robovie to make

pre-defined robot poses. These functions call playPose() similar to the goZeroPosition() func-

tion but with different pose strings. For example,

6.1. ROBOT COMPONENTS 113

• void byebye(): perform a bye-bye gesture, which will technically submit three pose

strings to playPose() to make a waving-hand farewell gesture:

– ”+2.182540 +1.845238 -0.338889 +0.119048 +0.000000 -5.000000 +0.000000 -5.000000

+0.000000 +0.000000 +0.000000 0 0”;

– ”+1.706349 +2.321429 -0.048413 +2.460317 +0.000000 -5.000000 +0.000000 -5.000000

+0.000000 +0.000000 +0.000000 0 0”;

– ”+1.825397 +2.678571 -0.242063 -1.031746 +0.000000 -5.000000 +0.000000 -5.000000

+0.000000 +0.000000 +0.000000 0 0”;

• void pointleft(): raise the left hand and point to the left.

• void pointright(): raise the right hand and point to the right.

RobovieNeck

RobovieNeck offers higher level functions to control the movement of the robot’s neck (e.g.,

move left, move right, and go to the zero position). For simplicity, the destination is in the

form of (x,y) coordinate, each with the value ranging from -2 to 2. Therefore there are total

25 possibilities of positions. Important functions offered by RobovieNeck are as follows:

• void goZeroPosition(): reset the neck position to the starting position.

• void moveRel(string direction, int distance): move the neck in the given direction for the

given distance relative to the current position.

• void move(int posX, int posY): move to an absolute position at the coordinate of (posX,

posY).

• void followObject(int posX, posY): move the neck so that it follows the object at the posi-

tion (posX, posY).

RoboSensor

RoboSensor monitors all the tactile sensors on Robovie’s body, e.g., head, arm, belly, and

chest, and contacts SPAK if a sensor is touched by a human. Similar to the GestureRecog-

nizer agent, the RoboSensor agent first has to be given an IP address of SPAK by calling the

setSPAKIP() function.

114 CHAPTER 6. PROTOTYPE DEVELOPMENT

KnowledgeManager (SPAK)

KnowledgeManager is the intelligence part of the system. It is basically SPAK with its XML-

RPC network gateway. Input data can be sent to the knowledge manager as a text message

through its setMessage() function:

• string setMessage(string message)

If the message is “induce”, SPAK will start its inference process. The message can also be

a knowledge query (in JavaScript), for which the result will be returned after the call has

completed.

A small shell script is provided on Robovie (login: menu) to facilitate starting, stopping,

and testing agents. Its screenshot is shown in Figure 6.3.

Figure 6.3: Menu selection for starting, testing and killing agents running on the Robovie
robot

6.2 Interaction Scenarios

The demonstration prototype was set up to work in three example human-robot interaction

scenarios. Figure 6.4 shows a human interacting with the robot in the demonstration scenar-

ios. SPAK is loaded with the knowledge contents according to the design of the dialogue

manager in Chapter 5. When all agents including the SPAK knowledge manager are started,

the robot is ready to interact.

6.2. INTERACTION SCENARIOS 115

The first Greeting scenario is a multimodal state-based dialogue scenario aimed to show

basic functionalities of the system in management of multi-modal dialogues and show co-

operations among system components. The second scenario is the Basic Robot Learning. The

idea is that apart from behaving according to the pre-defined behaviors during the inter-

action, the robot should be able adjust its behaviors from human instructions or feedback.

On-line learning is considered. Given a set of sensors and actuators on the humanoid robots,

the robot observes the human teaching instruction and feedback, and tries to induce new

behaviors or change existing behaviors. The last Future Welfare Robot scenario lets the robot

interact with the human in a simulated environment of service robot and the elderly person

at home. The robot greets its owner, inquires the health condition, and take actions accord-

ingly, e.g., contact the service center. This is intended to be a glimpse towards the future

target welfare robot.

Figure 6.4: Human robot interaction in the scenarios

Greeting

In this scenario, a basic multi-modal state-based interaction is demonstrated. The robot ob-

serves the existence of a human in front of it and greets him if a human is found. If the robot

does not know the person, it introduces itself and asks for human name. After the human

says his name, the robot saves it and associates it with his face. When the robot meets the

person again, it can remember and greet him correctly.

From the robot video camera, human faces are detected and recognized by the FaceDetec-

tor and FaceRecognizer agents respectively. If the recognition result is unknown, the robot asks

for the human name via the speech synthesis agent. The human utters his name through

the microphone. The speech recognizer agent sends the recognized name to the dialogue

manager. The robot then greets the human using speech and gesture. In case of first meet or

wrong recognition, it adds the new face image in the database of the FaceRecognizer agent,

thus improving its ability to recognize faces next time. The interaction scenario is as follow:

A robot stands in the laboratory. Alex walks toward the robot. The robot spots his face and starts the conversation.

116 CHAPTER 6. PROTOTYPE DEVELOPMENT

Robot: Good morning. We haven’t met each other before,

have we. My name is Robovie. What’s your name?

Alex: Hi, my name is Alex.

Robot: Nice to meet you, Alex. (performing greeting gesture)

How are you today? David arrived at 9 am.

Alex: Ah, I see. See you.

The robot adds Alex as a new known human and updates his status of arrival. Next day the robot can remember him. Mr. Alex

presents his face to the robot, it spots his face and starts the conversation.

Robot: Good afternoon, Alex. How are you?

The robot maintains the status of humans in its knowledge base. For the person it has already greeted, it uses shorter message.

Robot: Hi, Alex.

Sometimes the robot makes mistake in recognition.

Robot: Good afternoon. We haven’t known each other

before, have we. My name is Robovie. What is

your name?

Alex: My name is Alex.

Robot: Oh, I’m sorry I didn’t recognize you. Hi, Alex,

how are you.

Note that apart from interacting with human, the system keeps track of human’s arrival

time in the knowledge base. which can be queried and shared by other components of the

system. With the tight integration with the knowledge base, the dialogue manager can make

easily use of the knowledge provided, e.g., human status, like in this scenario.

Basic Learning

The second scenario is aimed to show how the system changes or creates a new behavior

according to human’s instruction and feedback. First the robot is set up to understand some

basic commands beforehand. These commands are as follows:

- say <text>: The robot will then utter the given <text> (using the text-to-speech software

via the RobovieMouth agent).

- look <left|center|right|up|down>: The robot will move its neck accordingly.

- stop: The robot will stop any moving or speaking activities and return to the start posi-

tion.

- raise|put down <left|right|both> hand (s): The robot will raise and put down its hand (s)

accordingly.

Based on these pre-defined commands and the simple learning algorithm [114], the robot

observes human instructions (i.e., when the human commands the robot to do something)

and tries to find out the concept behind those commands, i.e., why or because of which event

should it do what action. A log of the interaction is as follow:

The human subject Alex goes to the robot and starts the interaction. He points to the right. The robot notices his pointing but does

nothing. Alex wants the robot to look in the direction he is pointing therefore he issues a command.

6.2. INTERACTION SCENARIOS 117

Alex: Look left.

The robot follows the command by turning its face to the left. A LearnedAction frame is created with the action looking to the left and

the triggering event of human pointing to the right (from the top of LSE list). The confidence value is set to 1. Next, Alex points to the

right again. The robot still does nothing because the the confidence value is less than the threshold (assumed set to 2).

Alex: Look left

The robot again turns to the left. This time the confidence value of the LearnedAction frame is increased to 2 from two teaching

samples. This equals to the threshold, it becomes a new robot behavior. Now if Alex points to the right again, the robot will automatically

look to the left.

Future Welfare Robot

The last scenario simulates the interaction between a welfare robot and the human owner at

home. It includes dialogue interaction to greet the human and check for his health condition.

If the human exhibits some problematic symptoms then it should contact the welfare center

to obtain more information. If the welfare center recommends the human to visit the center,

the robot takes care of the appointment process and transportation reservation. This contains

state-based and form-based types of dialogues and is intended to illustrate the future goal

of welfare robots helping elderly and disabled persons living alone at home. The interaction

scenario is as follow:

A welfare robot named Robota lives in the house with its master Alex. It is 8 o’clock in the morning. The

robot detects a human face. It starts the face recognition and finds it is Alex. The robot starts the interaction.

Robot: Good morning, Alex [also waves its hand]. How are you today?

Human: Hi, Robot. Not very well.

Robot records the status of human. This value of not very well triggers more questions.

R: That is not good. Did you sleep well last night?

H: No.

R: Sleep is very important for your health. How do you feel now?

H: I have a headache.

With the status of not very well, and having a headache, the robot suggests to contact the welfare center.

R: I see, I should report to the welfare service center to get some advice for you.

[simulated] The robot contacts the welfare service center.

R: A physical consultant advice you to visit the center. Should I reserve a visit for you?

H: Yes.

To reserve a visit at the center, it needs to know the time.

R: Do you want to visit just now or in the afternoon?

H: Afternoon is better.

The robot queries the welfare center, and found the afternoon time is OK [simulated]. In order to visit the center, a transporta-

tion means is required. Therefore it reserves the bus ticket at the travel agent [simulated]. After the reservation is completed,

the robot reports the task.

R: I have reserved a visit at 3:30 and the bus at 3:00. I will tell you when the bus arrives.

H: Thank you very much.

118 CHAPTER 6. PROTOTYPE DEVELOPMENT

Event State Action

4. RecogizeFace action
instance created

3. FoundHuman state

induce

1. Face detector agent submits
FaceDetected−status=present

induce

2. FaceDetected event

onInstantiate

11. DialogueAsk action instance created

and so on...

induce

onInstantiate
onEvaluate
onTransition

SPAK Knowledge Base

starts face recognition
5. Face recognizer agent

Legend frame

frame instance

instance createdinstance created

7. UnknownFaceRecognized

(human name = unknown)
event instance created

8. GreetNewUserTaskAction1
instance created

RecognizeFace_1

Event

Event

FoundHuman_1FaceDetected_1

onInstantiate

Recognized_1
UnknownFace− induce GreetNewUserTaskAction1_1 Say_1

DialogueAsk_1

onInstantiate

10. Text "Good morning..." sent
to the text−to−speech agent

9. Say action instance created

FaceRecognized−username=unknown
6. Face recognizer agent submits

Figure 6.5: Steps showing changes in SPAK knowledge base during the human-robot inter-
action scenario

6.3 Dialogue Manager Internal Mechanisms

The Greeting and Future Welfare Robot scenarios contain state-based and frame-based dia-

logues. The system works according to the mechanisms described in Section 5.3. The second

Basic Learning scenario works according to what described in Section 5.3.5. In this section, we

show in details how the system works during the beginning part of the Greeting scenario.

Changes in the system is illustrated in steps in Figure 6.5. First a human face is detected by

the face detector agent (1). It submits a “FaceDetected-status=present” string to SPAK. Upon

receiving this, an event frame FaceDetected is instantiated (2) and it triggers further instanti-

ation of a state frame FoundHuman (3), whose property is shown in Figure 6.6. The Found-

Human frame has only one required slot (see the slot flag R), the slot fd of type Instance. This

slot has a condition stating that (see the Cond and Argument column) the value must be an

instance of a FaceDetected frame. The frame’s condition slot is “s.fd.status == present“ mean-

ing that the status slot of the fd instance must be “present”, which is just fulfilled. Therefore

a FoundHuman state frame is instantiated. From the code specified in its onInstantiate slot,

the function onFoundHuman() is executed, which will create a RecognizeFace action instance

(4) requesting the face recognizer agent to do face recognition (5). Since it is specified simi-

larly in the onEvaluate and onTransition slots as well, this face recognition action is also done

periodically by the Evaluator and when the instance changes its parent.

Since Alex is new to the robot, the face recognition result is unknown. The text “FaceRecognized-

username=unknown” is sent to SPAK by the face recognizer agent (6). Because of this, an event

6.3. DIALOGUE MANAGER INTERNAL MECHANISMS 119

Figure 6.6: A SPAK window showing property of the FoundHuman state frame.

from UnknownFaceRecognized is instantiated (7), which triggers further instantiation of an ac-

tion frame instance GreetNewUserTaskAction1 (8), starting a dialogue conversation to ask for

the human’s name. The properties of the GreetNewUserTaskAction1 is shown in Figure 6.7.

The code in GreetNewUserTaskAction1’s onInstantiate slot creates a Say action instance (9)

to send the first greeting message “Good morning” to the human (10). In order to find out

the name of this human, it also creates a DialogueAsk 1 frame instance (11) which will make

a dialogue with the human asking for his or her name (“We haven’t known....., what’s your

name?”) and creates a WaitingForAnswer 1 state frame instance with expected speech act of

type Name. A screenshot of this DialogueAsk 1 instance is shown in Figure 6.8.

Figure 6.7: Snapshot of a GreetNewUserTaskAction1 1 instance

When the human replies, the text “SpeechRecognized-text=My name is Alex” is sent from

the speech recognizer agent to SPAK. A SpeechRecognized frame is then instantiated and the

recognized text is parsed. In this case, the result speech act is name, which is expected by the

existing WaitingForAnswer 1 instance. Upon this matching, an AnswerFound action frame is

instantiated. It updates the GreetNewUserTaskAction1 1 instance’s username slot and greets

120 CHAPTER 6. PROTOTYPE DEVELOPMENT

Figure 6.8: A SPAK window showing property of the DialogueAsk 1 instance during the
interaction. It asks human according to the text in its question slot (Hello, we haven’t....) and
creates a WaitingForAnswer instance with the expected speech act according to its answeract
and answersubact slots.

the user (“Nice to meet you, Alex...”) together with contacting the robot posture agent to make

a greeting gesture. Because of this update, the code in GreetNewUser instance’s onUpdate

slot will create a Human frame with the new name it got and sets his status to arrived, and

notifies the face recognizer agent about the name of the face it has previously recognized

as unknown. Finally all tasks are done, and the DialogueAsk 1, WaitingForAnswer 1, and

GreetNewUserTaskAction 1 instances are deleted.

If the human does not respond or the response was lost, the code in WaitingForAnswer

instance’s onEvaluate slot will ask again the question after a certain time limit. In case that

the face recognition result is not unknown, the system greets the human accordingly and up-

dates the slot status. In case of wrong recognition, it apologizes and asks the face recognizer

agent to add the new face image in the database, thus improving its ability to recognize faces

next time.

6.4 Discussions

To give an impression of the effort needed to develop a SPAK-based robot application, some

statistics are given: the combined knowledge contents for the greeting and future welfare

scenarios contain 117 knowledge frames and 1,598 lines of JavaScript code (476 lines of basic

procedures common to all scenarios). The knowledge contents are designed to be similar to

the human’s understanding of the world of interest, hence easy for humans to understand

and inspect. SPAK was run on a Pentium-4 1.8 GHz machine. So far in the scenarios, the

6.5. SUMMARY 121

system was operating in real time.

During the basic greeting scenario (using a simple version of the knowledge contents

with 49 knowledge frames and about 800 lines of JavaScript code), there were in total 42

input events from agents, causing 45 instantiations and 19 updates of frames.

As it is tightly integrated with the knowledge base, the dialogue manager can easily

make use of the knowledge provided. To illustrate the benefits, some examples can be shown

as follows:

-Report people status: One can add new HumanCommand frames to answer questions

like: Is <human-name> here?, Who is still here? If the Human frame has a slot profession with

possible values like student, professor, and technician; the system can be easily extended to

answer such questions like: Are there any students coming today? by finding all Human frames

whose profession slot is student and status slot is arrived.

-Resolving ambiguous requests: It is assumed that there is a scene understanding agent

that detects objects in the room and updates the knowledge in SPAK accordingly, and that

the robot can pick up objects. A PickUpObject command frame can be added so that the

robot understands command like Give me <object>, e.g., Give me a pen. Dialogue can be

useful in case that the request is ambiguous. For example, if there are two pens, it can create

a DialogueAsk frame to get the information which pen the human wants. Human can give

an answer like “the red one”, and the robot will find an instance of pen whose color is red.

Knowledge can be also useful. For example, the human asks for a green tea but there is no

green tea found. Using the knowledge that green tea is a drink and a kind of tea, it can say

“I’m sorry there is no green tea available” and propose “Would you like another drink?” or “There

is iced tea, would you like that instead?”.

A SPAK-based robot application, e.g., the dialogue manager shown in this work, is a set

of knowledge frames. We can run multiple applications on a single SPAK by combining

their knowledge frames. Sharing of knowledge among applications can be done by sharing

some knowledge frames. For example, the knowledge about a human can be shared by both

dialogue manager and gesture recognizer applications. The recognized gesture is stored in

a slot and can be used by the dialogue manager. On the other hand, the gesture recognizer

can use the knowledge about the human when it tries to interpret the recognized gesture.

6.5 Summary

In this chapter we present the design and implementation of the prototype robot system.

Based on the idea discussed the previous chapters, an interactive robot has been developed.

Three interaction scenarios are used to show some features of our system.

Chapter 7

Evaluation

In this chapter we evaluate the proposed work in previous chapters. In this type of work, it

is rather difficult to make a quantitative evaluation. This is similar to researches in voice pro-

cessing systems, where there is difficulty finding satisfactory evaluation of the performance

of the systems [71]. Common methods like performance and speed analysis do not apply

here because at this stage the prototype merely serves as an illustration of concept, it is not

yet in the developmental stage. Measurement of the transaction success rate or collecting

opinions from humans interacting with the robot are also irrelevant because we focus on the

internal design of the robot, not the dialogue interaction functionalities. Therefore we opt

to provide analysis and discussions of this work by contrasting it with other related works.

Three sections of this chapter discuss each of the three contributions separately.

7.1 SPAK Extended Frame-based System

SPAK is a modern knowledge platform targeted to link various robotics agents and appli-

cations using a blackboard architecture with intuitive user interfaces. Compared to other

frame-based systems, SPAK not only supports the conventional frame model but also in-

troduces action mechanisms through the use of special slots and flags, time-based layer,

and other features in the proposed dynamic extensions. As a software package, SPAK is

multi-platform, network-aware, and also features an easy-to-use graphics user interface for

knowledge browsing and editing. Compared to the previous version of SPAK (discussed in

[10]), updates in the present work are the new extensions: time-based layer, evaluator, and

priority support, and the development of a sample dialogue system with three interaction

scenarios.

Compared to the ZERO++ frame-based system [56, 115, 55], SPAK covers all ZERO++

frame formalisms and introduces more features on dynamic behaviors. Instance and vector

slot types and the slot flag R in SPAK replace HASPARTS’s FLIST-typed slot. ZERO++’s

RELATIONS predicate slot is replaced by the SPAK’s condition slot.

122

7.1. SPAK EXTENDED FRAME-BASED SYSTEM 123

FramerD is a distributed object-oriented database designed to support the maintenance

and sharing of knowledge bases [50]. It is robust, scalable, and provides good coverage of

basic frame and slot operations. Actions can be associated with slots by the use of demons.

However, features like GUI knowledge editor, time-based layer, and integration with robot

components and agents are not provided.

Protege ontology development tool [116] combined with the Algernon rule-based infer-

ence system [117] results in a frame-based knowledge system with a GUI editor and infer-

ence engine similar to SPAK. However, as it is designed primarily for representing knowl-

edge, it lacks support for action generation, time-based layer, and other dynamic features.

Although the development purposes of SPAK and CODE4 [51] greatly differ (SPAK is

aimed to be a knowledge-based system that runs autonomously while CODE4 is targeted as

a unified system for managing conceptual knowledge for average users), the design details

are interestingly comparable. Many notations in CODE4 can be compared to those in SPAK.

Slot names in SPAK are considered global in the reinduce process, i.e., slots of different

frames that have the same (slot) name are considered the same. Although we do not define

slots as frames, we can do so if needed (e.g., by using only instance type slot), and this will

resemble the concepts of “properties are concepts” in CODE4. Statement concepts in CODE4

can be represent as Relationship frames in SPAK, with slots specifying subjects, predicates,

and so on. CODE4 features a GUI user interface similar to SPAK, however, the dynamic

concept proposed in this work are not considered.

Compared to the JULIA software toolkit for building embedded and distributed knowledge-

based systems [52, 53], although the design and technologies used in the implementation are

very similar to our system, e.g., the frame model, distributed network, Java, and XML, the

main concepts are different. The purpose of the JULIA system is to solve problems of dis-

tributed knowledge sharing and reuse in intelligent information and expert systems, e.g.,

diagnosing and planning treatment tactics for patients in the hospital, while SPAK is aimed

to be the knowledge platform for robots. The dynamic concept as proposed in this work

including time-based layer, forward chaining inference, and GUI editor for easy application

development are not considered in JULIA.

Table 7.1 shows a comparison of SPAK to other knowledge-based systems (the symbol ?

means the information is not enough to conclude). The left-most column contains features

we found useful in realizing robot systems and SPAK is developed to support all those fea-

tures. The features only found in SPAK and not in other systems are time-based layer and

built-in periodical task executor. Although time-related issues have been studied in the AI

research community (e.g., in [118] and in modal and temporal logics), we have yet to find

such features in frame-based systems.

124 CHAPTER 7. EVALUATION

Features FramerD Protege +

Algernon

CODE4 JULIA ZERO++ SPAK

Platform Multi-

platform

(ANSI C)

Multi-

platform

(Java-

based)

(McIntosh?) Multi-

platform

(Java-

based)

Sun, other

platform

(written in

Common-

LISP)

Multi-platform

(Java-based)

Multiple Inheri-

tance

? No Yes No No Yes

Inference Yes Forward

and

Backward

? Backward

only

? Forward and

Backward

Procedural Script

Supported

Yes Algernon

can call

Java

methods

and

internal

LISP

subsystem

ClearTalk

script

Yes LISP Javascript, with

access to Java

API

Slot-action Mech-

anisms

Demons - ? ? - Special slots:

system slots and

on-event slots

Time-based Layer - - - - - Yes

Built-in periodical

task execution

- - - - - Via Evaluator

GUI Editor - Yes Yes - Yes Yes

Network Yes Yes - (web

interface

planned)

Yes - Yes

Programming In-

terfaces

C API,

FDScript,

Web

Algernon’s

query

language

SmallTalk,

CKB

Dialogue

shell, Java

API,

CORBA

LISP Network

gateway (direct

TCP,

XML-RPC),

Java, JavaScript

API

Table 7.1: Comparison of SPAK to other frame-based systems

Some frame systems provide a mechanism to attach a procedural script to a slot (also

known as active values). This script will be executed when the slot value is accessed or mod-

ified. On-event slots in SPAK, however, provide a means to specify actions to be executed in

not only slot-related events (i.e., onUpdate slot in case of slot value updating) but also other

frame-related events like frame instantiation, instance deactivation, instance evaluation, etc.

7.2. KNOWLEDGE-BASED DIALOGUE MANAGER 125

The main disadvantage of SPAK compared to those systems is that it is still in an early

stage. More tests and performance improvement are needed. There are not many slot condi-

tions, only basic operators are provided, e.g., >, <, ==, !==, in (a set of possible choices), and

instance-of. Also, distributed knowledge hierarchies like in JULIA are not yet supported.

SPAK can also be considered as a robot development tool. Consider recent robot develop-

ment tools like the Sony Open-R [119] and Orocos [120], most of them are designed for robot

control tasks, e.g., robot motion control and obstacles avoidance. These tools are suitable for

behavior-based applications. However, managing human-robot interactions using natural

interfaces like speech requires the machine to process symbolic information such as words

and sentences used by human as well. Therefore the SPAK knowledge-based platform is

definitely helpful for developing interactive robots.

7.2 Knowledge-based Dialogue Manager

Uses of frame-based knowledge technique in some parts of dialogue systems are not new.

The common use is to store the world or domain knowledge, e.g., usage of common seman-

tic hierarchy in TRIPS [87]. However, this does not include the discourse management and

domain-specific knowledge. In the form-based approach of dialogue management (accord-

ing to the categorization in [74]), frames with slots are used as dialogue forms. The general

dialogue policy is to try to fill these slots. Once all slots are filled, an action like database

query can be started. An example of form-based dialogue system is [78] and [80]. In Vox’s

FASiL system, separation of data structure that stores dialogue states from dialogue policies

is proposed [70]. Frames are used to store dialogue states, and state transition network is

used to specify dialogue policy. The Jaspis architecture is designed to support distributed

spoken dialogs using multi-agent techniques [99]. Shared system information is organized

hierarchically and made accessible via an access protocol defined using XML-DTDs. Other

use of frames is, for example, in the Galaxy-II dialogue architecture, semantic frame repre-

sentation is used for inter-server communications [97]. RavenClaw dialogue manager in the

CMU Communicator project has another use of tree-like structure to store dialogue tasks to

be executed [98]. Similar to the frame model, object oriented technique is used in the Queen’s

communicator [95]. Things like dialogue frames, domain experts are modeled as objects. Set

of user- and database-related rules are used to manage system behaviors.

However, the uniqueness of our approach is that the single blackboard-like frame-based

knowledge platform is used as the base layer in the system. In other words, the dialogue

manager runs totally on the knowledge platform, not only just uses it to store some knowl-

edge. The dialogue policy is defined using general mechanisms provided by the platform.

However, it is also possible to manage dialogue interactions using external manipulator con-

nected to SPAK. Nevertheless, the knowledge platform remains the central hub connect-

126 CHAPTER 7. EVALUATION

ing robotic devices, applications (e.g., dialogue management), and external manipulators (if

any) together.

The main benefit of our system is that, by having the knowledge platform base, the di-

alogue manager integrates seamlessly with robotics devices and other robot applications.

The knowledge can be easily shared among applications, avoiding integration problem in

the future. Most others systems are concerned with information-giving or domain-specific

planning tasks, and not well integrated with robotics devices or other applications as well as

the knowledge base. Compared with them, ours is more generic, because the dialogue policy

is based on the general and flexible mechanisms provided by the platform, and more natural,

because in our design, interactions occur along with the changing knowledge base, which

reflect meaningfully the world of interest. Also another advantage is that the total system

is less complicated since a single platform serves for various robot applications. It is easy

for developers to understand and improve it further. Comparison of our knowledge-based

dialogue management approach with the conventional one is summarized in Table 7.2.

We showed in this thesis the dialogue manager that can handle state-based and form-

based dialogue types as they are the most popular ones. However, the knowledge-based

dialogue manager can be designed to support other approaches as well. For example, to

support the plan-based approach, a plan engine can be attached to SPAK as an external

manipulator. It receives updated knowledge from SPAK, plans new actions, updates the

knowledge in SPAK accordingly, and generates output actions via SPAK (e.g., by creating

Action frames).

Information state and dialogue move concepts can also be realized using SPAK. Each

information state can be stored as a frame. The data structure of the Activity Model shown

in [101] is very similar to the frame structure. Many components in the CIA as present in

[91], e.g., dialogue move tree, active node list, pending list, and salience list, can be stored in

frame hierarchies with little modification. One can add update rules that govern updating

of information states using the special slots and flags provided in SPAK.

7.3 Distributed Knowledge-based Robot Architecture

In this section, we compare the proposed distributed knowledge-based robot architecture to

some other related works. First of all, by employing a centralized symbol-based knowledge

platform as the brain of the system, our architecture follows much of the blackboard design

concept. The platform provides a central module which acts as blackboard, knowledge pro-

cessing brain, memory, and do the judgement, task planning and execution. The platform

also provides network interfaces necessary for integration of various existing modules over

the network. Without such a platform, these modules will need to communicate with each

other by themselves. The system will become more complex and difficult to manage as the

7.3. DISTRIBUTED KNOWLEDGE-BASED ROBOT ARCHITECTURE 127

Conventional Approach Knowledge-based using SPAK

• Dialogue flows are designed accord-
ing to the desired output dialogue be-
haviors

• The system has no general knowl-
edge about the world, just only the
knowledge needed to accomplish cer-
tain tasks

• Extension is needed to support
knowledge sharing with other
applications

• Several databases and different data-

structure for each knowledge

• Dialogue is the result of the designed
actions in response to changes in the
world of interest, which is represent
in the knowledge base

• The system has a detailed knowledge
about the world of interest

• The knowledge can be easily shared
with other robotic applications

• Single data base and single data-

structure for knowledge representa-

tion make it easy to maintain and de-

velop applications

• The system is optimized for the dia-
logue application

• No need to maintain irrelevant
knowledge

• Many techniques, systems, and devel-

opment toolkit are available

• General system for all applications,
not optimized for dialogue

• Need to maintain other knowledge
that might be unnecessary for the dia-
logue application

• Still in early phase, work is needed to

import techniques in the conventional

approach to this approach

Table 7.2: Comparison of the knowledge-based dialogue management with the conventional
dialogue management approach

number of modules grows.

Compared to the conventional design where system components are connected to each

other in a mesh manner without a central module, the blackboard-based system allows easy

control and integration of new modules into the system. Interfaces between system com-

ponents are generalized. The system can perform intelligent tasks with the help of the

central brain. Figure 7.1 shows a comparison of the mesh and the blackboard-based ap-

proaches. Blackboard-based design has been used in various systems and research fields,

e.g., HearSay-II speech understanding system [121] and IP3S system (Integrating Process

Planning and Production Scheduling) [122]. The question to such systems is what are the

details inside the blackboard and how the system works to achieve the goal.

Although this thesis discusses mainly about SPAK, which is a symbol-based processing

engine, our architecture is hybrid, not a pure deliberate one. The multi-layered intelligent

128 CHAPTER 7. EVALUATION

Vision Program Speech ProgramVision Program Speech Program

Manipulation Program

Camera devices Speech input/output

Robot movement

Motion Control Program

−Communication
−Execution
−Planning
−Judgement
−Memory

Brain: Blackboard

New Program...

New Program...

Mesh Approach Blackboard−based Approach

Manipulation Program

Camera devices Speech input/output

Robot movement

Motion Control Program

Robot arm control Robot arm control

Figure 7.1: Blackboard-based approach (right) to develop robots where a central brain is
employed, compared to the conventional mesh design (left)

control system, though not a focus in this thesis, is implemented by a group of networked

software agents. Each agent represents a processing element or the robot and is in charge of

lower-layer control such as obstacle avoidance which requires immediate response. Higher

level controls are achieved by communication between the agents and the central frame-

based knowledge module SPAK.

Compared to the architecture proposed in [34, 25], which is based on state-transition net-

work of situated-modules, although the robot apparently interacts with humans according

to the network, it lacks the knowledge about the world it is in, which is needed in order to

achieve more intelligent behaviors. There is no use of a knowledge base in the system. In

our architecture, we use hierarchies of frames to represent the world of interest and manage

robot behaviors. Frame hierarchies represent meaningfully the changing world and neces-

sary knowledge for managing robot behaviors. Subset of which are event and action frames,

which can be designed so that they generate robot behaviors, e.g., following human com-

mands and making dialogue interaction. Why a certain robot action is made can be ratio-

nally and easily explained by those knowledge frames. The up-to-date representation of the

world in the knowledge base can be useful in development of other intelligence behaviors.

Compared to the Intelligent Machine Architecture (IMA) by Kawamura et al. [38], al-

though we share some similarities by using agents to represent robot components, usage of

knowledge base is not concerned in IMA. There is a use of knowledge technique in the Carl

7.3. DISTRIBUTED KNOWLEDGE-BASED ROBOT ARCHITECTURE 129

robot [39] in ontologies which organize and compose behaviors as a part of robot’s innate

knowledge [40], but not as the main processing engine as in ours. The dialogue manager

of the Jijo-2 robot supports frame-based (form-based) dialog and the current dialogue state

and a salient entities list that contains entities referred to by the preceding utterances are

maintained in the system, similar to the use of status registers including LSE and LSA in our

system. However, usage of a knowledge base is not concerned. Lacking of a firm knowledge

base infrastructure means an extra effort is needed to achieve further intelligence behaviors.

Compared to other robot systems that have hybrid architectures, e.g., Situated-module-

based architecture [25], Tagged-behavior-based architecture [27], and the architecture by

Lopes et al. in [40], although these systems are effective in individual applications they

are targeted (e.g., dialogue management, behaviors switching, and path learning from hu-

man instruction), it is difficult to add new applications into the system and share knowledge

among applications. The underlying architecture is usually influenced by target applications

and the system components. In case that the target goal is changed, which might result in

adding new applications or new components to the system, the architecture might need to

be adjusted. When an architecture is very application-oriented, developers have to learn

specific features of that certain system. Hence, designing an application is more complicated

and not intuitive, compared to systems with application-independent general design.

The fact that frame-based knowledge platform is used makes our architecture funda-

mentally different from other architectures, e.g., Care-O-bot, which employs plan-based hy-

brid architecture [123]; Godot robot [124], which uses a logic-based TRINDI dialogue move

engine [89]; and the Instruction-Based Learning (IBL) robot, which uses Python language

script to store learned task knowledge [16]. However, our frame-based approach does not

reject such techniques, as they have advantages in different kinds of tasks, e.g., planning

tasks using plan-based and problem solving using logic-based techniques. We envision that

they can be integrated1 with the frame model as the base layer linking other techniques, be-

cause of the naturalness and simplicity of the frame model. The knowledge base is placed

in the center of the system and other techniques to be included in the system must interact

with it using provided means and update the knowledge part they are responsible for. This

means that the knowledge contents are always up-to-date for all techniques and possible

inter-operation problems with using different techniques are eliminated.

1One can also implement some other techniques, e.g., rule-based, plan-based, directly in SPAK using the
frame-based infrastructure provided, though. However, in this case we assume it is not desired or rather difficult
to do so, and one wants to simply use other tools and SPAK in the system.

Chapter 8

Conclusions and Future Work

We introduced in this thesis a multi-agent knowledge-based robot architecture featuring the

frame-based knowledge software platform SPAK. The originality of this work is the SPAK’s

extended frame-based knowledge model and its application of a knowledge-based dialogue

manager for interactive robots. New extensions namely time-based layer, evaluator, and

priority support are introduced to the frame model to support representation of dynamic

data and management of robot behaviors.

With SPAK it is easier to manage multi-modal human-robot interactions using a black-

board mechanism. Various robotic applications can run cooperatively in SPAK and share

knowledge among each other. The frame-based knowledge platform makes no assumption

concerning the applications running on it. Hence, instead of having a dedicated system for

each robot application, the single knowledge platform serves as a basis infrastructure for all,

ensuring interoperability among them and easy sharing of knowledge. Knowledge sharing

among applications can be done by sharing knowledge frames. Based on the concept that

the world of interest is meaningfully represented in the frame hierarchies, developers can

easily and intuitively design robot applications using the general and flexible mechanisms

provided by the platform. By introducing the multi-agent network architecture, it is easy to

collaborate with remote agents, e.g., service agents at the welfare center.

SPAK knowledge editor allows simple and intuitive development of robot applications.

Our SPAK-based robot system has an important feature that frames and agents are inte-

grated seamlessly for dynamic robotic control in a distributed environment. A prototype

system with a sample dialogue management application has demonstrated interesting func-

tions for future symbiotic robots.

8.1 Contributions

This chapter reviews the dissertation’s contribution to the fields of robotics, knowledge en-

gineering, and dialogue systems:

130

8.2. LIMITATIONS AND FUTURE DIRECTIONS 131

• Extended Frame-based Knowledge Model: we proposed dynamic extensions to the

conventional frame model and realized it in our in-house SPAK software platform.

• Knowledge-based Dialogue Manager: we proposed a novel design of a dialogue

manager that is based completely on the knowledge platform, not just using the knowl-

edge base to store some data.

• Multi-Agent Knowledge-based Robot Architecture: based on the previous two points,

we proposed an architecture for interactive robots and demonstrated a working system

on a humanoid robot.

8.2 Limitations and Future Directions

Achieving a fully-functional symbiotic robot is a multi-disciplinary and long-term task. Works

in many parts need to be done in parallel and combined to achieve a functional integrated

system. For this kind of task, the glue is very important. There are so many parts of the sys-

tem that need to be integrated together. These include robot hardware and software parts,

which have different interfaces and usages, depending on the makers, versions, etc., and

variety of robot applications, depending on what kinds of behaviors we expect the robot to

do.

In this work we proposed the glue that is a multi-agent robot architecture based on a

knowledge-based platform and showed a reference implementation in SPAK and the Robovie-

II humanoid robot. Future work on the platform includes SPAK performance analysis and

optimization. For the time-based layer support, history data — although now the data is

saved only when a change occurs —, will accumulate and consume an increasing amount of

memory. A mechanism to purge unused data to a permanent storage and retrieve them

back efficiently when needed is required. Another possible enhancement of SPAK is to

include support for other AI techniques like plan-based and logic-based techniques. For

example, knowledge frame hierarchies in SPAK can be exported to or let manipulated by

the JESS Java-based rule engine [125] for tasks like planning. Moreover, although currently

the knowledge contents are stored only in a single knowledge base in order to avoid the

knowledge-coherence problem, the distributed knowledge model (e.g., in [53]) might also

be considered.

As the current dialogue manager is designed just to illustrate features of the system, we

made assumptions that there is no speech recognition and understand errors, and human

understands the limitation of the system in making dialogue conversations. For the more

realistic usage, techniques from Natural Language Processing (NLP) and spoken dialogue

systems fields can be introduced to cope with such errors and other ambiguities as well as

deviation from the defined paths by the human conversation partner. Also other aspects

132 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

of dialogue communications like error recovery, topic switching, synchronization among

multimodal inputs need to be taken care of. Supports of other dialogue models apart from

the state-based and form-based dialogue types, e.g., the information-state model, can be

added. One possibility is to port elements of dialogue manager in the CIA architecture [91]

to the frame model.

The current system can be enhanced with more robot devices and applications. For the

robot devices developers, they need to make sure that the new or upgraded devices will

provide access interfaces which are accessible by other agents on the system. For robot

applications designers and developers, they have to make sure that the new application

to be on the robot (i.e., in SPAK) makes use of and updates the knowledge base properly, as

the knowledge base is the main communications means among application. The knowledge

base itself also needs to be improved in case that limitations are discovered when adding

new robotic devices and applications, or setting up the system in new interaction scenarios.

Although development in each part can proceed independently, all parts need to be inte-

grated and tested from time to time to make sure there are no wrong assumptions made in

any parts, since the design relies heavily on symbols and abstraction.

SPAK has been used in robot applications like scene understanding and task planning

[10] and is used in the ongoing work of dialogue management, gesture-based human robot

interaction [108], and multi-robot collaboration [109]. As the target symbiotic robot might

need to navigate around, and manipulate things to serve its master, more applications from

the robotics side, e.g., robot navigation and manipulation control, are desired.

Latest information on the SPAK tool is available on its home page [110].

8.3 Concluding Remarks

This work presents the design and development of interactive robots based on knowledge

and multi-agent techniques. The design is modular, new robotic devices can be added easily.

By using the knowledge platform, the robot has an up-to-date, easy-to-understand unified

representation of the world. Robot applications can easily make use of this information and

share it with other applications.

About Author

Name Pattara Kiatisevi

Birthdate April 14, 1976

Birthplace Bangkok, Thailand

Nationality Thai

Status Single

Educations 2000/05-2002/06 – M. Sc. in Information Technology, University of

Stuttgart, Germany

1992/05-1996/04 – B. Eng. in Electrical Engineering, Chulalongkorn Uni-

versity, Bangkok

1990/05-1992/04 – Triamudomsuksa high school, Bangkok, Thailand

1987/05-1990/04 – Satit Pratumwan demonstration school, Bangkok,

Thailand

1981/05-1987/04 – Phyathai primary school, Bangkok, Thailand

Experiences 2000/09-2002/07 – Research Assistant, Computer Architecture Depart-

ment, Institute of Computer Science, University of Stuttgart, Germany

1996/04-2000/01 – Assistant Researcher, Network Technology Labora-

tory, National Electronics and Computer Technology Center (NECTEC),

Bangkok, Thailand

133

Related Publications

1. P. Kiatisevi, V. Ampornaramveth, H. Ueno, “A Frame-based Knowledge Software Tool for

Developing Interactive Robots”, To appear in the Journal of Artificial Life and Robotics

Vol. 9, Springer

2. P. Kiatisevi, V. Ampornaramveth, H. Ueno, ”Dialog Manager for Robots using Frame-

based Knowledge Platform”, Proc. of the 2nd International Workshop on Man-Machine

Symbiotic Systems, Kyoto, November, 2004

3. P. Kiatisevi, V. Ampornaramveth, H. Ueno, ”Knowledge-based Interactive Robot: System

Architecture and Dialogue Manager”, Proc. of the 8th Pacific Rim International Confer-

ence on Artificial Intelligence (PRICAI 2004), Auckland, New Zealand, August 2004

4. P. Kiatisevi, V. Ampornaramveth, H. Ueno, ”A Distributed Architecture for Knowledge-

based Interactive Robots”, Proc. of the 2nd International Conference on Information

Technology for Application (ICITA 2004), Harbin, China, January, 2004

5. V. Ampornaramveth, P. Kiatisevi, H. Ueno, ”SPAK: Software Platform for Agents and

Knowledge Management in Symbiotic Robots”, IEICE Trans. Information and Systems,

Vol.E87-D No.4, pp-886-895, 2004

6. T. Zhang, V. Ampornaramveth, P. Kiatisevi, Md. Hasanuzzaman, H. Ueno, ”Coordina-

tive Control of Multi-robot System by means of Software Platform of Agents and Knowledge

Management”, Technical report of IEICE 2003-51, 2004

7. Md. Hasanuzzaman, T. Zhang, V. Ampornaramveth, P. Kiatisevi, Y. Shirai, H. Ueno,

”Gesture based human-robot interaction using a frame based software platform”, Proc. of the

Intl. Conf. on Systems Man and Cybernetics (IEEE SMC 2004), The Netherlands, 2004.

8. V. Ampornaramveth, P. Kiatisevi, H. Ueno, ”Toward a Software Platform for Knowledge

Management in Human-Robot Environment”, Technical Report of IEICE, Vol. 103 No. 83,

pg. 15-20, 2003.

9. V. Ampornaramveth, P. Kiatisevi, S. Kuromiya, Y. Isoda, S. Kurakake, H. Ueno, ”Intel-

ligent Gourmet Advisor System for Mobile Users”, Technical Report of IEICE, Vol. 102 No.

134

135

702, 2003

10. V. Ampornaramveth, P. Kiatisevi, H. Ueno, ”Knowledge Management Platform for Sym-

biotic Robots”, RSJ 2003, The Robotics Society of Japan, 2003.

Bibliography

[1] Ministry of Public Management, Home Affairs, Posts, and Telecommunications. Japan

Statistical Yearbook 2003. [Online]. Available: http://www.stat.go.jp/

[2] H. Ueno, “Symbiotic Information Systems: Towards an Ideal Relationship of Human-

Beings and Information Systems,” Technical Report of IEICE, KBSE2001-15:27-34, Au-

gust 2001.

[3] ——, “A cognitive science-based knowledge modeling for autonomous humanoid ser-

vice robot towards a human-robot symbiosis,” Frontiers in Artificial Intelligence and Ap-

plications, vol. 67, pp. 123–136, 2001.

[4] V. Ampornaramveth and H. Ueno, “Concepts of symbiotic information system and its

application to robotics,” Information Modelling and Knowledge Bases XIII, H. Kangassalo

et al. (Eds.), 2002.

[5] The Engineering Academy of Japan, “Living with Robots - Symbiosis of Robots and

Human Beings, Tokyo, Japan,” 2004.

[6] K. Kawamura and T. Davis, “International Workshop on Biorobotics: Human-Robot

Symbiosis, Tsukuba, 1995,” Robotics and Autonomous Systems, vol. 18, no. 1-2, pp. 1–291,

1996.

[7] T. Matsuyama, “Preface,” in Proc. of the 1st International Workshop on Man-Machine Sym-

biotic Systems, Kyoto, 2002.

[8] H. Ueno, “Symbiotic robotics project.” [Online]. Available:

http://research.nii.ac.jp/ ueno/

[9] T. Fong, I. Nourbakhsh, K. Dautenhahn, “A survey of socially interactive

robots,” Robotics and Autonomous Systems, vol. 42, 2002. [Online]. Available:

citeseer.nj.nec.com/fong03survey.html

[10] V. Ampornaramveth, P. Kiatisevi, and H. Ueno, “SPAK: Software Platform for Agents

and Knowledge Management in Symbiotic Robots,” IEICE Trans. Information and Sys-

tems, Vol.E87-D No.4, pp. 886–895, 2004.

136

BIBLIOGRAPHY 137

[11] M. Minsky, “A framework for representing knowledge,” MIT-AI Laboratory Memo 306,

1974.

[12] N. F. Noy, M. A. Musen, J. L. V. Mejino, Jr., C. Rosse, “Pushing the envelope: chal-

lenges in a frame-based representation of human anatomy,” Data Knowledge Engineer-

ing, vol. 48, no. 3, pp. 335–359, 2004.

[13] H. Ueno and Y. Saito, “Model-based vision and intelligent task scheduling for au-

tonomous human-type robot arm,” Robotics and Autonomous System, vol. Special Issue

of Robotics and Autonomous System, pp. 195–206, 1996.

[14] G. Bekey, Autonomous robots : from biological inspiration to implementation and control.

MIT Press, 2005.

[15] P. Makowski, “Survey of architectures and frameworks for autonomous agents,”

in Agrobotics Workshop 2004, Horsens, Denmark, 2004. [Online]. Available:

http://www.agrobotics.dk/workshop2004.htm

[16] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile robot programming using

natural language,” Robotics and Autonomous Systems, 38 (3/4), pp. 171–181, 2002.

[17] A. Cangelosi and S. Harnad, “The adaptive advantage of symbolic theft

over sensorimotor toil: Grounding language in perceptual categories,” Evo-

lution of Communication, vol. 4, no. 1, pp. 117–142, 2001. [Online]. Available:

http://www.tech.plym.ac.uk/soc/research/neural/staff/acangelosi/papers/cangelosi-

evocom.ps.zip

[18] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring problem,” Robotics

and Autonomous Systems, vol. 43, no. 2-3, pp. 85–96, 2003, special issue on perceptual

anchoring. Online at http://www.aass.oru.se/Agora/RAS02/.

[19] R. A. Brooks, “A robust layered control system for a mobile robot,” IEEE Journal of

Robotics and Automations, vol. RA-2, no. 1, 1986.

[20] ——, “Intelligence without representation,” Int. J. Artificial Intelligence, pp. Vol 48, pp.

139–159, 1991.

[21] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent research and

development,” Journal of Autonomous Agents and Multi-Agent Systems, vol. 1, no. 1, pp.

7–38, 1998. [Online]. Available: citeseer.ist.psu.edu/jennings98roadmap.html

[22] M. J. Mataric, “Behavior-based robotics,” MIT Encyclopedia of Cognitive Sciences (R. A.

Wilson and F. C. Keil, Eds.), pp. 74–77, 1999.

138 BIBLIOGRAPHY

[23] L. Seabra Lopes, J.H. Connell, “Semisentient robots: Routes to integrated intelligence,”

Semisentient Robots (special issue of IEEE Intelligent Systems, vol. 16, n. 5), Computer Soci-

ety, p. 10-14., 2001.

[24] J. H. Connell, “Sss: A hybrid architecture applied to robot navigation,” Proc. of the 1992

IEEE Conference on Robotics and Automation (ICRA-92), pp. 2719–2724, 1992.

[25] H. Ishiguro, T. Kanda, K. Kimoto, and T. Ishida, “A robot architecture based on situ-

ated modules,” in Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.

IEEE, 1999, pp. 1617–1623.

[26] R.T. Pack, D.M. Wilkes, K. Kawamura, “A Software Architecture for Integrated Service

Robot Development,” in IEEE Conf. On Systems, Man, and Cybernetics, 1997, pp. 3774–

3779.

[27] I. Horswill, “Tagged behavior-based architectures: Integrating cognition with embod-

ied activity,” IEEE Intelligent Systems, vol. 16, no. 5, pp. 30–38, 2001.

[28] D. J. Scales and M. S. Lam, “The design and evaluation of a shared object system for

distributed memory machines,” in Proc. of OSDI’94, 1994.

[29] avec L. Brunie and O. Reymann, “Dosmos+ : Scalable distributed shared memory

environment including monitoring facilities,” in Parallel Programming Environments for

High Performance Computing. Alpes d’Huez, Avril, 1996, pp. 165–168.

[30] Object Management Group, Inc., “CORBA OMG/ISO Standards,” June 2005. [Online].

Available: http://www.corba.org/standards.htm

[31] UserLand Software, Inc., “XML-RPC,” June 2005. [Online]. Available:

http://www.xmlrpc.org/

[32] W3C, “Simple Object Access Protocol (SOAP) Specification,” June 2005. [Online].

Available: http://www.w3.org/TR/soap/

[33] The Foundation for Intelligent Physical Agents. FIPA Web Site. [Online]. Available:

http://www.fipa.org/

[34] T. Kanda, H. Ishiguro, M. Imai, T. Ono, and K. Mase, “A constructive approach for

developing interactive humanoid robots,” in IEEE/RSJ Intl. Conf. on Intelligent Robots

and Systems (IROS 2002), 2002, pp. 1265–1270.

[35] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu, “Development and evaluation

of an interactive humanoid robot: Robovie,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA 2002). IEEE, 2002.

BIBLIOGRAPHY 139

[36] T. Matsui, H. Asoh, J. Fry, Y. Motomura, F. Asano, T. Kurita, I. Hara, N.

Otsu, “Integrated natural spoken dialogue system of jijo-2 mobile robot for

office services,” in AAAI/IAAI, 1999, pp. 621–627. [Online]. Available: cite-

seer.nj.nec.com/matsui99integrated.html

[37] J. Fry, H. Asoh, and T. Matsui, “Natural dialogue with the jijo-2 office robot,” in Pro-

ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-

98), 1998.

[38] K. Kawamura, R. Peters, R. Bodenheimer, N. Sarkar, J. Park, C. Clifton, A. Spratley, K.

Hambuchen, “A parallel distributed cognitive control system for a humanoid robot,”

International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 65–93, 2004.

[39] L. S. Lopes, “Carl: from situated activity to language level interaction and learning,”

in Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, (IROS), 2002.

[40] L. S. Lopes and A. Teixeira, “Human-robot interaction through spoken language di-

alogue,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, (IROS-2000). IEEE, 2000.

[41] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, Frank Dellaert, Dieter Fox, D.

Haehnel, Chuck Rosenberg, Nicholas Roy, Jamieson Schulte, D. Schulz, “Minerva: A

second generation mobile tour-guide robot,” in Proc. of the IEEE International Conference

on Robotics and Automation (ICRA’99), 1999.

[42] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, S.

Thrun, “The interactive museum tour-guide robot,” in Proc. of the National Conferenceon

Artificial Intelligence, 1998.

[43] N. Etani, “Robot media communication: An interactive real-world guide agent,” in

Proc. of the 1st International Symposium on Agent Systems and Applications/3rd Interna-

tional Symposium on Mobile Agents (ASA/MA ’99), 1999, pp. 234–241.

[44] D. Koller and A. Pfeffer, “Probabilistic frame-based systems,” in Proc. of the 15th Na-

tional Conference on AI (AAAI’98), July 1998, pp. 580–587.

[45] P. H. Winston, Artificial Intelligence. Addison-Wesley, 1977, second printing, 1979.

[46] P. D. Karp, “The design space of frame knowledge representation systems.” in

Technical Report 520, SRI International Artificial Intelligence Center, 1993. [Online].

Available: citeseer.ist.psu.edu/karp93design.html

[47] S. Russell and P. Norvig, Artificial Intelligent A Modern Approach. Prentice Hall, 2002.

140 BIBLIOGRAPHY

[48] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. Rice, “OKBC: A programmatic

foundation for knowledge base interoperability,” in AAAI/IAAI, 1998, pp. 600–607.

[Online]. Available: citeseer.ist.psu.edu/chaudhri98okbc.html

[49] N. Noy, R. Fergerson, and M. Musen, “The knowledge model of protege-

2000: Combining interoperability and flexibility,” 2000. [Online]. Available:

citeseer.ist.psu.edu/noy01knowledge.html

[50] Beingmeta, “Framerd,” June 2005. [Online]. Available: http://www.framerd.org/

[51] D. Skuce and T. C. Lethbridge, “CODE4: a unified system for managing conceptual

knowledge,” Int. J. Hum.-Comput. Stud., vol. 42, no. 4, pp. 413–451, 1995.

[52] D. Soshnikov, “Software toolkit for building embedded and distributed knowledge-

based systems,” in Proc. of the 2nd Intl. Workshop on Computer Science and Information

Technologies CIST’2000, 2000.

[53] ——, “An architecture of distributed frame hierarchy for knowledge sharing and reuse

in computer networks,” in In Proc. of the 2002 IEEE International Conference on Artificial

Intelligence Systems. IEEE, 2002, pp. 115–119.

[54] T. Winograd, “Procedures as a representaion for data in a computer program for un-

derstanding natural language,” MIT AI Technical Report 235, 1971.

[55] H. Ueno, “A knowledge-based information modeling for autonomous humanoid ser-

vice robot,” IEICE Trans. on Information and Systems, vol. E85-D, no. 4, pp. 657–665,

2002.

[56] H. Ueno, S. Kogure, and Y. Ookuma, “Implementation of frame-based knowledge en-

gineering environment zero in c++,” in Proc. of FOSE 1995, 1995, pp. 101–110.

[57] P. Cohen, “Dialogue modeling,” in Survey of the State of the Art in Human Language

Technology. Cambridge University Press, 1996.

[58] E. Levin, R. Pieraccini, W. Eckert, P. D. Fabbrizio, and S. Narayanan, “Spoken lan-

guage dialogue, from theory to practice,” in Proc. IEEE Workshop on Automatic Speech

Recognition and Understanding, ASRU, 1999.

[59] E. Levin, R. Pieraccini, and W. Eckert, “Using markov decision process for learning

dialogue strategies,” in Proc. ICASSP 98, Seattle, WA, 1998.

[60] K. Komatani, S. Ueno, T. Kawahara, and H. G. Okuno, “User Modeling in Spoken

Dialogue Systems for Flexible Guidance Generation,” in EUROSPEECH, 2003.

BIBLIOGRAPHY 141

[61] V. Zue, et al., “Jupiter: A telephone-based conversational interface for weather infor-

mation,” IEEE Trans. on Speech and Audio Processing, Vol. 8 , No. 1, 2000.

[62] B. Pellom, W. Ward, J. Hansen, K. Hacioglu, J. Zhang, X. Yu, and S. Pradhan, “Univer-

sity of colorado dialog systems for travel and navigation,” in Proceedings of the Human

Language Technology Conference (HLT-2001). Association for Computational Linguis-

tics, 2001.

[63] W. Wahlster, N. Reithinger, and A. Blocher, “Smartkom: Multimodal communication

with a life-like character,” in Proc. of Eurospeech 2001, Aalborg (Denmark), 2001.

[64] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent, P. Ehlen, M. Walker, S. Whittaker,

and P. Maloor, “Match: An architecture for multimodal dialogue systems,” in Proc. of

ACL 2002, 2002.

[65] A. Stent, J. Dowding, J. Gawron, E. O. Bratt, and R. Moore, “The commandtalk spoken

dialogue system,” in Proc. of the ACL 1999, 1999.

[66] N. Dahlbck, A. Flycht-Eriksson, A. Jnsson, and P. Qvarfordt, “An architecture for

multi-modal natural dialogue systems,” in Proc. of ESCA Tutorial and Research Work-

shop (ETRW) on Interactive Dialogue in Multi-Modal Systems, Germany, 1999.

[67] J. Gustafson, N. Lindberg, and M. Lundeberg, “The august spoken dialogue system,”

in Proc. of Eurospeech 1999, 1999.

[68] J. Cassell, T. Bickmore, L. Cambell, K. Chang, H. Vilhjalmsson, and H. Yan, “Require-

ments for an architecture for embodied conversational characters,” in Proc. of Computer

Animation and Simulation 1999, 1999.

[69] J. R. Searle, Speech Acts: An essay in the philosophy of language. Cambridge University

Press, 1976.

[70] K. Robinson, D. Horowitz, E. Bobadilla, M. Lascelles, A. Suarez, “Conversational dia-

logue management in the fasil project,” in In Proc. of SIGdial Workshop, 2004.

[71] E. Giachin, “Spoken language dialogue,” in Survey of the State of the Art in Human

Language Technology. Cambridge University Press, 1996.

[72] G. Churcher, “Dialogue management systems: a survey and overview,” 1997.

[Online]. Available: citeseer.ist.psu.edu/churcher97dialogue.html

[73] W. Xu, B. Xu, T. Huang, and H. Xia, “Bridging the gap between dialogue manage-

ment and dialogue models,” in Proceedings of the 3rd SIGdial Workshop on Discourse and

Dialogue, 2002.

142 BIBLIOGRAPHY

[74] M. F. McTear, “Spoken dialogue technology: enabling the conversational user inter-

face,” ACM Computing Surveys, vol. 34, pp. 90 - 169, 2002.

[75] J. Allen, G. Ferguson, and A. Stent, “An architecture for more realistic conversational

systems,” in Proc. of IUI 2001, Santa Fe, New Mexico, USA, 2001.

[76] S. Sutton, R. Cole et al., “Universal speech tools: the cslu toolkit,” in Proc. of the

International Conference on Spoken Language Processing (ICSLP), Sydney, Australia, 1998,

pp. 3221–3224. [Online]. Available: citeseer.ist.psu.edu/sutton98universal.html

[77] J. Glass and E. Weinstein, “SPEECHBUILDER: Facilitating Spoken Dialogue System

Development,” in Proc. European Conference on Speech Communication and Technology,

Aalborg, Denmark, September 2001, pp. 1335–1339.

[78] D. Goddeau, H. Meng, J. Polifroni, S. Seneff, S. Busayapongchai, “A form-based dia-

logue manager for spoken language applications,” in In Proc. of ICSLP, 1996.

[79] A. Rudnicky, E. Thayer, P. Constantinides, C. Tchou, R. Shern, K. Lenzo, W. Xu, and

A. Oh, “Creating natural dialogs in the carnegie mellon communicator system,” in

Proc. of Eurospeech, 1999, 1999, pp. 1531–1534.

[80] P. Madeira, M. Mouro, Nuno Mamede, “STAR - A Multiple Domain Dialog Manager,”

in 5th Intl. Conf. on Enterprise Information Systems - Angers, France, 2003.

[81] W3C, “VoiceXML Specification Version 2.0.” [Online]. Available:

http://www.w3.org/TR/voicexml20/

[82] VoiceXML Forum, “VoiceXML Web site.” [Online]. Available:

http://www.voicexml.org/

[83] P. Cohen and C. R. Perrault, “Elements of a plan-based theory of speech acts,” Cognitive

Science, vol. 3, no. 3, pp. 177–212, 1979.

[84] J. Allen and C. R. Perrault, “Analyzing intention in utterances,” Artificial Intelligence,

vol. 15, no. 3, pp. 143–178, 1980.

[85] R. A. Cole et al., Survey of the State of the Art in Human Language Technology. Cambridge

University Press, 1996.

[86] J. Chu-Carroll and S. Carberry, “Collaborative response generation in planning dia-

logues,” Comput. Linguist., vol. 24, no. 3, pp. 355–400, 1998.

[87] J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. Galescu, A. Stent, “An

architecture for a generic dialogue shell,” NLENG: Natural Language Engi-

neering, Cambridge University Press, vol. 6, 2000. [Online]. Available: cite-

seer.ist.psu.edu/allen00architecture.html

BIBLIOGRAPHY 143

[88] D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Metheson, and M. Poesio, “A

model of dialogue moves and information state revision,” Technical Report D2.1, Trindi,

1999.

[89] S. Larsson and D. Traum, “Information state and dialogue management in the trindi

dialogue move engine toolkit,” Natural Language Engineering, vol. 6, pp. 323–340, 2000.

[90] J. Bos, E. Klein, O. Lemon, and T. Oka, “Dipper: Description and formalisation of

an information-state update dialogue system architecture,” in Proc. of the 4th SIGdial

Workshop on Discourse and Dialogue (SIGDIAL), Sapporo, Japan, 2003.

[91] O. Lemon and A. Gruenstein, “Multithreaded context for robust conversational in-

terfaces: Context-sensitive speech recognition and interpretation of corrective frag-

ments,” ACM Trans. Comput.-Hum. Interact., vol. 11, no. 3, pp. 241–267, 2004.

[92] R. Smith and D. R. Hipp, Soken Natural Language Dialog Systems: A Practical Approach.

Oxford University Press, New York, 1994.

[93] O. Lemon, L. Cavedon, B. Kelly, “Managing Dialogue Interaction: A Multi-Layered

Approach,” in Proceedings of the 4th SIGdial Workshop on Discourse and Dialogue, 2003.

[94] W. Wahlster (Editor), Verbmobil: Foundations of Speech-to-Speech Translation. Springer,

2001.

[95] I. O’Neill, P. Hanna, X. Liu, M. McTear, “The queen’s communicator: An object-

oriented dialogue manager,” in Proc. of EUROSPEECH, 2003.

[96] DARPA Communicator Project, “Galaxy Architecture Web Site,” June 2005. [Online].

Available: http://communicator.sf.net

[97] S. Seneff, Ed. Hurley, R. Lau, C. Pao, P. Schmid, V. Zue, “Galaxy-ii: A reference archi-

tecture for conversational system development,” in In Proc. of ICSLP, 1998.

[98] D. Bohus, A. Rudnicky, “Ravenclaw: Dialog management using hierarchical task de-

composition and an expectation agenda,” in Proc. of EUROSPEECH, 2003.

[99] M. Turunen, J. Hakulinen, “Jaspis - a framework for multilingual adaptive speech ap-

plications,” in Proc. of ICSLP, 2000.

[100] A. Cheyer and D. Martin, “The open agent architecture,” Journal of Autonomous Agents

and Multi-Agent Systems, vol. 4, no. 1, pp. 143–148, March 2001, oAA.

[101] O. Lemon, A. Gruenstein, and S. Peters, “Collaborative activities and multi-tasking in

dialogue systems,” Traitment automatique des langues, Special issue on dialogue, vol. 43,

no. 2, pp. 131–154, 2002.

144 BIBLIOGRAPHY

[102] D. Spiliotopoulos, I. Androutsopoulos, C. D. Spyropoulos, “Human-robot interaction

based on spoken natural language dialogue,” 2001.

[103] S. McGlashan, N. Fraser, N. Gilbertd, E. Bilange, P. Heisterkamp, N. Youd,

“Dialogue management for telephone information systems,” in Proc. of the Intl.

Conference on Applied Language Processing, ICSLP’92, 1992. [Online]. Available:

citeseer.ist.psu.edu/mcglashan92dialogue.html

[104] IEEE Computer Society. IEEE Distributed Systems Online : Distributed Agents

Projects. [Online]. Available: http://dsonline.computer.org/agents/projects.htm

[105] P. Kiatisevi, V. Ampornaramveth, and H. Ueno, “A distributed architecture for

knowledge-based interactive robots,” in Proceedings of the 2nd International Conference

on Information Technology and Applications (ICITA 2004), Harbin, China. Macquarie Sci-

entific Publishing, 2004.

[106] ECMAScript Language Specification, “http://www.ecma-

international.org/publications/standards/ecma-262.htm.” [Online]. Available:

http://www.ecma-international.org/publications/standards/ECMA-262.HTM

[107] The Mozilla Organization, “Rhino: JavaScript for Java.” [Online]. Available:

http://www.mozilla.org/rhino/

[108] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, P. Kiatisevi, Y. Shirai, and H. Ueno,

“Gesture based human-robot interaction using a frame based software platform,” in

Proc. of the Intl. Conf. on Systems Man and Cybernetics (IEEE SMC 2004). IEEE, 2004.

[109] T. Zhang, V. Ampornaramveth, P. Kiatisevi, M. Hasanuzzaman, and H. Ueno,

“Knowledge-based multiple robots coordinative operation using software platform,”

in Proc. of the 6th Joint Conference on Knowledge-Based Software Engineering (JCKBSE

2004). IEICE, 2004.

[110] National Institute of Informatics (NII), Japan, “SPAK,” June 2005. [Online]. Available:

http://sis.ex.nii.ac.jp/spak/

[111] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, volume 20, number 1, pages 23-

38, 1998.

[112] M. A. Turk and A. P. Pentland, “Face recognition using eigenfaces,” in Proceedings of

the 11th International Conference on Pattern Recognition. IEEE, 1991, pp. 586–591.

[113] University of Edinburgh, “The Festival Speech Synthesis System,” June 2005. [Online].

Available: http://www.cstr.ed.ac.uk/projects/festival/

BIBLIOGRAPHY 145

[114] P. Kiatisevi, V. Ampornaramveth, H. Ueno, “Dialog Manager for Robots using Frame-

based Knowledge Platform,” in Proc. of the 2nd International Workshop on Man-Machine

Symbiotic Systems, Kyoto, 2004.

[115] H. Ueno and Y. Oomori, “Expert systems based on object model - an approach to deep

knowledge systems,” Springer Lecture Notes in Engineering 69, 1991.

[116] N. Noy, R. Fergerson, and M. Musen, “The knowledge model of protege-2000: Com-

bining interoperability and flexibility,” in Proceeding of 12th International Conference on

Knowledge Engineering and Knowledge Management (EKAW). Springer, 2000.

[117] M. Hewett, “Algernon - rule-based programming, http://algernon-j.sf.net/,” June

2005. [Online]. Available: http://algernon-j.sourceforge.net/

[118] J. F. Allen, “Time and time again: the many ways to represent time,” International

Journal of Intelligent Systems, vol. 6, pp. 341–355, 1991. [Online]. Available:

citeseer.ist.psu.edu/allen91time.html

[119] Sony Corporation, “AIBO SDE, http://openr.aibo.com/,” June 2005. [Online].

Available: http://openr.aibo.com

[120] H. Bruyninckx, “The orocos project, http://www.orocos.org/,” June 2005. [Online].

Available: http://www.orocos.org/

[121] L. Erman, F. Hayes-Roth, V. Lesser, and D. Reddy, “The hearsay-ii speech understand-

ing system: Integrating knowledge to resolve uncertainty,” Computing Surveys, vol. 2,

no. 12, pp. 213–253, 1980.

[122] N. M. Sadeh, D. W. Hildum, T. J. Laliberty, J. McANulty, D. Kjenstady, and A. Tsengy,

“A blackboard architecture for integrating process planning and production schedul-

ing,” Concurrent Engineering: Research and Applications, vol. 6, no. 2, 1998.

[123] M. Hans and W. Baum, “Concept of a hybrid architecture for care-o-bot,” in In proc. of

ROMAN-2001. IEEE, 2001, pp. 407–411.

[124] J. Bos, E. Klein, and T. Oka, “Meaningful conversation with a mobile robot,” in Proc.

of the 10th. Conf. of the European Chapter of the Association for Computational Linguistics

(EACL). Association for Computational Linguistics, 2003.

[125] Sandia National Laboratories. (2005, June) Jess: the rule engine for the java platform.

[Online]. Available: http://herzberg.ca.sandia.gov/jess/

Index

backward chaining, 75, 79, 82

communicative acts, 36

CORBA, 26, 54

DCOM, 26

dialogue manager, 36, 91

dialogue model, finite-state (state-based), 38,

103

dialogue model, form-based, 39

dialogue model, form-filling, 103

dialogue model, information state, 40

dialogue model, plan-based, 39

dialogue system, 90

dialogue systems, 35

distributed systems, 25

DSM (Distributed Shared Memory), 26

Evaluator, 66, 79

FIPA, 26, 54

forward chaining, 75, 77

frame, 19, 57

frame systems, 28, 29

frame, theory, 28

HARIS robot system, 32, 33, 68

Induce, 79

JavaScript, 76, 88

KFrame, 69, 88

KFrameScript, 88

Knowledge Manager, 52

Knowledge Manager, roles, 58

LSA, 95

LSE, 95, 106

message passing, 26

NII, 15, 16

OAA, 26

OKBC, 30

parser, 36

platform approach, 18

primitive agent, 49

priority, 67

reInduce, 79

Rhino, 76

RMI, 26

robot, 22

robot architecture, deliberative, 23

robot architecture, hybrid, 25

robot architecture, layered, 24

robot architecture, reactive, 24

robot, biologically inspired, 23

robot, industrial, 22

robot, socially interactive, 22

robot, software, 22

Robovie, 109

RPC (Remote Procedure Call), 26

Shakey robot, 24

146

INDEX 147

SIS, 16

slot, 29, 57, 69

slot flags, 63

SOAP, 26, 54

SPAK, 19, 68, 114, 122

special slots, 60

speech recognition, 36

SSS, 25

Status Register, 93

symbiosis, 16

Symbiosis Information System (SIS), 15

text-to-speech, 36, 112

time-based layer, 65

XML, 54, 71

XML-RPC, 26, 54, 76

ZERO++, 34, 68, 122

Declaration

I, Pattara Kiatisevi, declare that this thesis is my original work and that, to the best of my

knowledge, it contains no material previously published, or substantially overlapping with

material submitted for the award of any other degree at any institution, except where due

acknowledgment is made in the text.

Pattara Kiatisevi

148

