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Abstract – Monitoring for radiation (e.g., leak detection or finding smuggled materials) requires managing a dynamic 
spatio-temporal configuration of sensors. One promising approach is to combine fixed sensors with sensors on robots, and 
endow the population with the ability to configure themselves and coordinate their actions to create and maintain the re-

quired sensor configuration. This paper describes some scenarios where such a capability would be useful, identifies techni-
cal issues that need to be addressed, suggests general principles and techniques for dealing with such scenarios, and de-

scribes a specific example that we have constructed and tested in a simulation environment. 
 

 
I INTRODUCTION 

 
A number of nuclear surveillance scenarios can bene-

fit from a swarm of coordinated sensors. A dynamic sce-
nario may require that the distribution of sensors and the 
roles that they play change over time. Thus at least some 
of the sensors need to be mobile, and coordination 
mechanisms must adjust the configuration of the team dy-
namically in response to changing requirements. 

One approach to multi-agent coordination is swarm-
ing, “useful self-organization of multiple entities through 
local interactions.”1 We have developed a number of ap-
plications of swarming to problems as diverse as UAV 
navigation,2 pattern recognition in sensor networks,3 and 
searching for information in immense bodies of textual 
data.4 This paper illustrates the applicability of these 
techniques to problems of robotic surveillance for radio-
active materials. Section II describes several application 
scenarios and identifies requirements that swarming sen-
sors must satisfy. Section III discusses principles and 
techniques that we have found helpful for such problems. 
Section IV outlines the application of these techniques to 
a particular problem. Section V concludes. 

 
II PROBLEM DEFINITION 

 
A number of nuclear surveillance scenarios can bene-

fit from a swarm of coordinated sensors. These include: 
Facility monitoring.—Facilities that manipulate nu-

clear material (including power stations, research reactors, 
and weapons dumps) must be monitored for leakage. Po-
tential leakage sites may be widely distributed throughout 
the facility. Once a leak is detected, the dispersion of ra-
dioactive material must be monitored, and a protective 
perimeter established to avoid inadvertent human contact.  

Smuggling detection.—Dockyards, railroad mar-
shalling yards, and warehouses present the challenge of 

monitoring large areas for suspected materials. Surveil-
lance must combine wide-spread application of highly 
generic sensors with subsequent validation with more so-
phisticated sensors to weed out false positives. 

Release management.—The possibility of release of 
radioactive material in an uncontrolled area (as in the case 
of a terrorist attack) makes it desirable to maintain con-
tinuous surveillance to provide early detection and local-
ization of the source, monitoring of its dispersion, and es-
tablishment of a protective perimeter. 

These scenarios, and others like them, have a number 
of common requirements that swarms of autonomous sen-
sors can address. 
• Sensory input is needed from different spatial loca-

tions under tight temporal constraints. 
• While some locations may be known in advance and 

monitored with fixed sensors, others will change over 
time, requiring at least some sensors to be carried on 
robots. In addition, mobile sensors reduce the number 
of sensors needed to cover a given area. 

• The roles played by sensors and their mobility plat-
forms often need to change in response to dynamic 
events.  
Because we envision a heterogeneous population of 

sensors, we use a variety of terms in describing our 
mechanisms. The generic entity is “sensor,” which may 
be stationary or mobile. A mobile sensor is mounted on a 
“mobility platform,” and the entire entity is thus a “ro-
bot.” Either class of sensor may be termed an “agent” to 
emphasize its autonomous computational abilities rather 
than its specific sensory function. 

 
III GENERAL PRINCIPLES AND TECHNIQUES 

 
Three classes of principles and techniques are useful 

in addressing problems of this nature. The first class con-
cerns the relation between individual agents and the 
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groups of which they are a part, and 
falls under the general rubric of “roles.” 
The second concerns mechanisms for 
optimizing such systems in the face of 
resource constraints. The third is the 
broad area of mechanisms inspired by 
natural systems. 

 
III.A Issues in Team and Role Coordi-

nation 
 
Effective modeling and design of 

agents in emergent swarms is greatly facilitated by identi-
fying distinct “roles,” or patterns of behavior, that agents 
can “play” in different mission settings.5 A role is a class 
that defines a normative behavioral repertoire of an agent. 
Roles provide both the building blocks for agent social 
systems and the requirements by which agents interact. 
Each agent is linked to other agents by the roles it plays 
by virtue of the system’s functional requirements—which 
are based on the expectations that the system has of the 
agent. The static semantics of roles, role formation and 
configuration, and the dynamic interactions among roles 
have been examined closely in recent years,5-9 and an ini-
tial axiomatization has been proposed.6 However, little 
work has been done on formalizing the temporal aspects 
of dynamic role assignment. Role modelers refer only in-
formally to actions such as “taking on a role,” “playing a 
role,” “changing roles,” and “leaving roles.” The ambigui-
ties inherent in these terms pose difficulties for applica-
tions such as ours, in which dynamic role change is a per-
vasive feature of the system’s behavior.  

To understand these issues better, we distinguish two 
aspects to a change in role, summarized in Fig. 1 and dis-
cussed more fully elsewhere.10 Role classification gives 
an agent the methods necessary to execute the behaviors 
in a role). Role activation captures the sense that an agent 
is currently executing in a role.  

 
III.A.1 Dynamic Classification 

 
Dynamic classification refers to the ability to change 

the classification of an entity. Consistent with the pro-
posed axiomatization,6 we insist that each agent have at 
least one role at all times. Dynamic classification deals 
with adding additional roles or re-
moving roles beyond the minimum 
of one. This requirement is analo-
gous with the notion that every hu-
man must play the “person” role, 
whatever other roles they may 
have. In the case of humans, this 
minimal role persists throughout 
the agent’s life. It is conceivable 
that an artificial agent might begin 
with the minimal role A, add role 

B, then remove role A, leaving it with the minimal role B. 
Whether such a fundamental redefinition of the agent is 
possible will depend on such features as physical equip-
ment associated with the agent and the nature of the plat-
forms on which the agent can run. An alternative ap-
proach is to define a basic role AgentId that belongs to 
every agent, whatever other roles it may play. (Id in 
AgentId recalls the Freudian notion of primal basic urges, 
not “Identity.”) Having AgentId as a role is a controver-
sial point. However, elsewhere11 we have defined role as a 
class that defines a normative behavioral repertoire of an 
agent. The basic class AgentId defines the normative be-
havioral repertoire for agenthood. 

To become an instance of a given role, the agent is 
classified as an instance of, or occupies, that role. Once 
classified, the agent occupies the new role and possesses 
all of its features. In the opposite process, if an agent is 
declassified, it is removed as an instance of a particular 
role—and no longer occupies the role nor possesses fea-
tures unique to that role. An agent is said to be reclassi-
fied when it is both declassified in one role and classified 
as another. Agent instantiation and deletion are limiting 
cases of changes in classification, and we describe their 
consequences at the role level with create and delete op-
erators. TABLE I summarizes roles held by an agent be-
fore and after each of these operators.  

 
III.A.2 Dynamic Activation 

 
In addition to changing roles over time (dynamic 

classification), an agent may have multiple roles that ap-
ply to it at any one moment, a condition that we describe 
as multiple classification (not to be confused with multi-
ple inheritance). Role activation captures the intuition that 

an agent may hold multiple roles 
concurrently while not actively 
executing them at the same instant. 

Formalizing such a notion of 
“activity” is problematic. In some 
sense, even a quiescent agent that is 
waiting for a message or some sig-
nal to awaken could be considered 
active in its role, because alertness 
can be thought of an activity. UML 
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Occupied/Classified

Classify DeclassifyActivate

Suspend
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Fig. 1. Statechart depicting some of the permitted states and transitions of an 
agent in a role. 

TABLE I: Operators for Dynamic Classifica-
tion 

Operator Pre-state Post-state 
Classify A and not B A and B 
Declassify A and B A and not B 
Reclassify A B 
Create Null A 
Terminate A Null 
 



2.012 offers a useful refinement by distinguishing between 
user-defined actions (which are represented explicitly in 
sequence diagrams and activity diagrams) and fundamen-
tal system actions such as i/o, invocation, and data flow 
(which are not represented as actions in these diagrams). 
In UML, each activation, or execution occurrence, has 
some duration and is bounded by a start and stop point.  
We propose to take advantage of this refinement in the 
following unification: 
• We adopt the UML 2.0 definition of action. Any unit of 

behavior that has started and has not yet ended is con-
sidered “active.” Otherwise it is “inactive.” 

• We use the basic role of AgentId to specify primitive 
behavior. Behaviors such as controlling, handling data 
flows, and waiting for messages and signals are “primi-
tive” actions that all entities must possess to be agents. 
Therefore, any entity playing the role of AgentId can 
exhibit this basic behavior, deferring “higher-level” be-
havior to user-specified actions in more specialized 
roles. Furthermore, these basic behaviors are them-
selves actions. For example, actions that support listen-
ing for messages and signals, by definition, begin the 
moment an entity is classified an AgentId and cease 
when the entity is no longer an AgentId. 

• We consider roles other than AgentId to be active only 
when their user-defined actions are active. Activity of 
primitive actions is attributed to the concurrently exe-
cuting AgentId role, not to the user-specified role.  

Dynamic activation involves the operators activate, 
suspend, and shift. TABLE II summarizes the role as-
signments as affected by these operators.  

 
III.B Resource Constrained Local Optimization 
 
In the execution of a particular mission, we deploy 

many simple agents in a mission swarm and task the 
swarm (not the individual agent) with the mission goal 
(e.g., mapping a leak with required resolution). Once 
tasked, the agents in the swarm coordinate their individual 
activities (see Team and Role Coordination) to achieve 
the mission goal. 

Especially if a mission takes a long time to complete, 
the swarm needs to be able to judge the current quality of 
mission achievement and adjust its execution accordingly. 
In the case of distributed mapping of a leak, a single sen-
sor may have detected the presence of the leak, and now 
the swarm needs to re-configure the formation to deter-
mine the leak’s extent and monitor its spread. Fig. 2 
shows the resulting closed adjustment loop. 

Adapting the swarm’s mission execution to the qual-
ity of the mission goal achievement requires a) that the 
swarm is able to perceive the current quality, and b) that 
the swarm knows how to reconfigure to improve this qual-
ity. Conventional optimization approaches assign this de-
cision to a central computer, but such an architecture does 
not scale easily, requires high bandwidth so that all sen-

sors can communicate with the central station, and is vul-
nerable to failure or attack of the central processor. In the 
absence of a “swarm” entity, these two issues immedi-
ately translate to the need for the individual agent to know 
whether and how it needs to change its behavior to im-
prove the overall (global) system performance. 

In the following paragraphs, we contrast three ap-
proaches to the re-configuration problem: implicit local 
models, fitness evaluation, and quality evaluation. We re-
view the applicability of these approaches with respect to 
the effort involved in the specification of the knowledge 
of the individual sensor and the processing and communi-
cation effort that arises in the execution. 

All three cases assume local autonomous control by 
the sensor (no central controller). The re-configuration 
process is iterative: each sensor runs through multiple cy-
cles of perception (receiving input from other sensors), 
planning (selecting a new role and, if mobile, a new loca-
tion), and execution (assuming the new role and/or ap-
proaching the selected location). An individual sensor’s 
decisions about role and location assume that if no other 
sensor were to change, the resulting new formation would 
better satisfy the mission objectives. Other sensors do 
change, and invalidate this assumption, but the process 
repeats and iteratively converges. 
 

III.B.1 Implicit Local Model 
 
An implicit local model is a (numerical) function 

given to a mobile sensor that takes as an input the state of 
the swarm (locations) as perceived by the sensor and re-
turns the new location that the sensor should assume. 

Consider for example mapping a leak. A formation 

TABLE II: Operators for Dynamic Activation 

Prestate Poststate 
Operator Active Sus-

pended 
Active Sus-

pended 
Activate A B A and B  
Suspend A and B  A B 
Shift A B B A 
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Fig. 2. A swarm adjusts its execution to meet the mission 
goal. 



that is denser around the edges of the leak than near the 
source gives good definition. So, an implicit local model 
for the sensor would be a function that computes from the 
current formation a location for the sensor that would in-
crease sensor density around the limits of the leak. 

To provide the sensor with an implicit local model, 
we need to understand the characteristics of those emer-
gent sensor patterns that lead to good performance and we 
need to craft the local transformation function that deter-
mines the best change for one sensor given the overall ar-
rangement. Furthermore, since the swarm reconfiguration 
emerges from the decisions of the individual sensors 
without any representation of the global state or goals, the 
design process must include extensive validation of the 
implicit model. Thus, the approach requires rather com-
plex knowledge engineering before deployment. In com-
pensation, the cost incurred by the approach during exe-
cution is minimal, since the sensor only needs to execute 
the transition function once to complete the planning 
process. 
 

III.B.2 Fitness Evaluation 
 
If the construction of a function that generates the 

new location directly is not feasible, a local search ap-
proach may be followed. Our second approach constructs 
a fitness function that translates a given state of the swarm 
(sensor locations) into a fitness value (e.g., a number in 
[0,1]). Thus, the individual sensor may perform a search 
for a nearby peak in the fitness landscape that is spanned 
by the (virtual) variation of its location in the overall 
swarm arrangement. 

In the case of mapping a leak, a useful fitness func-
tion might evaluate how appropriate a given set of sensor 
locations is, given, their current feedback. The individual 
sensor would then seek to improve the quality of the map 
by assuming a new location that results in a more appro-
priate distribution. 

The reasoning process of the individual sensor is still 
partially implicit. Though the use of the fitness function 
now explicitly analyses the global state of the swarm, it 
still includes the implicit assumption that a particu-
lar arrangement will result in good map quality. 
So, from a knowledge engineering perspective, the 
designer still has to understand the link between 
the state of the swarm and the quality of the mis-
sion performance. 

The use of a fitness evaluation of possible 
swarm states results in a higher computational ef-
fort during the execution of the mission. The sen-
sor must generate and evaluate possible formations 
that only vary its own location relative to the cur-
rently perceived arrangement of the other sensors. 
Once it finds a formation with a sufficiently im-
proved fitness, it will take its own location in this 

formation as the goal for its subsequent relocation proc-
ess. 
 

III.B.3 Quality Evaluation 
 

Specifying a metric that explicitly measures the qual-
ity of mission achievement for a given state of the swarm 
is the most explicit approach. Instead of assuming that a 
certain state results in a certain quality, this approach 
translates a given state into an expected outcome and then 
explicitly measures the quality of the result. 

In the case of leak mapping, we would construct a 
simulator that translates a sensor formation into the ex-
pected map. Then we would measure, for instance, the 
contrast or spatial resolution that would be achieved. 

The knowledge engineering process for this approach 
is relatively simple and completely driven by the final 
goal of the respective mission. The design includes mod-
eling the process of mission execution (the map acquisi-
tion and sensor processing) and the specification of mis-
sion quality metrics. 

Depending on the computational cost of predicting 
the outcome for a particular swarm state, the execution of 
the mission optimization process can be very expensive. 
As in the case of the fitness evaluation of a given state, 
each sensor performs a search across possible formations, 
but rather than applying a single function, the sensor must 
first estimate the mission outcome and then apply the 
quality metric. 
 

III.B.4 Summary of Optimization Methods 
 
If we deploy swarms of many simple sensors to per-

form an extended mission, we need to endow the swarm 
with the ability to adapt its mission execution based on 
the quality of the quality of the goal achievement. The 
autonomy of the sensors and the limited availability of 
processing and communications resources as well as the 
uncertainty and noise in the interactions with the physical 
environment (sensing and acting) require that the individ-
ual sensor change its behavior locally to improve the 
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Fig. 3. Three approaches to mission quality optimization. 



overall mission performance. 
Fig. 3 summarizes our three approaches to local op-

timization of the mission performance. They vary in the 
degree to which the individual sensor must be aware of 
the current mission quality and means to improve it. En-
dowing the sensor with an implicit local model results in 
the fastest and simplest execution of the swarm, but re-
quires a significant effort in designing and validating the 
model. Using a fitness function that evaluates the quality 
of a given formation with respect to the implicitly as-
sumed mission performance relieves the designer of the 
burden of constructing a complete model since it applies a 
heuristic search on potential alternatives, but still requires 
off-line specification of what a “good” swarm state would 
be. The simulation of the outcome produced by alterna-
tive states restricts the knowledge engineering to the de-
scription of the operation of the system, but then requires 
the sensor to figure out the link between the process and 
appropriate optimization strategies. 

The specific characteristics of the three proposed ap-
proaches suggest the following simulation-based transi-
tion path. In the first stage, we apply our knowledge of 
the general process to optimize the mission performance 
based on the quality evaluation approach (simulate out-
come and measure quality). We then perform extensive 
simulations of the intended mission and characterize the 
swarm states that result in good mission performance 
(e.g., preferential allocation of sensors to the boundary of 
a leak). Based on this characterization, we construct a fit-
ness function that measures the degree to which a given 
state deviates from the description of a “good” state. We 
replace the prediction and quality metric with the fitness 
function and validate its performance in the simulation. 
Finally, we analyze the nature of 
the relocation decisions that the 
individual sensor makes and con-
struct and evaluate the implicit lo-
cal model from which the “good” 
global states emerge. At this point, 
the computational effort required 
for the execution of the mission 
optimization is sufficiently small 
to deploy the decision logic onto a 
real resource-constrained sensor. 
 

III.C Inspiration from Natural 
Systems 

 
Our approach to autonomous 

coordination among multiple enti-
ties is based on principles from 
biological communities, which we 
have outlined elsewhere.13 TABLE 
III gives examples of the kinds of 
behavior that these techniques can 
support. Broadly speaking, these 

techniques achieve self-organization in multi-agent sys-
tems by way of local interactions. 

Elsewhere, we have reported how these techniques 
can be applied to such practical problems as coordinating 
manufacturing operations,14 planning paths and decon-
flicting airspace for UAV’s,2 and recognizing patterns in a 
distributed sensor network without central processing,3 
and compared our approach (based on agent interactions 
through a shared environment) with others.1 

 
IV A SPATIAL COORDINATION EXAMPLE 
 
As an example, we describe a swarming architecture 

to do leak detection, mapping, and perimeter control for a 
nuclear facility. In this scenario, the swarm must achieve 
four objectives that require different behaviors on the part 
of individual UAV’s. 

In searching, it must effectively cover a large search 
space. Fixed sensors are installed at critical locations, but 
there are not enough fixed sensors to monitor all potential 
leak locations (e.g., long pipe runs). Thus mobile sensors 
supplement the fixed sensor network. A sensor in search 
mode compares its readings with a threshold to determine 
whether it should report a potential leak or not. This 
threshold may be determined statically, but more robust 
results can be obtained if the sensor sets its threshold 
based on reports from its nearest neighbors.15  

When one sensor detects a leak, it announces its loca-
tion, and sensors that receive this announcement begin 
mapping. In this phase, mobile sensors seek to distribute 
themselves along the boundary of the leak by comparing 
readings from their neighbors and moving to a location 
where neighbors on one side sense radiation while 

neighbors on the other side do not. 
Stationary sensors perform addi-
tional processing and communica-
tion to determine whether they are 
internal to, on the boundary of, or 
external to the contaminated area. 

Once a leak has been detected 
and mapped, a subset of sensors 
assume the role of sentries. Mo-
bile sensors that move back from 
the perimeter join fixed sensors 
that are a minimal distance from 
the perimeter of the leak. Sentry 
sensors adjust their location in re-
sponse to changing positions re-
ported by boundary sensors, and 
also activate warning devices to 
alert humans to the danger. 

In addition, individual mobile 
sensors require periodic refueling 
or other maintenance, and the 
swarm must ensure that individual 
vehicle requirements are met 

TABLE III: Natural Examples of Swarming  

Swarming Behavior Entities 
Pattern Generation Bacteria, Slime 

Mold 
Path Formation Ants 
Nest Sorting Ants 
Cooperative Trans-
port 

Ants 

Food Source Selec-
tion 

Ants, Bees 

Thermoregulation Bees 
Task Allocation Wasps 
Hive Construction Bees, Wasps, Hor-

nets, Termites 
Synchronization Fireflies 
Feeding Aggregation Bark Beetles 
Web Construction Spiders 
Schooling Fish 
Flocking Birds 
Prey Surrounding Wolves 
 



without compromising the ability of the overall swarm 
to continue functioning. 

We have defined and implemented swarm coordi-
nation mechanisms for this example. Fig. 4 shows an 
annotated nominal screenshot. Mobile sensors that cur-
rently fill the search role are shown as solid triangles, 
those on their way to refueling are open triangles, 
those that map the current perimeter of a contaminated 
area are open lozenges, and sentries are solid lozenges. 
Solid circles are fixed sensors. 

For each of the four roles in this example, we de-
sign behaviors of individual mobile sensors to achieve 
the overall (system-level) mission objectives. These 
individual behaviors may include direct coordination 
with other sensors, indirect coordination, or no coordi-
nation at all. In the following, we sketch the behaviors 
of mobile sensors as they fill the respective roles. 

 
IV.A Searching 

 
The goal of the mobile sensors in the searching 

role is to cover the space where leaks are possible. Fur-
thermore, the search should be structured to cover ar-
eas with higher leakage probability more often. 

In our example, we assume a simplistic two-
dimensional search space in which the probability of a 
leak decreases proportional to the distance from the base 
of the mobile sensors (“The Facility”). (Real applications 
have more complex topologies.) We define a set of paths 
(trajectories through space) that searching sensors may 
occupy. These paths are circles around the base identified 
by their radius. 

Mobile sensors that decide to assume the searching 
role select one of these paths and start to traverse it. As-
suming for now that mobile sensors are capable of com-
municating with their base station at the central facility, 
we designate the base as the mediator of the path selec-
tion. It is the goal of the sensors to distribute their as-
signments to paths as evenly as possible. Thus, a sensor 
assuming the search role will choose the path with the 
lowest number of sensors already assigned. This informa-
tion is provided by the base, which tracks the assign-
ments. Alternatively, sensors could broadcast their deci-
sions and thus track each other’s choices in a decentral-
ized fashion. 

With an even distribution of sensors to radial paths 
and assuming that the speed of the sensor does not depend 
on the chosen path, areas farther away from the base are 
revisited less often than those closer by. Thus, the swarm 
focuses its attention on higher-probability leakage areas. 
Other probability distributions may require more explicit 
reasoning in the assignment process. 

The sensors furthermore seek to optimize the search 
process by coordinating their progress along the chosen 
path. Depending on how many sensors have signed up for 
a path, there is an optimal distance between the sensors 

that should be achieved to avoid rapid revisits with large 
gaps in between. The sensors communicate (through the 
base) their current position along the path and adjust their 
individual progress based on the observed progress of 
other sensors on the same path. Again, this distribution 
could be achieved by distributed means by propagating a 
message among sensors on the same search path. 

A sensor that detects a potential leak dynamically re-
cruits a mapping team and a sentry team. Agents bid for a 
role in the team based on the match of the sensor’s capa-
bilities with the role’s requirements (hard constraint) and 
the current distance of the sensor to the detected target 
(soft constraint). 

Once roles are assigned, mobile team members adjust 
their locations in response to sensory feedback from their 
nearby neighbors, so that mapping agents assume posi-
tions on the boundary of the leak while sentry agents 
stand back from them and activate warning mechanisms. 
Once a human overseer acknowledges the detection and 
initiates recovery procedures, the team disbands and the 
agents resume their search behavior. 

 
IV.B Mapping 

 
In a dynamically announced mapping mission mobile 

sensors seek to position themselves near the edge of a 
contaminated area in a way that maximizes the spread of 
sensors along this edge. The individual sensor perceives 
the “edge” as a threshold on its own sensor readings dy-
namically adjusted by readings of nearby (stationary and 
mobile) sensors. 
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Fig. 4: Individualistic search strategy 



The mobile sensors coordinate their positions through 
a dynamic force model. Each sensor repeatedly recom-
putes its preferred location, calculating an attractive force 
towards sensors at the edge of the area and repulsive force 
components away from other nearby sensors. It then at-
tempts to move towards this preferred location. 

The integration of the individual movement decisions 
across time with the physical extent of the contamination 
and the arrangement of the static sensors leads to the 
emergence of the desired arrangement of mobile sensors 
along the edge of the contaminated area. 

 
IV.C Guarding (Sentry) 

 
While the sensors that form the mapping team coor-

dinate their positions with respect to the edge of the con-
taminated area and the positions of other mapping team-
mates, the sentry team coordinates its position relative to 
the mapping team. 

Sentries also use a force model to determine their in-
dividual motion. Any mobile sensor inside the contami-
nated area is repelled by the center of gravity (average 
position) of the mapping team. A mobile sensor outside of 
the contaminated area is repelled from nearby members of 
the mapping team, as long as its distance from the closest 
mapping team member is smaller that the required safety 
distance of the sentries from the contaminated area. Oth-
erwise it is attracted to these nearby members. 

 
IV.D Maintenance 

 
To accomplish maintenance, each time a mobile sen-

sor reviews its current role, it evaluates an exponential 
probability distribution over its fuel level. Full sensors 
almost never return for refueling, while almost empty 
ones are highly likely to return. The stochastic nature of 
the decision breaks the symmetry among sensors with 
similar fuel levels, and the swarm stabilizes in a state 
where a fixed proportion is engaged in maintenance at 
any time, assuming similar fuel consumption on the part 
of all sensors. 

 
IV.E Discussion 

 
This example illustrates the utility of the three princi-

ples that we discussed earlier. 
 

IV.E.1 Roles Analysis 
 

A sensor’s shift among search, mapping, sentry, and 
maintenance is a showcase example of the usefulness of 
role-oriented design for high-level agent specifications. 
The code for each sensor includes all three roles, so there 
is no dynamic classification. Dynamic activation is in-
voked in the form of the shift operator between distinct 
roles.The shift from search to mapping or guarding takes 

place only after an agent wins the bidding process. The 
return shift from mapping or guarding to search is unilat-
eral, after a human overseer releases the team. 

 
IV.E.2 Optimization 

 
Our approach uses an implicit local model for opti-

mization. Each sensor’s algorithm is based on our knowl-
edge that the boundary of a leak is defined by a transition 
from high to low sensor readings. The agents do not know 
anything about the quality of their mission performance, 
or how to translate such knowledge into waypoints. This 
level of optimization economizes run-time execution at 
the expense of up-front engineering to determine the pa-
rameters required for effective performance. Such implicit 
models are highly desirable for efficient deployment on 
sensors, especially in support of small inexpensive plat-
forms, and methods for their systematic development are 
an important topic for research. 

 
IV.E.3 Natural Systems Analogs 

 
The use of virtual attractive and repulsive forces in 

mapping and sentry coordination is a direct application of 
environmental coordination mechanisms (sematectonic 
stigmergy) inspired by natural systems, and is inspired by 
an algorithm observed in wolf packs.13 Stigmergic sys-
tems are of particular value in applications that are dis-
crete, distributed, decentralized, and dynamic, and all four 
characteristics are important for our application. These 
algorithms are appropriate systems of discrete entities, 
such as a swarm of sensors. Virtual forces enable distribu-
tion of system knowledge over the swarm, since each mo-
bile sensor may maintain a local map of its vicinity, and 
decentralization, since all sensors are peers in the 
coordination algorithm, making the system robust to loss 
of any individual platform. Perhaps the most important 
benefit of stigmergic techniques in this application is their 
support for dynamic environments. A given sensor’s envi-
ronment (which includes the other members of the 
swarm) is constantly changing, and coordination mecha-
nisms based on traditional knowledge bases face a huge 
challenge in maintaining consistency. Virtual forces are 
constantly recomputed, disposing any information that is 
not being reinforced by current observation, and thus 
automatically discard obsolete information. 

 
V CONCLUSION 

 
An important application for swarming coordination 

is coordinated sensing tasks. We have developed a suite 
of design principles and algorithmic approaches to this 
coordination, and demonstrated their effectiveness in 
software simulations.16 
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