
1

Controlling Mobile Robots with Distributed
Neuro-Biological Systems

Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian
School of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3430, USA

Email: seguti,nalini @ics.uci.edu
Alfredo Weitzenfeld

Computer Engineering Department, ITAM
Rio Hondo 1, San Angel Tizapan

Mexico City, MEXICO, 01000
Email: alfredo@itam.mx

Abstract— Nature has always been a source of inspiration in
the development of autonomous robotic systems. As such, the
study of animal behavior (ethology) and the study of the under-
lying neural structure responsible for behavior (neuroethology)
have inspired many robotic designs. In general, the complexity of
these behaviors has a direct impact on robot efficiency. For ex-
ample, behaviors involving neural network based adaptation and
learning can become very inefficient under real-time processing
constraints. To overcome these constraints, autonomous mobile
robots need either powerful hardware, or alternatively, have to be
linked to distributed grid-like computer networks using wireless
communication. While the first approach simplifies the overall
robotic architecture, it results in larger and more expensive
robots. On the other hand, the second approach results in
smaller and inexpensive robots, although involving more complex
distributed architectures requiring wireless communication capa-
bilities. The work presented in this paper discusses the challenges
in modeling autonomous robots inspired by biological systems
and our approach to embedding mobile robots to distributed
computational resources.

Index Terms— Neuro-Biological systems, autonomous mobile
robots, multi-level robot control architecture.

I. INTRODUCTION

Many different approaches have been proposed to the con-
trol of autonomous robots including architectures inspired in
biology. There are two general approaches to biologically
inspired robots, one based on ”ethology” (animal behavior)
and the other one based on ”neuroethology” (behavior related
to neurobiological structure) [1]. While both approaches have
inspired different robotic architectures, the neuroethological
approach has the additional benefit of enabling the experimen-
tation of otherwise simulated-only neuroscientific modeling.
By providing with a robotic experimentation platform, many
issues that are oversimplified in simulation can be further
analyzed during embodiment. However, an important concern
with neuroethological robotic experimentation is the require-
ment of real-time performance, a critical issue considering
the expensive nature of neural processing. While powerful
”super” robots could be built, our particular approach has
been to embed smaller and inexpensive robots with low power

requirements into remote networks of computers via wireless
communication. Under such a computing architecture time-
consuming processing can be done remotely in general pur-
pose computers with the advantage of friendly programming
environments that need not be reimplemented into the robots.
A number of such Internet embedded systems have been
developed [2] including many teleoperated robotics [3].

In the case of autonomous robots, time-consuming tasks
can take advantage of the distributed embedded architecture by
doing ”off-board” computing, as in the case of neural networks
and image processing. However, there are a number of issues
that arise from the need to achieve real-time performance
with distributed architectures, such as slow communication,
unreliable transmission, limited bandwidth, disconnectivity
and completely failures. To take advantage of distributed
embedded architectures it is first necessary to overcome re-
strictions in wireless communication. For such purpose, we
have developed a distributed embedded robot architecture
supported by adaptive middleware managing communication,
as well as local and remote resources.

The work presented in this paper discusses the challenges
in modeling autonomous robots inspired by biological systems
and our approach to embedding mobile robots to distributed
computational resources. We describe our current work in
conducting neuroethological robotic experimentation using the
MIRO (Mobile Internet Robotics) system linked to the NSL
(Neural Simulation Language) [4] system with communication
managed by an Adaptive Robotic Middleware (ARM).

II. EMBEDDED DISTRIBUTED ARCHITECTURE

Developing software for autonomous mobile robots is an
error-prone task due to a large number of different methods for
capturing and processing sensor information (multi-resolution
and multi-granularity) and the lack of efficient management
of communication (quality of service, bandwidth, security) in
the presence of routinely interference and failures. As an initial
effort towards our goal, we have developed the MIRO system
as shown in Figure 1. The architecture consists of multiple
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robots, each one connected via wireless communication to its
own particular copy or instance of the neural computational
system. Processing is distributed among the robotic hardware
and the remote computational system. While it is possible to
share robot ”intelligence” among multiple robots, in our partic-
ular applications we have kept the robots ”fully” autonomous
in reproducing neuroethological experimentation. Other appli-
cations could easily take advantage of information sharing (see
[5]). Under our architecture: (i) time-consuming processes are
carried out in the (neural) computational system, implemented
using the distributed NSL system, (ii) sensory input, motor
output and other limited tasks are carried out in the robot
hardware and (iii) communication and data transformation is
managed by the ARM framework.

A typical computation cycle involves the robot initially
sending sensory input (visual and tactile) data to the neural
computational system through the ARM framework, which
optimizes the flow of information (back and forth). The
neural computational system then processes the sensory input
cycling through its neural modules while finally sending motor
output back to the robot. These cycles continue indefinitely
or until some specific task is accomplished. In such a way,
the computational system provides the robot’s ”intelligence”,
while the robot does limited ”on-board” processing.

Fig. 1. MIRO embedded robotic architecture consisting of multiple
autonomous robots linked to their own instance of the distributed
neural computational system. All such instances are connected to
Internet and might be monitored remotely

A. Adaptive Robotic Middleware

The great advantage of a middleware approach is that it
provides with transparent mechanisms to enhance application
response at run-time by automatically reconfigure itself in
order to respond to changes in the environment, a critical
aspect in our embedded real-time architecture, where resource
and power constraints pervade the application. In such a way,
the ARM framework allows specification of communication
requirements in a high level manner that can be later asso-
ciated with low-level specific architectural implementations
using a comprehensive set of basic communication protocols.
That is, the ARM is responsible in determining how, when

and what information should be modified in order to match
communication fluctuations. For example, robots use captured
video as sensory input to visuomotor coordination behavior,
thus bandwidth adaptation is needed to deliver the information
in a manner sensitive to resources available, and entails the use
of media conversion and compression to achieve the desired
results.

The ARM architecture consists of two key components:
(i) the communication manager, which provides and enforces
application level communication requirements, and (ii) the
adaptation manager, which provides adaptation mechanism
operating at different levels of abstraction. In fact, adaptation
can be reactive or proactive. Reactive adaptation is triggered
when failure to achieve intended communication goals is
detected; while proactive adaptation results from detecting that
a better or more efficient communication can be achieved
under the current environment conditions. Hence, when a robot
is deployed, it is equipped with performance monitors that
detect whether or not expected communication requirements
are met. If a failure to meet these requirements is consistently
repeated, the communication manager determines its probable
cause and, depending on its cause, a new set of requirements
are generated using higher level adaptation strategies (supplied
by the adaptation manager) such as increasing or decreasing
the level of the service.

Since specifics of a communication protocol may pose con-
ditions on the system environment that prevent or constraint its
combination with other communication protocols, we leverage
from our previous work [6] a generic rule base, which is used
as an oracle to determine which protocol implementation is
suitable for a particular situation in terms of coverage and
efficiency. Within this oracle, each communication protocol
specification is enhanced with (i) a list of prerequisites or
dependencies of the protocol in terms of other protocols, (ii)
a list of restrictions that prevent the protocol to be composed
with other protocols, and (iii) a list of interaction parameters
that can be tuned to assure proper interaction with other
protocols.

The communication manager is structured in five com-
ponents: (1) the oracle, (2) a possible set of communica-
tion protocols used to customize the communication between
the robot and the computational system, (3) a protocol in-
staller/uninstaller module capable to install or uninstall com-
munication protocols dynamically, (4) a protocol loader mod-
ule capable to initialize or save the state of the communication
protocol in case of installation or un-installation (respectively)
and (5) a resident communication module running in the robot.

Every protocol installed as well as the resident commu-
nication module have performance monitors and a set of
parameters that can be tuned to improve their performance.
In the robot, every communication is logged with specific
information that is (eventually) shipped to the adaptation
manager, which consolidate the information with the measure-
ments taken in the computational system and cross-reference
it with the battery monitors (robot and camera) measurements
in order to estimate power consumption and communication
performance based on communication patterns. Strategies and
policies are encoded in a pattern repository used by the
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adaptation manager as a helper to determine possible actions
in case a change is required (whether is reactive or proactive).

Figure 2. shows the relationship between the communica-
tion and the adaptation manager components using a secure
compressed video capture as a communication requirement. In
the figure, the communication manager receives the commu-
nication requirement and consults the protocol oracle to select
the appropriate communication protocols and their correct
interaction parameter values. When the interaction parameters
have been set, it request the protocol installer to install the
corresponding protocols and the protocol loader to instanti-
ate the protocols with the specified interaction parameters.
Once the protocol is running, performance monitors gather
information that the adaptation profiler uses to determine if a
modification is required. In case an adaptation is needed, the
adaptation profiler consult the adaptation repository, fetchs the
most suitable strategy or pattern to be applied and sends it to
the communication manager to be implemented.

Fig. 2. Communication and adaptation manager components and their
interaction using a secure compressed video capture requirement.

III. BIOLOGICALLY INSPIRED MOBILE ROBOTS

As part of our effort to get an understanding of the under-
lying biological mechanisms involved in living organisms we
have been followed a multi-level approach to brain theoretic
neural modeling [7]. We have developed many neurobiological
models for frogs and toads, praying mantis and monkeys,
where models distinguish among high-level behavior and low-
level neural structure [8].

At the behavioral level, neuroethological data from living
animals is gathered to generate single and multi-animal sys-
tems to study the relationship between a living organism and
its environment, giving emphasis to aspects such as coopera-
tion and competition between them. Examples of behavioral
models include the praying mantis Chantlitaxia (”search for
a proper habitat”) [9] and the frog and toad prey acquisition
and predator avoidance models [10]. We describe behavior
in terms of perceptual and motor schemas [11] representing
a hierarchical and distributed model for action-perception
control.

At the structural level, neuroanatomical and neurophys-
iological data are used to generate perceptual and motor
neural network models corresponding to schemas developed
at the behavioral level. These models try to explain the un-
derlying mechanisms for sensorimotor integration. Examples
of neural network models are the toad’s tectum-pretectum-
thalamus responsible for discrimination among preys and
predators [12], the prey acquisition and predator avoidance
neural models [13] and the toad prey acquisition with detour
behavior model involving adaptation and learning [14]. Neural
networks are processed via the Neural Simulation Language
NSL [4]. Models that involve neural networks are usually
limited in scope as in [15], while more complex models
are simplified in terms of their inherent neural complexity
[16]. For example, let us consider the toads ”prey-predator”
visuomotor coordination model described in [8], with schema
and neural level components shown in Figure 3.

Fig. 3. Toad’s prey-predator visuomotor coordination model ar-
chitecture with schema and neural level modules. At the schema
level, blocks correspond to schemas or behavior agents representing
animal or robot behavior. At the neural level, blocks represent neural
networks, some having a direct correspondence to brain regions

IV. EXPERIMENTS AND RESULTS

As part of the process of robot experimentation we have
modeled prey acquisition and predator avoidance neuroetho-
logical behaviors initially simulated under NSL where their
correctness is first tested. After that, the models are prototyped
under the MIRO robot architecture to test their behavior under
real world conditions. To monitor system results, Internet-
linked aerial cameras as well as robot cameras were included,
as show in Figure 4 (top), with neural behaviors visualized
(down) as the actual experiments are performing. Obviously
there is an additional penalty to pay in performance when
doing real time visualization, although it is well worth during
model development or fine-tunning. The MIRO architecture
has proven quite beneficial in providing real-time monitoring
capabilities of robot behavior.

Figure 5 shows a sample output for one of the experiments,
involving prey acquisition with a 10cm barrier showing direct
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TABLE I

AVERAGE POWER CONSUMPTION OF THE VIDEO CAPTURE USING

DIFFERENT CONFIGURATIONS.

Frame Resolution Frames per Second Avg. Power (W)
320x240 15 5.86
340x160 15 5.60
160x120 15 5.30

detour. The experiment was carried out on a single Lego-based
robot connected in a wireless fashion to the MIRO system. A
wireless camera was added on top of the robot transmitting
video in a wireless fashion to remote video capture server
using the ARM framework. The video capture server is located
in the computational system, but not necessarily in the same
domain where NSL is running. In this scenario, the ARM is
divided in a resident ARM module (running in the robot) and
a video receiver ARM module co-allocated with the video
capture server.

Since the video data is used as a sensory input to determine
the robot’s behavior, timeliness of delivery of the video data
is required to assure that any action taken based on this
information will not compromise the robot’s (safety) operation.
Thus, the resident ARM module minimizes video transfer
latency by modifying the video capture parameters such as
frames per second, image quality, and compresses the video
data before sending it to the ARM video receiver, which needs
to convert the data before delivering it to the image processing
component for object identification and localization. Object
identification is achieved by dividing the image into (color
based) regions, which we call region of interest. Since each
region may contain multiple objects, filters are applied to the
image within each region in order to detect color disconti-
nuities. Once the objects have been identified and classified,
the information is transformed to a suitable format for further
processing by NSL.

Initially, we set up the prey-like stimulus to ”blue” and
Predator-like stimulus to ”red”. Thus, every blue object recog-
nized by the robot will generate an attraction field represented
as a positive stimulus; while every red recognized object will
generate a repulsive field represented as a negative stimulus.
For the time been, static object recognition will generate
a passive field represented as zero stimulus that only will
change to a positive value if the robot’s collision sensor is
activated. Table I shows the average power consumption of
the video capture using three different configurations used in
the experiments.

Among the interesting aspects that have emerged from the
robot experiments is the problem of ”losing” the prey once the
robot directs itself around the barrier, something that was not
considered in the original simulated models. While this was
solved by a ”pan” control on the camera, where the camera
can always ”look” into the prey, it raises an interesting number
of issues such a recalling prey positions from memory such
as with memory saccade models [17].

V. RELATED WORK AND CONCLUDING REMARKS

In the past years a number of research efforts have been
carried out to link autonomous robots with Internet, such
as Xavier [18], Rhino [19], Minerva [20], KephOnTheWeb

Fig. 4. Top: Internet aerial view of autonomous robot and robot’s
camera view of ”blue” prey-like stimulus. Down: NSL frames show-
ing results from different visual and neural modules in a basic prey
acquisition robot experiment (without barrier).

Fig. 5. Results from prey acquisition experiment for 10cm barrier
with direct detour around barrier.

[21], as well as others [22]. These efforts have highlighted
the potential of Internet when applied to autonomous robots
(and robotics in general) as well as some of its limitations.
The benefits are direct access (control and monitoring) to
sometimes expensive and/or remotely located equipment, such
as with the Mars Pathfinder Sojourner Rover [23]. While many
such robots are teleoperated, the possibility to link autonomous
robots to the Internet has the benefit of being able not only to
monitor its behavior but also enhance it by linking it with other
specialized systems having additional processing resources.

The work presented here overviews the inherent complexity
in modeling autonomous robots inspired by biological systems
both in terms of behavior and structure. This complexity can
be managed by having a multi-level architecture emphasizing
both top-town and bottom-up designs where robot behaviors
can be implemented by neural network processing when
available. In general, one of the main concerns with neural
networks has been the expensive nature of computation, in



5

particular, when involving adaptive behavior [14]. To improve
on performance and reduce the size and cost of robots, we
have developed an embedded distributed robot architecture.
While most time-consuming tasks can take advantage of the
distributed robotic system by processing them remotely, there
are a number of ”behavioral” or ”task” issues that arise from
such a distributed architecture. The main consideration is
what happens when communication between the robot and
computational system fails or becomes extremely slow. This
may be caused by a number of potential problems, such as lack
of wireless service, low bandwidth, switching among multiple
access points, low power or even failures in robot hardware.
While some situations may cause a complete failure of the
robot, others could be handled. In fact, the robot could respond
in many ways to a failure in communication ranging from
simply waiting without doing anything until communication
is restored, ending its mission, up to performing limited tasks
that may put it back in action, such as the ”Chantlitaxia” model
[9].

The experimental results were both remarkable and en-
couraging, considering the simplicity of the methods used
for feature detection and extraction (color-based regions of
interests). Further experiments are needed in order to estimate
the robustness of object identification under varying lightning
conditions and invariance regarding object backgrounds.

Until now, the general approach has been to process each
neural level module in a different machine, while schema
level modules are assigned to the machine close to the cor-
responding neural modules they communicate with. Yet, new
challenges arise in integrating neural modules, such as the use
of different temporal scales, something that requires additional
considerations.
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