
Miro
Manual

Version 0.9.4

January 10, 2006

2

For more paintings, see http://www.bcn.fjmiro.es/

Contents

1 Introduction 9

1.1 The Miro Group . 10

1.2 Miro Directory Structure . 10

2 Definitions 13

2.1 Units . 13

2.2 Coordinates . 13

3 Using Miro 15

3.1 Starting the CORBA Naming Service 15

3.1.1 Naming Service Lookup by IP-Multicast 15

3.1.2 Naming Service Lookup by Environment Variable 16

3.1.3 Naming Contexts . 16

3.2 Starting Services . 16

3.3 Starting Client Programs . 17

4 Available Services 19

4.1 Command Line Options . 19

4.2 Individual Interfaces . 20

4.3 Asynchronous Sensory Information 21

4.4 B21 . 22

4.5 Sparrow . 23

4.6 Pioneer . 24

4.7 Frame Grabbers and Digital Cameras 24

4.8 SICK Laser Scanner . 24

4.8.1 Possible Problems . 26

4.9 DoubleTalk Speech Card . 26

4.10 Directed Perception Pantilt . 26

3

4 CONTENTS

4.11 Global Positioning System . 26

4.11.1 Generic GPS receivers . 27

4.11.2 Star Track GPS receivers . 27

5 Test and Example Programs 29

6 Writing Your First Programs 31

6.1 Makefiles . 31

6.2 A Simple Sonar Client . 32

6.3 Using Namespaces . 33

6.4 Adding Exception Handling . 34

6.5 An Asynchronous Sonar Client . 35

7 Parameter Sets 39

7.1 Overview . 40

7.1.1 End-User Perspective . 40

7.1.2 Programmers Perspecitve . 40

7.2 Configuration Files . 41

7.2.1 Configuration File Syntax . 41

7.2.2 Example Configuration . 42

7.3 Parameter Set Generation . 43

7.3.1 Description File Syntax . 43

7.3.2 Example Description . 44

7.3.3 MakeParams . 45

7.3.4 Example Header File . 45

7.3.5 Makefile magic . 45

7.4 Configuration Management Runtime Environment 45

7.5 Config File Editor . 45

8 Video Image Processing 47

8.1 Video Device Access . 47

8.1.1 Bttv Frame Grabbers . 47

8.1.2 Firewire Digital Cameras . 48

8.1.3 Matrox Meteor Frame Grabbers 48

8.2 Video Filter Trees . 48

8.3 VideoService . 49

CONTENTS 5

8.3.1 VideoService Parameters . 49

8.3.2 Video Filter Parameters . 50

8.3.3 Video Device Parameters . 51

8.3.4 Basic Video Filters and Their Parameters 52

8.3.5 Configuration Example . 52

8.4 QtVideo . 53

8.5 Video Interface . 54

8.5.1 Location Transparent Image Access 54

8.5.2 Local Image Access . 54

8.5.3 C++ Helper Classes . 55

8.5.4 Example Video Client . 55

8.6 Video Broker Interface . 57

8.6.1 Synchronised Image Access 57

8.6.2 Filter Tree Meta Information 57

8.7 Writing Filters . 57

8.7.1 The Filter Base Class . 58

8.7.2 Methods to Overwrite . 58

8.7.3 Configuration and Parameter Processing 58

8.7.4 Enabling and disabling features 59

8.7.5 Filter Meta Information: FilterImageParameters 59

8.7.6 Example Video Filters . 59

8.7.7 Calculating a Gray Image . 60

8.7.8 Image time series . 60

8.8 Writing a new Input Device . 60

8.8.1 BufferManger . 60

9 Group Communication in Robot Teams 61

9.1 Event Channel Federation . 61

9.2 Notify Multicast . 61

9.3 Usage . 62

9.3.1 Parameters . 62

10 Logging 65

10.1 Log Levels and Categories . 65

10.2 Run-Time Configurability . 66

6 CONTENTS

10.3 Usage in Source Code . 67

10.3.1 Miro::Log . 67

10.3.2 Macros . 67

10.4 Compile-Time Configurability . 68

10.5 Test and Example Programs . 68

11 Event Channel logging 69

11.1 Logging Client . 69

11.1.1 Parameters . 69

11.2 Standalone Logging Client . 70

11.2.1 Command Line Parameters 70

11.3 LogPlayer . 70

11.3.1 Main Panel . 70

11.3.2 Menu . 71

File Menu . 71

Edit Menu . 71

Events Menu . 71

Tools Menu . 71

Settings Menu . 71

11.4 File Format . 72

11.5 Test and Example Programs . 73

12 Behaviour Engine 75

12.1 The Concept of Behaviours . 75

12.2 Introductory Examples . 76

12.3 Example Usage . 77

12.3.1 The Behaviour Control Loops 77

12.4 Arbiters and Messages . 78

12.4.1 MotionArbiter . 78

12.5 Implementing a Behaviour . 79

12.5.1 Miro::TimedBehaviour . 79

12.5.2 Miro::EventBehaviour . 80

12.5.3 Miro::TaskBehaviour . 80

12.5.4 Behaviour Parameters . 80

12.5.5 Behaviour Initialization . 81

CONTENTS 7

12.5.6 Behaviour Activation and Deactivation 81

12.5.7 Changing Behaviour Parameters within an Action Pattern . . 81

12.6 Arbiters . 82

12.7 Building Action Patterns . 82

12.7.1 The Policy File . 82

12.7.2 The Repositories . 83

12.7.3 The Behaviour Factory . 83

12.7.4 The Behaviour Engine . 83

12.8 The Policy Editor . 83

12.8.1 The Menu . 84

File . 84

Options . 84

Help . 84

12.8.2 Editing the Policy Graph . 84

12.8.3 Describing the Available Behaviours 86

12.8.4 Example Behaviour Description File 86

12.8.5 Auto-generating Parameter Class Code 86

12.9 Policy Controller . 86

12.9.1 The Menu . 86

File . 86

Edit . 87

13 Writing a Miro Service 89

13.1 High-Level Server Programming . 89

13.1.1 Copy the Miro server template directory 89

13.1.2 Describing an interface in IDL 90

13.1.3 Translating the IDL description to C++ 90

13.1.4 Implementing your own methods 90

13.2 Low-Level Server Programming . 90

13.2.1 The Device Framework . 91

Connection . 91

EventHandler . 91

Consumer . 91

13.2.2 The Configuration Framework 91

13.2.3 Parameter . 91

8 CONTENTS

13.2.4 XML parsing . 91

13.2.5 The Reactor and Events . 91

13.2.6 Using Tasks . 91

13.2.7 Thread/Task Synchronization 91

13.2.8 ACE logging . 91

13.2.9 A Simple Example . 91

A Miro installation 93

A.0.10 Requirements . 93

A.0.11 Download . 94

A.0.12 Compilation . 94

A.0.13 Installation . 96

A.0.14 Additional make targets . 97

A.0.15 Developer information . 97

B ACE and TAO Installation 99

C Project setup with Automake and Autoconf 101

C.1 Introductory Example . 101

C.2 Create configure.ac . 102

C.2.1 Tests for more complex packages (and facilities) 103

C.3 Create Makefile.am for directories, libraries and executables 103

C.3.1 Makefile.am.dir . 104

C.3.2 Makefile.am.bin . 104

C.3.3 Makefile.am.qt . 104

C.3.4 Makefile.am.lib.a . 104

C.3.5 Makefile.am.lib.so . 104

C.3.6 Conditionally Compiled Sub-projects 105

C.3.7 Create other Makefile.am . 105

C.3.8 Make-rules . 105

C.4 Build the beast . 105

C.5 Additional sources of help . 106

Chapter 1

Introduction

Miro is a distributed object oriented framework for mobile robot control, based
on CORBA (Common Object Request Broker Architecture) [5] technology. The
Miro core components have been developed in C++ for Linux. But due to the
programming language independency of CORBA further components can be written
in any language and on any platform that provides CORBA implementations.

The Miro core components have been developed under the aid of ACE (Adaptive
Communications Environment) [7, 8], an object oriented multi-platform framework
for OS-independent interprocess, network and real time communication. They use
TAO (The ACE ORB) [6] as their ORB (Object Request Broker), a CORBA im-
plementation designed for high performance and real time applications. Therefore
Miro should be easily portable to any other OS, where ACE and TAO run on. These
are many Unix clones, Windows NT and some real time operating systems.

Miro is currently available for the RWI B21 platform (pre rflex), the Activmedia
Pioneer family (namely the Performance PeopleBot), and the viSparrow architec-
ture developed at the University of Ulm. We are convinced, that other ports can
be done straight forward.

Miro was built since the existing robot control architectures didn’t suffice our needs
of usability, reliability, scalability and portability.

We used C++ due to its advantages in big projects, since it was especially designed
for big projects. We have learned the hard way, that this is a serious requirement,
for projects like a mobile robot control architecture.

We use multi processing, multithreading and the CORBA technology since most
robotics applications are inherently concurrent and distributed. The hardware de-
vices, like sensors and actuators run concurrently and due to the constant lack of
computing power especially in computer vision, tend to reside on multiple com-
puters. And as soon as cooperative behavior of multiple autonomous robots is of
interest, the system as a whole is distributed anyways.

And last but not least we use ACE and TAO since these are multi platform, high
performance libraries which proved to be very sophisticated in terms of usability,
portability and scalability. — Additionally, they are open source libraries. They
haven’t disappointed us yet, to the contrary.

9

10 CHAPTER 1. INTRODUCTION

1.1 The Miro Group

The Miro core developers are (in alphabetical order):

• Stefan Enderle

• Gerhard Kraetzschmar

• Gerd Mayer

• Guillem Pages

• Stefan Sablatnög

• Steffen Simon

• Hans Utz

1.2 Miro Directory Structure

Miro comes with the full source code and documentation as well as a set of test
programs and examples that should facilitate your first steps when writing your own
programs. To help you navigate through the directory tree of a Miro distribution,
we give a brief overview of the directories present in the Miro root directory:

bin: This directory contains links to the binaries of Miro. For an explanation of
the individual binaries, see Chapter 4 about the robot services.

botsvcs: Higher level robot services. This is were platform independent stuff for
autonomous mobile robot programming should go. Currently it hosts a frame-
work for hierarchical behavior programming and one for particle filter based
Monte Carlo self localization.

doc: Here, the available documentation is gathered. In the subdirectory tex you
find the postscript version of this manual and in the directory html resides the
auto generated online documentation of all Miro classes and their methods
(the starting page of this documentation resides at:
$MIRO ROOT/doc/html/idl/index.html respectively
$MIRO ROOT/doc/html/cpp/index.html).

etc: Config files for the individual robots. While these are xml-based configuration
files, using the ConfigEditor will surely facilitate their editing.

examples: Examples on how to use individual interfaces of Miro. If you want to
write your own programs utilizing the Miro framework, this is a good place
to look for inspirations.

idl: The IDL sources of the CORBA interfaces and data types.

performance-tests: Some tests that measure the performance of Miro’s services.
— Not too much there at the moment.

scripts: Utilities for source code formatting and handling sequences of datafiles.

src: Here, all sources of the Miro services reside. New services for further robot
platforms should go in here.

1.2. MIRO DIRECTORY STRUCTURE 11

templates: Templates for Makefiles and the headers for source files. Copy the
corresponding template, if you want to start a new subproject within the
Miro source hierarchy. If you start your own new project on top of Miro, the
Makefile templates might still be useful for you. They handle all the stuff
concerning ACE/TAO and the multi-platform build process. See Chapter 6.1
for details.

tests: Small test programs to monitor or test isolated interfaces of the Miro robot
control architecture.

utils: Utilities made for convenience. No magic to be expected here, but some
really cool graphical editing facilities.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Definitions

2.1 Units

When it comes to parameter passing, distances are specified in mm and angles in
radiant. Velocities are specified in mm/s and rad/s respectively.

There have been discussions recently to unify the data formats used in the differ-
ent robot programming environments, such as Player/Stage, OROCOS, Orca, etc.
Miro supports this idea and therefore we will most probably switch to the general
“kilogram, second, meter” system in the near future. As long as not documented
otherwise, the basic data type for specifying these values will be a float value (IEEE
floating point value of 32 bit).

2.2 Coordinates

Miro uses the cartesian coordinate space. Angles are specified mathematically, that
is, counter-clock wise, using radiant.

13

14 CHAPTER 2. DEFINITIONS

Chapter 3

Using Miro

In order to use Miro programs, the following steps have to be performed:

• start the naming service

• start the services

• start the client program(s)

These steps are described in the following.

3.1 Starting the CORBA Naming Service

The CORBA naming service is some sort of telephone book service for the lookup of
remote objects. Its organized like a file system. All entries in the naming service can
be either object references, the pointer to a remote object, or naming context refer-
ences that point to another subdirectory of the naming service. All CORBA objects
of Miro are registered by name at a CORBA naming service. In the Miro project,
the TAO implementation of the CORBA naming service is used and therefore must
be started before any service is run.

The TAO naming service is started by the following command:

cd ${TAO ROOT}/TAO/orbsvcs/Naming Service
./Naming Service

In order to get debug messages it can also be started like this:

cd ${TAO ROOT}/TAO/orbsvcs/Naming Service
./Naming Service −ORBDebug −ORBDebugLevel <level>

where <level> is a debug level of 1 to 10 (10 gives most debug information).

3.1.1 Naming Service Lookup by IP-Multicast

Programs that use the TAO ORB can locate the naming service by IP multicast as
long as it resided in the same subnet, or within the same multicast group. This is

15

16 CHAPTER 3. USING MIRO

a special (proprietary) feature of the TAO naming service. You have to enable this
feature explicitly by the command line option -m 1. To avoid conflicts, there should
only be one naming service in a subnet. To make sure no other naming service is
active or to check the entries in an active naming service, TAO provides a utility
called nslist. It can be started by calling:

${TAO ROOT}/TAO/utils/nslist/nslist

It lists the contents of the currently running naming service and returns an error,
if no naming service is found.

3.1.2 Naming Service Lookup by Environment Variable

Additionally it is possible to not use the multicast feature of the TAO naming
service and provide the IOR of the naming service as command line arguments or
via environment variables to any program that uses TAO. This is explained in detail
in the TAO documentation under:

${TAO ROOT}/TAO/docs/INS.html

Note, that for retrieving the IOR of an already running naming service the little
tool nsIOR resides in the bin directory of Miro.

You can also tell the Naming Service to listen to a specific endpoint instead of
choosing its own by the use of the -ORBEndpoint command line option. Ensuring
that the IOR of the naming service is the same, after each restart.

\${MIRO ROOT}/scritps/naming service

is a small init script for the SuSE Linux distribution, that can be installed in
/etc/rc.d for starting the naming service automatically at boot time.

3.1.3 Naming Contexts

To provide the possibility to operate multiple robots in parallel, Miro uses the
concept of naming contexts to distinguish between services of individual robots.
One can imagine naming contexts as different folders, entries in different folders do
not interact. The default naming context Miro services use is Miro. The canoni-
cal naming convention in a multi robot scenario is, that every robot uses its own
name. Therefore every Miro service and client accepts an additional command-
line argument that sets the naming context: -MiroNamingContext <name>. Or as
short form: -MNC <name>. To access services of different robots simultaneously, the
naming context has to be specified for the resolution of each individual service (see
Chapter 5).

3.2 Starting Services

When the naming service is running and can be accessed from all machines, the
most difficult part of the setup of the distributed system environment is mastered.
From now on we are back to the unbounded problem set of robotics.

3.3. STARTING CLIENT PROGRAMS 17

Simply change to the directory $MIRO ROOT/bin and start the service you want
to run. For example b21Base, laserServer, videoService, dpPanTilt. For an
extensive list of all available services see Chapter 4. Since the services depend on
the *.conf files provided in this directory, strange effects are bound to occur if
the services are started from a different directory. Keep in mind, that the hard-
ware dependent services must run on the computers the corresponding hardware is
attached to.

When a service is ended disgracefully, it probably doesn’t deregister its interfaces at
the naming service. This will prevent the restated service from registering the new
interface references. TAO provides a utility to manually remove references from the
naming service.

${TAO ROOT}/TAO/utils/nslist/nsdel

But Miro also provides a command line option to force the service to rebind the
interface: -MiroRebindIOR.

For a complete list of command line option see Chapter 4.1.

3.3 Starting Client Programs

Miro comes with a rich set of client programs and utilities that help you to explore
the robots sensory and actuatory devices. Starting a client program is basically the
same as starting a service. Just change to the directory $MIRO ROOT/bin and start
whatever you want. Since these programs aren’t bound to specific hardware devices
they can be run on almost any machine.

Note, that to address a service that is registered within other than the default nam-
ing context at the naming service you also have to provide the -MiroNamingContext
context argument at the command line (in short -MNC context).

18 CHAPTER 3. USING MIRO

Chapter 4

Available Services

The Miro framework abstracts the robots hardware devices as active services, that
export the sensors and actuators functionality via CORBA interfaces that can be
accessed transparently from other programs, probably running on totally different
machines. Which services there are available depends on the individual robot type.
To provide easy access to the services interface, each service registers itself under
a standard name at the CORBA Naming Service. To allow multiple robots to be
accessed at a time, each individual robot creates its one naming context within
the Naming Service under which its services register. The default naming context
is Miro, but a given robot should register itself under its own name (for example
stanislav). The naming context to use can be specified at the command line of
every service and example program via the -MiroNamingContext option.

4.1 Command Line Options

For each service the following command line options can be specified:

-MiroConfigFile fileName: The services are widely configurable. These param-
eters are specified in config files within the directory $MIRO ROOT/etc. The file
name is derived from the computers $HOST environment variable: $HOST.xml.
If you want to specify another configuration file, you can do with this com-
mand line option.

-MiroNamingContext contextName: The short form of this option is -MNC.
As mentioned before all services register their interfaces at the naming service
within a naming context. The default naming context is Miro. In multi
robot scenarios for instance it would be necessary to assign a different naming
context to each robot. This can be done by this command line option. Note
that since it is necessary to specify none default naming context names also
at the client side, this option is also recognized by every client program.

-MiroRebindIOR: To prevent services from different robots to accidentally dereg-
ister each other from the naming service, an already existing entry in the nam-
ing service isn’t unbound by a service, if it tries to register under the same
name. Anyhow, if you need to overwrite an existing entry, specify this option
at the command line.

19

20 CHAPTER 4. AVAILABLE SERVICES

4.2 Individual Interfaces

In the following, we list the different services and their interface names in the
naming service, all interfaces are registered within the specified naming context in
the naming service. For multi robot scenarios the canonical naming convention for
the individual robots naming contexts is the robots name. Don’t get confused by
the fact that many services are collocated within a single binary, while for others
there exists a dedicated binary. Note that in general the specialized interfaces of
individual robots register at the Naming Service under their ancestors name. The
interface documentation can be looked up within the Miro reference and in the Miro
online documentation as well. For some services specializations for individual robot
types do exist. Those are described in the subsequent sections.

Odometry: The motion service registers the Miro::Odometry interface as Odometry.
It encapsulates the odometry (dead reckoning) sensor.

Motion: The motion service registers the Miro::Motion interface as Motion.

RangeSensor: The range sensor interface is the general abstraction of all range
sensor devices, such as sonar, laser range finders etc. It offers a method for
querying the sensors physical configuration as well as the latest sensor reading.
See the QtRangeSensor program in the utils directory for an example on how
to use this information. The range sensor interface becomes registered at the
naming service under the name of the actual sensory device.

Sonar: The sonar service registers as Sonar. It provides an interface to the
very common ultrasonic sensors for robots.

Infrared: It registers as Infrared.

Tactile: Some robots have bumpers as some sort of ”it’s too late” sensors.
Still it is better to stop when you crashed than just moving on. It is
registered as Tactile. Since it can be interpreted as a (very limited)
range sensor, it is also a Miro::RangeSensor.

Laser: The laser scanner service registers as Laser. It provides very accurate
180? distance measurements, with up to 48Hz.

Stall: Similar to the bumpers, the stall detection monitors the robots motion and
detects, when the robot is stuck in its movement. The Miro::Stall interface
registers at the naming service as Stall.

Video: The video service registers the Miro::Video interface as Video. It pro-
vides camera images at a rate of up to 25 images per second captured by
frame grabber cards. Currently supported are matrox meteor and cards that
are supported by video for linux (bttv8). Since the bandwidth needed for un-
compressed image data transportation exceeds the capabilities of most todays
network devices and even memory copying can introduce excessive overhead,
the video service enables access to the grabbed images via shared memory
keys.

PanTilt: Cameras often are mounted on top of a pan-tilt unit, allowing the robot
to look sideways while moving in another direction. Lightweight versions
of such a device are panning or tilting units. The associated services register
the Miro::Pan, Miro::Tilt and Miro::PanTilt interfaces as Pan, Tilt and
PanTilt at the naming service.

4.3. ASYNCHRONOUS SENSORY INFORMATION 21

CameraControl: This interface allows to control the optical properties of certain
camera models, i.e. zoom, focus and shutter speed. In addition to the generic
CameraControl interface there are some specialized interfaces for particular
camera models, e.g. CanonCameraControl or SonyCameraControl.

Buttons: For simple user interaction, some robot types provide push buttons. The
buttons service registers the Miro::Buttons interface as Buttons.

Speech: To provide a more natural way of communication, some robots are equipped
with speech synthesizer cards. The speech service registers the Miro::Speech
interface as Speech.

Gps: Some robots may be equipped with a GPS receiver to allow easy and Odometry-
independent positioning. The GPS service registers the Miro::Gps interface
as GPS. Specialized services for particular GPS devices may also register an
extended interface derived from Miro::Gps, e.g. Miro::CtGps.

4.3 Asynchronous Sensory Information

Another feature of the Miro framework is the asynchronous distribution of sensory
data via the CORBA Notification Service [4]. These event channels allow filtered
and priority based event processing for time critical sensory information distribu-
tion under high load. Therefore in every robots naming context exists a reference
EventChannel under which the robots notification service can be accessed.

The usage of the notification service within the Miro framework is explained in
more detail in 6.5. In the following we give only a brief description. The notification
service allows simple event filtering on the bases of the domain name and the type
name of the event. This way the individual consumer can easily subscribe for the
messages it is interested in. As the domain name, the naming context is used
within the Miro framework (note that in a multi robot scenario, an event channel
can transport data from multiple robots). In the following the type names of the
events and the data contained in the event are listed for the individual services:

Odometry: The odometry servant and all derived services generates periodical
Miro::MotionStatusIDL events), that propagate the robots current position
and velocities. The event type name is Odometry.

RangeSensor: The range sensor servant and all derived services can generate peri-
odical range sensor events. The event type name is that of the derived sensor
interface (Sonar, Laser etc.). It is also returned by the getScanDescription
method within the ScanDescriptionIDL struct. The event data is one of
three types, as also specified within Miro::SensorDescriptionIDL.

Miro::RangeScanEventIDL The data of a range sensor that acquires data
in a continuous scan pushes its data within this struct. (Currently, there
does exist no actual sensor that behaves in this way, but anyways...)

Miro::RangeGroupEventIDL The data of a range sensor that acquires
data groupwise pushes its data within this struct. A range sensor group
normally is formed by a set of sensors that are mounted on the same
hight, pointing in different directions. The laser scanners are organized
that way.

22 CHAPTER 4. AVAILABLE SERVICES

Miro::RangeBunchEventIDL The data of a range sensor that acquires
data in a discontinuous fashion pushes its data within this struct. Each
sensor reading contains its own group id as well as its index within that
group. Especially sonar sensor are organized that way, since neighbouring
sensor mustn’t be fired simultaneously to minimize crosstalk.

The event type name is that of the actual sensor: Sonar, Laser, Tactile,
etc. as also specified within Miro::SensorDescriptionIDL.

Sonar: The sonar service generates range sensor events with the type name Sonar.
Note that the sonar sensors are fired interleavingly to avoid crosstalk between
them. Therefore the payload of an event emitted by a sonar device is nor-
mally a RangeBunchEventIDL. That way you have to analyze multiple Sonar
messages to get a full sonar scan.

Infrared: The infrared service generates range sensor events with the type name
Infrared.

Tactile: The tactile service generates range sensor events with the type name
Tactile. Due to the hopefully low frequency at which those events occur
it might be better to listen to the Tactile events, instead of polling the
tactile status. Tactile devices usually contain a RangeBunchEventIDL struct.

Stall: The stall service also emits events. These contain the type name Stall. For
the event data see the individual robots descriptions. Due to the hopefully
rare occasions at which those events occur it might be better to listen to these
events, instead of polling the stall interface.

Buttons: They also provide the event triggered communications model that uses
the event type Button. The events payload is of type ButtonStatusIDL.

Gps: The GPS service sends out events for every position or dilution update re-
ceived from the device. Position updates are denoted by the type name
GpsPosition and carry a GpsPositionEventIDL payload containing updated
information for the global position as well as a local position relative to a freely
placeable reference point. Dilution events contain the type name GpsDilution
and carry a GpsDilutionEventIDL type payload.
Besides that the GPS service is also able to forward selected GPS sentences
received from the device for evaluation by the client. If this feature is enabled
the generated events will contain the GpsSentence type name and carry a
GpsSentenceEventIDL type payload.

4.4 B21

The B21 robot has a large number of available sensors and actuators. The relevant
binaries for its specialized services are:

B21Base: This is a collection of the robots main services. This binary incorpo-
rates the motion service as well as the sonar, tactile and infrared services.
Furthermore it gives access to the four colored buttons, that are mounted on
top of the robot. The corresponding interfaces are:

• Miro::B21Motion
The Miro::B21Motion interface is derived from the Miro::Motion inter-
face and gives access to the specialized movement commands of the B21
robot. It registers under it ancestors name Motion.

4.5. SPARROW 23

• Miro::Sonar
The derived Miro::RangeSensor interface registers itself as Sonar.

• Miro::Infrared
The derived Miro::RangeSensor interface registers itself as Infrared.

• Miro::Tactile
The derived Miro::RangeSensor interface registers itself as Tactile.

• Miro::B21Buttons
The B21 has four buttons, that can be used as a simple user interface.
The Miro::B21Buttons interface is supported by this service. It sends
Miro::ButtonStatusIDL events, if a button is pressed or released.

SickLaserService: This is the service to access the SICK laser scanner. It sup-
ports the Miro::RangeSensor interface.

DtlkSpeech: This service lets you control the DoubleTalk Speech cards. The
interface is named Miro::Speech

VideoService: It gives you access to the two frame grabbers of the robot. It
supports the Miro::Video interface.

DpPantilt: It supports the Miro::DirectedPerceptionPanTilt interface, which
is derived from Miro::PanTilt. It therefore registers itself as PanTilt

Note that the B21 has two internal computers, to which the different sensors and
actuators are attached. You have to start the relevant binaries at the correct com-
puter. The sensory/actuatory distribution in our laboratory is as follows: Start
B21Base and LaserService on the left computer, VideoService and DpPantilt and
DtlkSpeech on the right.

4.5 Sparrow

The Sparrow soccer robots have a similar diversity of sensors and actuators, but for
efficiency and internal design reasons, they are grouped together in less binaries:

SparrowBase: Within this file the following services are grouped together: Mo-
tion, Stall, Kicker, Buttons, Sonar, Infrared and Pantilt. The corresponding
interfaces are:

• Miro::SparrowMotion
The Miro::SparrowMotion interface is derived from the Miro::Motion
interface and gives access to the specialized movement commands of the
Sparrow robot. It registers under it ancestors name Motion.

• Miro::Stall
The Miro::Stall interface is registered as Stall.

• Miro::Kicker
Due to its purpose as football robot, the Sparrow robot has a kicker, that
can be accessed via this interface. It registers at the naming service as
Kicker.

• Miro::Buttons
The Miro::Buttons interface registers as Buttons.

24 CHAPTER 4. AVAILABLE SERVICES

• Miro::Sonar
The Miro::RangeSensor interface registers itself as Sonar.

• Miro::Infrared
The Miro::RangeSensor interface registers itself as Infrared.

• Miro::PanTilt
The Miro::SparrowPanTilt interface is registered as PanTilt.

Note that the stall service sends Miro::SparrowStallIDL events.

VideoService: It gives you access to the frame grabber of the robot. It supports
the Miro::Video interface.

4.6 Pioneer

Due to the limited variety of sensors and actuators on the Pioneer robots, there
exists only the most fundamental services for this robot.

PioneerBase: The following services are grouped together: Motion, Stall and
Sonar. The corresponding interfaces are:

• Miro::PioneerMotion
The Miro::PioneerMotion interface is derived from the Miro::Motion
interface and gives access to the specialized movement commands of the
Pioneer robot. It registers under it ancestors name Motion.

• Miro::PioneerStall
The Miro::PioneerStall interface (derived from Miro::Stall) is reg-
istered as Stall.

• Miro::Sonar
The Miro::RangeSensor interface registers itself as Sonar.

Note that the stall service sends Miro::PioneerStallIDL events.

4.7 Frame Grabbers and Digital Cameras

The VideoService provides an interface to several video image sources. All BTTV
cards that are supported by the video for linux project are also supported here
(namely the Bt848/849/878/879 based frame grabbers). Support for IEEE 1394
digital cameras (aka Firewire) is provided. The Matrox Meteor frame grabbers
cards are also supported, but note that kernel drivers are only available for the
older 2.2.x kernel series. See the chaper ?? for a detailed discussion of the topic.

4.8 SICK Laser Scanner

The sickLaserService provides an interface to a laser range finder of type Sick
PLS. This sensor is connected to the controlling PC via a serial line. It is delivered
either with a RS-232 or a RS-422 compliant interface.

The idl-interface implemented by the sickLaserService is Miro::Laser, which is
derived from Miro::RangeSensor. The server can be driven in two different modes,

4.8. SICK LASER SCANNER 25

either the sensor automatically provides a scan about 40 times a second, or every
scan is polled, which results in a maximum scan frequency of 10 times a second.
The second mode also allows to choose a different (i.e. lower) scan frequency. At
the moment no other special features of the Sick PLS200 are supported.

The configuration of this service is provided in xml, within the section sick. The
following parameters are understood:

Device: The filename of the device which should be used.

Baudrate: The baudrate for communication with the sensor, possible values are:
9600, 19200, 38400 and 500000.

StdCrystal: For achieving the unusual baud rate of 500000 baud, we use a se-
rial adapter, that is equipped with a 16MHz crystal, instead of the standard
14.??MHz. Due to this reason, the standard baud rates must be generated by
modifying the divisor of the UART. If you have an off-the-shelf serial adapter,
use true here, you will probably not be able to use 500000 baud then.

ContinousMode: If true is provided for this parameter the sensor will provide
data automatically, about 40 times a second. If false is used, the service will
poll a measurement after an interval that can be specified with the following
parameter.

PollIntervall: The interval between two consecutive measurements, measured in
seconds. This parameter has no effect if ContinousMode is set to true.

Notify: Specifies whether incoming scan results should be sent out through the
CORBA notification service.

PositionStamps: Specifies whether laser scan events should be marked with an
odometry position reading.

Statistics: If this parameter is true the laser service will dump some statistical
data about the device communication at regular intervals (once for each 1000
received packets).

Fov: The field of vision, i.e. angular scan range of the laser scanner in degrees.
Current SICK laser scanners support a scan range of either 180? (default) or
100?.

ScanResolution: The scan resolution, i.e. the angular distance between two single
shots in degrees. Supported values are 0.5? (default) or 1? for a scan range
of 180? or 0.25?, 0.5? or 1? for a scan range of 100?.

The following example shows the configuration used for our hardware:

<section name=”Sick” >
<parameter name=”Laser::Parameters” >

<parameter value=”/dev/laser” name=”Device” />
<parameter name=”TtyParams” >

<parameter value=”500000” name=”Baudrate” />
</parameter>
<parameter value=”false” name=”StdCrystal” />
<parameter value=”true” name=”ContinousMode” />
<parameter value=”0.100000” name=”PollInterval” />
<parameter value=”false” name=”Notify” />

26 CHAPTER 4. AVAILABLE SERVICES

<parameter value=”false” name=”PositionStamps” />
<parameter value=”true” name=”Statistics” />
<parameter value=”180” name=”Fov” />
<parameter value=”0.5” name=”ScanResolution” />

</parameter>
</section>

As the laser provides a specialization of a range sensor, we also provide a scan-
description for it. See section ?? for details. However, since it isn’t feasible to
manually specify up to 401 separate range sensors large parts of the scandescription
are calculated from the Fov and ScanResolution parameters at service startup.

4.8.1 Possible Problems

Due to the unusual and high data rate of 500000 baud a special serial interface card is
required. The card recommended by Sick provides a 16550A compatible interface,
for that reason the current implementation is able to use the card through the
standard linux serial device drivers, which keeps the implementation of the service
more portable. Unfortunately this introduces a big drawback: receiving up to 50000
characters per second, results in at least 50000/16 = 3125 interrupts per second,
this is an enormous load. It is essential, that every interrupt is handled on time,
because the sensor does neither support hardware, nor software flow control, and
provides a packet with data every 25 ms. If you have the chance to use an interface
card with a larger FIFO buffer than the standard 16 bytes, this will provide a large
improvement in performance, stability and system reactivity. We solved most of our
stability problems, that were caused by lost packages without a larger FIFO: We
enabled irqs throughout IDE interrupt processing (this may be extremely dangerous,
depending on your configuration, see man page of hdparm). Another solution could
be using irqtune to give the serial irq a higher priority, or using RT-Linux.

Due to the adaptations of the divisor for the serial line, the SickLaserService
has to be suid root. If you use a standard crystal, and you do not use
500000 baud, this is not necessary.

4.9 DoubleTalk Speech Card

4.10 Directed Perception Pantilt

4.11 Global Positioning System

The GpsService provides an interface for any NMEA-0183 compatible GPS receiver
connected via a serial interface. The service implements the idl interface Miro::Gps
or, depending on its configuration, a specialized interface derived from it.

The service reads the GPS::Parameters from the Gps section of the XML configura-
tion file. The parameter format is derived from Miro::TtyParameters and includes
the following fields:

Device: The filename of the device which should be used. If no device is specified
/dev/gps is used.

4.11. GLOBAL POSITIONING SYSTEM 27

Baudrate: The baudrate for communication with the GPS device. Most receivers
communicate at 4800 baud.

ReceiverType: The type of the GPS receiver. If this parameter is not specified
the generic type is used.

NmeaNotify: This parameter is a string vector and can hold an arbitrary number
of NMEA sentences that should be forwarded to the client. By default this
feature is disabled.

A typical GPS configuration section might look like this:

<section name=”Gps” >
<parameter name=”GPS::Parameters” >

<parameter value=”/dev/ttyS1” name=”Device” />
<parameter value=”4800” name=”Baudrate” />
<parameter value=”generic” name=”ReceiverType” />
<parameter name=”NmeaNotify” >

<parameter value=”GPRRE” />
<parameter value=”GPVTG” />

</parameter>
</parameter>

</section>

In this example any NMEA sentences containing the type name GPRRE or GPVTG are
wrapped inside a GpsSentenceEventIDL event and forwarded to the client.

4.11.1 Generic GPS receivers

The generic GPS implementation is used if the ReceiverType configuration param-
eter is either omitted or set to generic. In this mode the service remains completely
passive, i.e. it will read sentences sent out by the GPS unit and evaluate any known
and verified message, but it will not send any commands to the device. If your de-
vice requires any configuration (i.e. to enable Altitude Aiding or Differential GPS)
you have to use a separate tool to prepare it and, if possible, make the configuration
permanent before starting the GPS service.

The generic implementation registers the Miro::Gps interface as GPS in the CORBA
Naming Service. It provides methods to poll for the current position (both global
and relative to a relocatable position reference), to poll for the dilution of precision
values and to place the reference point for relative positioning.

4.11.2 Star Track GPS receivers

This implementation is specialized for use with GPS receivers manufactured by CT
Communication Technology GmbH Friedberg. It was developed and tested using
a Star Track GSX-1 GPS receiver, but it should be compatible compatible with
other models by the same vendor (or maybe even by other vendors) as well. Set
the ReceiverType config parameter in GPS::Parameters to ct in order to use this
interface instead of the generic one.

In this mode the service implements the Miro::CtGps IDL interface which is derived
from Miro::Gps and registers it as GPS in the Naming Service. The specialized

28 CHAPTER 4. AVAILABLE SERVICES

interface provides all methods of the generic interface as well as additional methods
to configure Differential GPS, enable and disable Altitude Aiding, select the rate at
which each particular NMEA sentence is sent and store the current configuration.

Chapter 5

Test and Example Programs

The Miro repository comes with different kinds of test and example programs that
are scattered over four different directories:

examples These programs show the easiest way of using a specific service. In most
cases it’s just getting data and printing it to cout.

utils These are programs designed to fasciliate the handling of your mobile robots.
For example, programs located in this directory provide a graphical view of
the services output or state.

tests These programs are designed to reliably test an entire interface. They often
come with a simple character dialog and the possible selections rely directly
to the interfaces as described in the auto-generated online help.

performance-tests They measure the performance of individual sensory or actu-
atory devices. Mostly the throughput.

29

30 CHAPTER 5. TEST AND EXAMPLE PROGRAMS

Chapter 6

Writing Your First Programs

This chapter tries to help you with the first steps of writing programs that use the
Miro framework. The CORBA environment and the Miro framework seem to raise
the bar for an easy entry into robot programming. While this can hardly be denied
they facilitate tremendously the task of writing distributed programs. And since
robot control software is inherently distributed (ever thought of multiple robots?)
it seems the only way to go.

As you will see, most of the distributed programming complexity is initially hidden
from the user:

• The programmer simply calls methods of the devices interface.

• The programmer communicates via proxy object to the remote service. The
most tricky part is getting the object reference.

• The distributed environment is transparent. The remote method invocation
(RMI) is hidden entirely.

6.1 Makefiles

In contrary to earlier versions of Miro, it is no longer based on the ACE/TAO
Makefile hierarchy, but uses the GNU autotools for a simpler and more portable
way to generate the Makefiles (beside that, this inherently adds new nifty features,
like e.g. the automatically distribution via a simple make dist). Nevertheless it is
still possible to use the ACE/TAO style of writing Makefiles in derived projects, as
we didn’t delete the Miro include rules and macros (but please note that we do not
maintain them any longer and they may be deleted in future version).

Makefile templates reside in the directory $MIRO ROOT/templates, that should fa-
cilitate the creation of further subprojects within the Miro directory structure but
can just as well be used to start new projects outside the $MIRO ROOT directory.
The makefiles are designed to either build subdirectories, libraries or binaries. To
use a template, simply copy it into the corresponding directory under the name
Makefile.am and adapt it as explained in the following sections. Additionally, you
have to put a line in configure.ac to the macro named AC CONFIG FILES to let
automake and autoconf know, that they have to build a Makefile (Makefile.in
respectively).

31

32 CHAPTER 6. WRITING YOUR FIRST PROGRAMS

The Makefile templates are explained in more detail in the appendix C.

6.2 A Simple Sonar Client

To discuss things using actual code, let’s look at the simple task of obtaining data
from a sonar sensor device. Since this is a range sensor, the sonar is queried via
the generalized range sensor interface. The only difference in querying an infrared
or a sonar device is the name under which these sensors are registered within the
naming service.

Listing 6.1: examples/sonar/SonarPoll1.cpp

#include <miro/Client.h>
#include <idl/RangeSensorC.h>

#include <iostream>

int main(int argc , char ∗argv [])
{

Miro:: Client client (argc , argv); // Initialize orb.
Miro::RangeSensor var sonar = // Obtain reference to sonar object .

client .resolveName<Miro::RangeSensor>(”Sonar”);
Miro::RangeScanEventIDL var sonarScan; // A RangeScanIDL smart pointer.

sonarScan = sonar−>getFullScan(); // Get values of all sonars .

std :: cout << ”Sonar reading: ”; // Print sonar scan.
for (unsigned int i = 0; i < sonarScan−>range.length(); ++i) {

for (unsigned int j = 0; j < sonarScan−>range[i].length(); ++j)
std :: cout << sonarScan−>range[i][j] << ”\t”;

std :: cout << std::endl ;
}

return 0;
}

A step by step walk trough the code:

#include <miro/Client.h>

The file miro/Client .h contains the definition of the class Miro:: Client . See below.

#include <idl/RangeSensorC.h>

The file miro/RangeSensorC.h provides the classes for the interface of the sonar
service. The ’C’ at the end of the name stands for client. This file is automatically
generated from the idl-description of the interface.

int main(int argc , char ∗argv [])

A standard main function is used.

Miro:: Client client (argc , argv); // Initialize orb.

6.3. USING NAMESPACES 33

This class just wraps the few lines that are necessary at the beginning of any
CORBA application. It will therefore be normally instantiated in all Miro appli-
cations first. This is a simple helper class that sets up the CORBA environment
in a standard way. Nothing tricky there. It initializes the orb etc. The call uses
the command line arguments for finding the naming service, and parsing other
commands...

Miro::RangeSensor var sonar = // Obtain reference to sonar object .
client .resolveName<Miro::RangeSensor>(”Sonar”);

This initializes a proxy object to the sonar service. This proxy object is used as if it
was the sonar service itself. Let’s look at the call a bit closer. Miro::RangeSensor var
is the CORBA equivalent of a standard C++ auto pointer for a Miro::RangeSensor
object. That is the proxy becomes automatically destroyed if the pointer goes out
of scope. The method resolveName() is a template member function. Its argument
specifies the name that shall be resolved in the default naming context of the naming
service (see Chapter 3). The Miro::RangeSensor in French brackets specifies the type
of reference that shall be returned by the call. Note that this will only succeed if the
reference stored under the name of Sonar refers indeed to a Miro::RangeSensor
object or to a derived ancestor of this class.

Miro::RangeScanEventIDL var sonarScan; // A RangeScanIDL smart pointer.

The RangeSensor interface returns a pointer to the sensor scan, which the caller
obtains ownership of. So we use another auto pointer to hold the return value of
the call and to prevent us from memory leaks. The IDL in the type name reflects
the fact, that this is a IDL defined data type. (This is just a naming convention of
Miro that shall help you to trace the roots to the documentation.) In the CORBA
mapping for C++ these types are mapped to plain C structs: No methods, no
inheritance, just public data members.

sonarScan = sonar−>getFullScan(); // Get values of all sonars .

This gets a sonar scan from the service. Note, that we do not see where the service
runs.

std :: cout << ”Sonar reading: ”; // Print sonar scan.
for (unsigned int i = 0; i < sonarScan−>range.length(); ++i) {

for (unsigned int j = 0; j < sonarScan−>range[i].length(); ++j)
std :: cout << sonarScan−>range[i][j] << ”\t”;

std :: cout << std::endl ;
}

These lines are used to print the received sonar scan to the console.

6.3 Using Namespaces

By inserting the lines

using std :: cout;
using std :: endl ;
using Miro:: Client ;
using Miro::RangeSensor;

34 CHAPTER 6. WRITING YOUR FIRST PROGRAMS

we map the relevant “Miro” data types from the Miro namespace into our global
namespace. This shortens the type name specifiers, but also hides from where they
are coming from. Note that a simple

using namespace Miro;

would do the same trick. But mapping a namespace completely is generally not a
good idea, since it tends to produce name conflicts and secondly code reviewers can
trace the origin of the types less easily. Be especially careful in header files. You are
flattening the namespace for everyone that has to include your header file, which
can lead to bad surprises.

See the following listing which shows the same code again, but without the Miro::
prefixes. The initial lines containing the includes are skipped.

Listing 6.2: examples/sonar/SonarPoll2.cpp

using std :: cout;
using std :: endl ;
using Miro:: Client ;
using Miro::RangeSensor;
using Miro::RangeSensor var;
using Miro::RangeScanEventIDL var;

int main(int argc , char ∗argv [])
{

Client client (argc , argv); // Initialize orb.
RangeSensor var sonar = // Obtain reference to sonar object .

client .resolveName<RangeSensor>(”Sonar”);
RangeScanEventIDL var sonarScan; // A RangeScanIDL smart pointer.

sonarScan = sonar−>getFullScan(); // Get values of all sonars .

cout << ”Sonar reading: ”; // Print sonar scan.
for (unsigned int i = 0; i < sonarScan−>range.length(); ++i) {

for (unsigned int j = 0; j < sonarScan−>range[i].length(); ++j)
cout << sonarScan−>range[i][j] << ”\t”;

cout << endl;
}

return 0;
}

6.4 Adding Exception Handling

Handling of error conditions itself is error prone. Exceptions make the handling
of error conditions easier, but errors are errors and therefore stay somehow nasty.
What’s quite easy to achieve by the use of exceptions is to print some diagnostic
output and exit instead of gracefully segfaulting. This is done in this example by
enclosing the code in the main function in a try/catch block.

Since Miro defines ostream operators for every Miro ::... IDL type in miro/IO.h, we
include that file and abandon the handcrafted streaming of the sonar data.

6.5. AN ASYNCHRONOUS SONAR CLIENT 35

Note the different kinds off exceptions. There are Miro exceptions. Exception types
defined in Miro are beginning with a big E as a naming convention. These indicate
problems on the service side, like hardware problems (may be the batteries?), bad
service calls (trying to accelerate the robot to warp 1?) or load problems. Then there
are CORBA exceptions. Those occur if there arise some communication problems:
A service went down, the robot is loosing the radio ethernet connection etc. Since all
Miro exceptions derived from CORBA::UserException, those also are catched within
the first catch block of the example code. You do not have to catch all exceptions.
An uncaught exception will lead to program termination. Just as if you’d catch
them at the end of main and exit...

Note also, that the instantiation of Client isn’t within the try/catch block. This is
intentionally. Exceptions that can arise in the construction of a Client instance are
CORBA exceptions. The ostream operators for CORBA exceptions used by TAO
need an ORB instance. Since the ORB is instantiated within the Client class, it
will not exist after destruction of the Client — and this would be done at the end
of the try block. Therefore we catch exceptions within the constructor of Client,
print them to stderr and exit. There is little to do for the client program anyhow,
if it can’t access the services.

Listing 6.3: examples/sonar/SonarPoll3.cpp

int main(int argc , char ∗argv [])
{

Client client (argc , argv); // Initialize orb.
try { // Obtain reference to sonar object .

RangeSensor var sonar = client .resolveName<RangeSensor>(”Sonar”);
RangeScanEventIDL var sonarScan; // A RangeScanIDL smart pointer.

sonarScan = sonar−>getFullScan(); // Get values of all sonars .

cout << ”Sonar reading: ” << sonarScan.in() << endl; // Print sonar scan.
}
catch (const CORBA::Exception& e) { // Catch any CORBA exception.

cerr << ”Exception on sonar query:” << endl << e << endl;
return 1;

}

return 0;
}

6.5 An Asynchronous Sonar Client

By now we were actively requesting for the data of a service. But think of polling
for tactile events that way. Having a good collision avoidance, those events should
hardly ever occur. Nevertheless, as soon as there is a tactile signalling a collision,
the robot should immediately react to this event. By polling it would have to call
the tactile interface thousands of times, just not to miss the one event it can’t effort
to miss. And since the sensors are actively collecting their data, shouldn’t they be
able to trigger the data processing within the robot? - Oh yes, they can.

For this purpose the notification framework within Miro does exist. It is based
on the CORBA Notification Service [?], and precustomized by some utility classes.

36 CHAPTER 6. WRITING YOUR FIRST PROGRAMS

They enable clients to subscribe to arbitrary events of a notification channel. The
data gets pulled to them as soon as it becomes available at the producer (e.g. a
range sensor device).

To show how asynchronous event processing works within Miro, lets look at a small
example. First we look at the code to handle the events.

Listing 6.4: examples/sonar/SonarNotify.cpp

struct SonarNotify : public StructuredPushConsumer
{

// Initializing Constructor .
// Registers for the events , that it wants to get pushed.
SonarNotify(EventChannel ptr ec , const string& domainName) :

StructuredPushConsumer(ec)
{

EventTypeSeq added, removed;
added.length (1);
added[0].domain name = CORBA::string dup(domainName.c str());
added[0]. type name = CORBA::string dup(”Sonar”);

setSubscriptions (added);
}

// Inherited IDL interface .
// Called for every event by the event channel.
void push structured event (const StructuredEvent& notification

ACE ENV ARG DECL WITH DEFAULTS)
throw(SystemException, Disconnected)

{
// Get a pointer to the sensor data of the structured event.
const RangeBunchEventIDL ∗ pSonarEvent;
if (notification .remainder of body >>= pSonarEvent)

cout << ∗pSonarEvent << endl; // Print to standart out.
else // Crises ? What crises?

cerr << ”No RangeBunchEventIDL message.” << endl;
}

};

A step by step walk trough the code:

The class SonarNotify provides a callback for the event channel. It is derived from
Miro::StructuredPushConsumer, which handles the registration at the notification
service etc. All the initialization and registering is done within the constructor of
this super class. The method push structured event is the callback that is called
from the notification service.

{

The EventTypeSeq class is for specifying the events that you want to be subscribed
for. It is an incremental protocol. So you make a list of events you want to receive
from now on and another with the events you wish to no longer become informed
about. Since we are just subscribing, the second list is empty.

6.5. AN ASYNCHRONOUS SONAR CLIENT 37

added.length (1);
added[0].domain name = CORBA::string dup(domainName.c str());
added[0]. type name = CORBA::string dup(”Sonar”);

Events are subscribed by domain name and type name. Never forget to set the
length of a sequence explicitly. Specifying the length as a constructor parameter
just reserves the number of elements, the length of the sequence is still zero.

setSubscriptions (added);

Tell the consumer admin what we want to subscribe for.

if (notification .remainder of body >>= pSonarEvent)
cout << ∗pSonarEvent << endl; // Print to standart out.

The payload of a structured event is contained within the remainder of body field
with is of type CORBA::Any. Therefore you can get a const pointer to the data with
overloaded the operator >>= (). The return value is a CORBA::Boolean indicating
success of the operation. Even though a CORBA::Any can hold any IDL defined
struct, you can only extract type T from a CORBA::Any if it actually contains an
object of type T.

Listing 6.5: examples/sonar/SonarNotify.cpp

int main(int argc , char ∗argv [])
{

Server server (argc , argv); // Create a server orb.
try { // Resolve the channel by name.

EventChannel var ec(server .resolveName<EventChannel>(”EventChannel”));
// The consumer, that gets the events .
SonarNotify pushConsumer(ec.in(), server .namingContextName);

server .run (); // Enter CORBA event loop.
}
catch (const CORBA::Exception & e) { // Catch CORBA and Miro exceptions.

cerr << ”Uncaught CORBA exception: ” << e << endl;
return 1;

}
return 0;

}

Lets now have a look at the main function:

Server server (argc , argv); // Create a server orb.

Since a push consumer is called (pushed) by the event producer, it is actually a server
instead of a client. Therefor the Miro:: Server class is instanciated. It performs the
necessary calls to init the CORBA environment. It is basically the same as the
Miro:: Client but we also need a POA to register the consumer object.

EventChannel var ec(server .resolveName<EventChannel>(”EventChannel”));

Just like the former Miro::RangeSensor interface, we resolve the EventChannel by
name at the naming service.

38 CHAPTER 6. WRITING YOUR FIRST PROGRAMS

SonarNotify pushConsumer(ec.in(), server .namingContextName);

Instanciate the push consumer. It does all the necessary initialization within its
constructor.

server .run (); // Enter CORBA event loop.

Now we enter the CORBA event loop. This will not return, until the process is
signaled by SIGINT or SIGTERM.

Chapter 7

Parameter Sets

Robot control programs and robotic algorithms are full of parameters. Different
robot types vary in shape and sensor configuration, but also different robots of the
same type tend to vary slightly. For instance some of them are equipped with further
sensory or actuatory devices not present in the standard configuration. Also damage
and repair of parts of a robot during its lifetime result in an individual robot, which
has its own unique configuration.

Furthermore the environment provides a complete set of parameters. Lighting con-
ditions, the shape and location of rooms and corridors, the position of obstacles like
tables or stairs. The list could be continued indefinitely. These parameters vary
between different environment, but also tend to change slightly over time. Light
bulbs are changed, cupboards added, tables moved etc.

A third source of parameters are defined by the task, the robot has to perform or the
scenario, the robot is designed to operate in. Generalized tool boxes like planners
or knowledge bases have to be populated with the actions and objects of relevance
and a reactive execution engine need to be configured with what actions to take in
which situation.

The configuration of these parameter sets can be done either by hand or tool sup-
ported or fully autonomously. Nevertheless it is a crucial part of the setup of robot
for every scenario. The handling of those parameter sets therefore has to be well
defined in order to keep the robots control software maintainable and adaptable to
new tasks.

In this chapter we will therfore introduce the parameter framework of Miro. The
parameter framework was primarly designed to handle the first source of parame-
ters, namely the configuration of the robot and its sensory and actuatory services
for a task. But meanwhile it is also used for the third part of the above sketched
three sources of parameter sets: With slight extensions, it is used for the parame-
terization and configuration management of the reactive execution engine (the BAP
framework) introduced in sectin 12. Environmental modeling for different scenarios
lies out of the scope of the problem set currently addressed by Miro.

The remaining of this chapter is organized as follows. First the general concept of
parameter sets and configuration files is sketched. Then the location and naming
of the robot configuration files of Miro and how to create a configuration for an
individual robot will be explained. In the following section the description and
implementation of parameter sets and the mapping to the actual parameter files

39

40 CHAPTER 7. PARAMETER SETS

will be discussed. In section 7.3.1 the syntax and semantics of the description
language will be explained.

7.1 Overview

Parameter sets are a quite powerfull concept within Miro, that therfore also encap-
sulates a lot of functionality. To facilitate the usage of the parameter framework of
miro, tools support the handling of parameter sets for the different user communi-
ties. In this section we will describe the usage of parameter sets from the end-user
as well as from the programmers perspective

7.1.1 End-User Perspective

An end-user has to handle parameter files for its robots. A parameter file contains
various parameter sets, thatare described by an XML syntax. The server parses
those files on startup, to initialize the parameter sets of its services. Parameters in
general are strictly typed name value pairs. They are grouped into sections within
the file. They can be nested, structured types, including arrays of variable length
as well as sets. The parameter names start with an upper case initial letter.

To edit parameter files, the GUI-based ConfigEditor can be used. It enforces the
XML-syntax as well as the correctness of the configuration section placement and
the type correctness. It is discussed in more detail in section ??.

7.1.2 Programmers Perspecitve

From a programmers perspective, a parameter set is represented by a struct within
the target programming language. Currently only C++ is supported as target. For
this language, a parameter set is translated into a class with all member variables
declared public, just like a C struct. The member variable names begin with a
lower case initial letter. Names consisting of multiple words are concatenated, the
beginning of a new word is indicated by an upper case letter. Parameter classes
support single, public inheritance. Apart from the member variables, the following
methods are declared:

Default Constructor Initializes all member variables to their default values.

void operator �= (QDomNode) Parses an XML node and sets the member
variables accordingly.

QDomElement operator �= (QDomElement) Appends the current values of
the member variables as a child to the XML node.

void printToStream(ostream&) Prints the current values of the member vari-
ables to the specified output stream.

std::ostream& operator� (std::ostream&, Miro::Parameters& const) is de-
clared for the parameter parent class.

Optionally parameter set classes contain a static member method instance(), that
returns a pointer to the global heap allocated instance of the parameter set class
(see also singleton pattern, and double checked locking [?]).

7.2. CONFIGURATION FILES 41

As parameter set classes have a very generic structure, their coding, including the
XML and ostream operators can be automated. Therefore parameter sets normally
are described not within a programming language, but within an XML syntax. The
mapping to target programming language is then performed by a small compiler,
which emits the necessary (i.e. C++) code. The parameter set descriptions are also
used by the tools for GUI-based configuration editing. Those are the ConfigEditor
as well as the PolicyEditor of the behaviour framework.

7.2 Configuration Files

Every service of Miro tries to find a configuration file on startup to adapt itself to
the individual robots configuration if necessary. If no configuration file is found,
the service has to use its default settings. The locations the configuration files are
expected are:

1. $MIRO ROOT/etc

2. The current directory.

The name of the configuration file is expected to be the host name of the computer
the service is running on. The file extension is .xml:

$HOST.xml

For example in the case of our famous Sparrow99 soccer robot goal keeper named
haeltnix, the Miro service SparrowBase, started on the computer mounted on the
robot will try to load the configuration file:

$MIRO ROOT/etc/haeltnix.xml

The default name and location of the configuration file can be overwritten by the
command line option -MiroConfigFile filename or -MCF for short. The search
order of directories stays the same. Additionally there can also be an absolute path
specified.

In $MIRO ROOT/etc there are sample configuration files for every robot model cur-
rently supported by Miro. They are named model.xml. Copy the respective con-
figuration file of your robot model to $HOST.xml to get a configuration file to start
with. XML files are text files and quite easily readable. Therefore opening the
configuration file into your favorite editor and changing the value attributes to dif-
ferent settings should be sufficient to solve the first few configuration problems like
differing device names etc. For anything else, read on.

7.2.1 Configuration File Syntax

The available tags and there nesting capabilities look like follows:

<!–MiroConfigurationDocument–>

configuration One file always describes one entire configuration. A configuration
describes all the services parameters, that can be executed on the particular
robot.

There can only be one configuration tag per file.

42 CHAPTER 7. PARAMETER SETS

section Each component of Miro can have its own section within a configura-
tion file. Configuration file sections are used to group services of similar
scope. For instance the vision system, the configuration of the filter tree,
as well as the the specification camera paramters, is considered to be
a component within a Miro configuration file. Normally each service
defines its own section within the configuration file.
There are multiple section tags permitted within a configuration.
Attributes:

• name The name of the section (required).

instance Parameters of a component are grouped and described as set of
parameters that belong together. Note that within the configuration
file there is a hardware centric view taken. That is, sensors and
actuators that result in multiple service interfaces, are most likely to
be grouped into one component if they are controlled by the same low
level controller board. For instance the parameters for the pioneer
board, that controls the motors as well as the sonars etc., are grouped
within just one component.
An instance of a certain parameter set can be specified by the type
and name attributes of the instance tag. There are multiple instance
tags permitted within a section.
Attributes:
• name Name of the parameter (required).
• type The type name of the parameter. The parameter type def-

initions are described in section 7.3.

parameter Parameters can be specified within the instance tag, for each
available parameter of described the type.
There are multiple nested parameter tags permitted, but each has
to hold a name attribute that is unique within the enclosing tag.
Attributes:
• name Name of the parameter.
• value The value of the parameter.

In case the parameter describes a structured type instead of a basic
type (like bool, int, string etc.), parameter tags can be nested. In
this case the value attribute is ignored.

parameter For many parameter types there is a default instance available.
Especially if there can only be one parameter set of this type per robot
(i.e. the Robot parameters set, that holds the name of the robot etc.).
This default instance is not referenced by the instance tag, but by a
parameter tag, that holds the type name of the parameter set as its name
attribute.
There are multiple parameter tags permitted within a section. Apart
from the unified type/name attribute, a parameter tag behaves just like
an instance tag, and can hold multiple, probably nested parameter
tags.
Attributes:

• name Type name of the default parameter instance.

7.2.2 Example Configuration

See $MIRO ROOT/examples/params/TestConfig.xml for a small initial example.

7.3. PARAMETER SET GENERATION 43

TODO: include and comment the example code here.

Section tags are structurising elements and component instance tags are mainly
defined by the underlying hardware devices. But what defines which parameters
are accepted within by which component and of what types they are? While the
configuration files contain comments to explain the purpose of the different param-
eters, there do also exist formal definitions of the components parameter sets, as
described within the next section.

7.3 Parameter Set Generation

Parameter sets, described as component parameters within a configuration file,
correspond to strictly typed classes within C++. Those structures can be initialized
by parsing the configuration file. To facilitate the generation of parameter sets,
parameter classes needn’t to be hand coded, but are auto-generated from parameter
description files by a little parameter class compiler (MakeParams). The parameter
description files are once again based on the XML syntax.

Furthermore the description files are not only used for the configuration of the ser-
vices, but also by other tools within the Miro framework. The configuration editor
used this information for the generic editing of configuration files. Additionally,
the behaviour framework (sec. ??) uses this functionality for parameterization of
behaviours and arbiters and the PolicyEditor (sec. 12.8 use the parameter de-
scription files for GUI based editing of the behaviour parameters). To facilitate
the reuse of the parameter descriptions by multiple tools, the syntax of the file is
somehow obfuscated by additional tags and attributes.

7.3.1 Description File Syntax

Parameter classes support single inheritance.

<!–MiroParametersConfigDocument–>

config A parameters config file describes the types, names and defaults for param-
eter classes as used within the Miro framework.

config group Configurations can be grouped together for various reasons. A
group within a description file in general corresponds to a section within
the configuration file. Within a configuration file, a parameter set can
only be instanciated within the section, named as the config group.
Attributes:

• name The name of the config group.

config item A configurable item to built a parameters class for. Each
config item will be mapped to a parameter class by the compiler.
Attributes:
• name The name of the parameter class. The suffix Parameters

will be added to the name.
• parent The name of the super class. The suffix Parameters will

be added to the name. Note that namespaces have to be fully
qualified here, i they differ from the current namespace.

44 CHAPTER 7. PARAMETER SETS

• instance Whether or not a singleton instance of the parameter
class shall be created (sec. [?]). Default is false.

• final Corresponds to the finalize keyword of java. It is only rel-
evant for the editing tools, not for code generation. It indicates,
that a toplevel instance of this parameter can be created.Default
is true.

• dummy Sometimes you have to fake a parameter class to the
editing tools that does not exist as such. No code will be gener-
ated for such a class. Default is false.

config parameter A parameter for the class.
Attributes:
• name Guess what.
• type Allowed basic types are: bool, char, int, unsigned int,

short, unsigned short, long, unsigned long, double and std::string.
There are two more predefined types: Angle and angle. Angle
corresponds to a Miro::Angle instance. It is an angle φ nor-
malized to −π ≤ φ ≤ π while angle corresponds to a none nor-
malized angle represented by a simple double. Note that while
the internal representation of angles is in radiant, the values
specified in the configuration files are in degrees. But you can
also specify parameter classes described within a parameter
description file as parameter type. Additionally, std::vector<>
and std::set<> are supported. Note however that we are cur-
rently lacking support for specifying default values for these
none basic types.

• default Default value as set in the constructor (optional).
• measure The measure the type represents, such as: mm, msec,

?, mm/s, ?/s (optional).
• inherited true/false This attribute is used to overwrite defaults

for inherited variables within the constructor of the class. If
set to true, no new member variable will be added to the class,
and only the attributes name and default will be evaluated.

config global Global configuration items those are mainly used for code gen-
eration. They specify things, that the compiler can not easily derive
autonomously, such as additional include directives, etc.
Attributes:

• name The name of the config item. There are currently three items
supported:
namespace Specifies the namespace of the generated code. While

multiple parameter classes can be described within one file, they
all have to reside within the same namespace.

include Specifies a user include directive.
Include Specifies a system include directive.
value The name of the namespace, the local or global include di-

rective.

7.3.2 Example Description

See $MIRO ROOT/examples/params/Parameters.xml for a small initial example.

TODO: include and comment the example code here.

7.4. CONFIGURATION MANAGEMENT RUNTIME ENVIRONMENT 45

7.3.3 MakeParams

The parameter description compiler has the following command line parameters.

-f <file> name of the input file (default is Parameters.xml)

-n <name> base name of the output file (default is Parameters)

-s <extension> extension of the generated source file (default is cpp)

-h <extension> extension of the generated header file (default is h)

-v verbose mode

-? help: emit this text and stop

7.3.4 Example Header File

See $MIRO ROOT/examples/params/Parameters.h for a small initial example.

TODO: include and comment the example code here.

7.3.5 Makefile magic

To enable automatic generation of the C++ source and header files from XML pa-
rameter descriptions, there does allready exist a rule within the make files of Miro.
Therefore, you can simply add the XML based description file to the target SOURCES
variable in the corresponding Makefile.am. Make sure however, that it is placed
before the first source file, that includes the generated header file, to ensure its
timely generation. Furthermore the resulting source and header files have to be
added to the BUILT SOURCES variable.

7.4 Configuration Management Runtime Environ-
ment

??

7.5 Config File Editor

??

For advanced config file editing, like filter trees of the video image processing frame-
work ??, a simple text editor is a fairly errorprone tool. XML editors do a better
job in this case, but for real comfort, Miro provides the config file editor.

46 CHAPTER 7. PARAMETER SETS

Chapter 8

Video Image Processing

Video image acquisition is one of the most common sensory devices used in robotics.
Therefore Miro offers a common VideoService that can be adapted by the config-
uration file to any supported video device.

Also, image processing is computationally expensive and many standard filters exist
in literature as well as some high performance implementations such as [?]. To
facilitate the unified usage within robotics scenarios, the video service provides a
filter tree framework.

Real-time image streams need a lot of bandwidth. This is usually higher than the
bandwidth available on most mainstream network devices. Therefore the Video-
interface of Miro also provides methods for usage of shared memory for sharing of
images with its clients on the same machine. Those methods are also designed for
minimizing copying overhead.

This section is organized as follows. First, the supported image devices along with
their bugs and features are discussed. Then the filter tree framework is presented.
First from an end user perspective and second from a developer perspective. In
section ?? the video interface itself along with its two use cases and helper classes
is discussed.

8.1 Video Device Access

The VideoService currently supports the following devices for images acquisition:

8.1.1 Bttv Frame Grabbers

These frame grabber cards are supported via video for linux []. This is the standard
way of connecting standard analog video cameras to the computer.

Note, that the default number of frames used by the kernel driver for video capture
are two. In order to get the full frame rate (25/30Hz), this has to be set to 4 buffers.
This can be specified as a module parameter.

47

48 CHAPTER 8. VIDEO IMAGE PROCESSING

8.1.2 Firewire Digital Cameras

Miro supports the fire wire digital camera protocol using libraw1394[] and libdc1394
[].

Note that most cameras 1394 controllers do not support being bus master for dma
transfers. Therefore the 1394 controller of the computer has to be the highest num-
bered node. This can be configured by a module parameter. Otherwise, unplugging
the firewire cable from the camera for some seconds helps.

8.1.3 Matrox Meteor Frame Grabbers

These rather old frame grabber cards are also supported by Miro. Kernel drivers
can be found at []. This device however, is mostly unmaintained within Miro.

8.2 Video Filter Trees

For image processing many standard filters do exist that usually perform a function
Mn+1 = fi(Mn). Where Mn denotes the input image (matrix), Mn+1 the output
image and fi is the actual filtering function.

Often filter chains are used (see figure 8.1). I.e. first undistorting the image f0 and
then performing some color indexing f2. So the filtering function producing the
output image Mo from the input image Mi could be expressed as:

Mo = f2(f1(Mi))

Figure 8.1: A simple filter chain.

More complex vision processing could also include the computation of an edge image
Me in addition to the color indexing above. This can be done i.e. by producing a
grey image f3 and applying a canny filter f4, leading to the second filter chain:

Me = f4(f3(f1(Mi)))

To avoid computing the undistorted image twice, a filter tree should be used instead
of two separate filter chains, as illustrated in fiugre 8.2.

Figure 8.2: A still quite simple filter tree.

As an additional complication, many sophisticated filters use more then one input
filter. For instance the Canny filter computes first two images of the Sobel operator
(one for the x axis Dx and one for the y axis Dy). So the above described filter tree
is actually an acyclic directed graph of filters, as illustrated in figure 8.3.

8.3. VIDEOSERVICE 49

Figure 8.3: A not that simple filter graph.

8.3 VideoService

The program provided by Miro for image acquisition and preprocessing is called
VideoService.

Miro comes with a set of basic filters. The term filter is used here in a very general
way, as almost every processing unit of the video service is designed as a filter.
Actually the image acquisition from the different video devices is implemented as a
filter, forming the first set of filters available in Miro. The second set of filters are
basic image conversions, like byte order swapping, YUV to RGB transformations
etc. The third set of filters are the classic image filters. Unluckily, there do not
exist any of them currently in Miro. It introduces further library dependencies for
the middleware, which we have to be careful about. And i.e. for Ipp based filters,
we also have a licensing problem. How to extend the video service to process your
own filters is covered in the following subsection.

Filter graphs and their individual parameters can be specified within the configu-
ration file of the robot. The VideoService actually does not support every possible
directed acyclic graph. The implications on control flow and synchronisation are
too cumbersome. Instead the filters in the VideoService are organised as follows.

The filters are organised as a filter tree. That is, every filter has one predecessor
and n successors. The filtertree is processed in depth first order. This scheme is
extended by so called filter links: A filter can specify additional input filters. To
guaranty the correct order processing the filters, those additional filters have to
reside before the specifying filter, in terms of the depth first evaluation scheme of
the filter tree. Figure 8.4 tries to visualize this constrain.

Figure 8.4: A legal vs an illigal filter graph.

8.3.1 VideoService Parameters

The video service expects its configuration parameters with the section Video of
the configuration file. Its parameter is also called Video. The video service has the
following parameters:

Width The width of the input image (unsigned int). It has to be supported directly
by the used video device.

50 CHAPTER 8. VIDEO IMAGE PROCESSING

Height The height of the input image (unsigned int). It has to be supported
directly by the used video device.

Palette The palette of the input image (string). It has to be supported directly
by the used video device. The recognized palettes of the video service are:

grey 8 bit grey values.

grey16 16 bit grey values.

rgb 24 bit RGB format.

bgr 24 bit BGR format (byte swapping).

rgba 32 bit RGB format (plus alpha channel).

abgr 32 bit BGR format (plus alpha channel).

yuv 24 bit YUV format.

yuv411 compressed YUV format from 1394.

yuv422 compressed YUV format from 1394.

Filter The root of the filter tree. The filter parameter has three entries:

Type The filter type name (string).

Name The name of the corresponding configuration file parameter entry
(string).

Successor The list of successor filters (Filter).

BackLink The list of additional predecessor filters, specified by name (string).
Note that this is the name of the filter instance, not the name of the filters
video interface.

8.3.2 Video Filter Parameters

For each filter in the filter tree, filter parameters can be given within the parameter
whose name matches the filter name given in the filter tree. Those are also located
within the section Video.

The base parameter set of each filter is as follows:

InterfaceInstance Whether the filter has an instance of the video interface asso-
ciated with it (bool). Each filter can have an instance of the video interface.
That way every single node of the filter tree can be passed on to the client.

Interface The parameters of the interface. For each interface the following param-
eters can be specified:

Name The name under which the interface is registered at the naming service
(string). The default is Video. Note that if you have more than one Video
object, you have to specify a unique name for each instance.

Buffers The number of memory buffers, reserved by the buffer (unsigned int). The
default is 4. While a client is accessing an image, the video service guarantees,
that it does not become overridden with a new image from the video stream.
If clients hold multiple images (i.e. for temporal integration) it has to be
made sure, that there is still a buffer left, to put the next image from the
video stream into.

8.3. VIDEOSERVICE 51

8.3.3 Video Device Parameters

As mentioned above, all supported video devices are implemented as filters. Ther-
fore they inherit the base parameters. Note however, that the device filters are not
capable of having an interface instance. Sharing memory mapped files is a bit tricky,
and we didn’t want to go into that, yet. The common DeviceFilter parameters are:

Device The fully qualified path of the video device (string). The individual device
filters set this parameter to a common default (like /dev/video/0 for bttv and
/dev/video1394/0 for firewire).

Common parameters for frame grabber based video devices are:

Format The analog format of the video signal. This is either pal, ntsc, secam
or auto.

Source The source of the video signal. Available sources are composite1, composite2,
composite3, svideo and tuner.

The available video device filters are (listed by type name):

VideoDeviceBttv The bttv device filter defines the following additional parame-
ter:

Subfield The subfield chosen (string). As the PAL and NTSC images are
interleaved, the bttv frame grabbers can select, which of the half images
to scan, if the height of the output image is half the height of the full
image (384). Possible values are odd, even and all. Note however, that
many frame grabber cards do not support this feature. In this case, use
the FilterHalfImage described below.

VideoDevice1394 The firewire digital camera standard gives access to many of
the internal camera parameters. These can be configured in the parameter
section of the 1394 device. For all these values -1 denotes, that this parameter
should be controlled by the camera.

Buffers The number of image buffers used for dma transfers (unsigned int).

Brightness (int).

Exposure (int).

Focus (int). Default is auto.

Framerate (int). Default is 30Hz.

Gain (int).

Gamma (int).

Hue (int).

Iris (int).

Saturation (int).

Sharpness (int).

Shutter (int).

Temperature (int).

52 CHAPTER 8. VIDEO IMAGE PROCESSING

Trigger (int).

WhiteBalance0 (int).

WhiteBalance1 (int).

VideDeviceMeteor The matrox meteor device filter does not define any addi-
tional parameters.

VideoDeviceDummy A dummy device which can be used for offline testing. It
reads an image specified by the Device parameter. If the Device specifies a
directory instead of a file, all *.ppm files of the directory are used by the
device.

Timeout The image refreshing time (sec).

Cyclic (bool) The default is true. If true the device will restart with the first
image after all images were loaded.

8.3.4 Basic Video Filters and Their Parameters

Miro also provided the following basic filters with the standard VideoService.

FilterCopy As the video device filters cannot map the image data directly into
shared memory for access by the clients, this filter is provided. It copies the
image internally, to allow for an interface instance.

FilterSwap3 Byte swapping for 24 bits per pixel images (BGR to RGB).

FilterSwap4 Byte swapping for 32 bits per pixel images (ABRG to RGBA).

FilterFlip We have a camera that’s mounted upside down. This filter flips the
image. Also useful if your fly imitating robot has successfully landed on the
ceiling.

FilterHalfImage This is a filter to extract a half image from an interlaced image
as the bttv frame grabbers provide. It copies each second scan line. It defines
the following additional parameter:

Odd Take the second half image by starting with the second line (bool).
Default is false.

8.3.5 Configuration Example

Putting it all together the configuration section for the VideoService might look
like the following. This is actually the configuration of our Performance PeopleBot.
It has an analog video camera and a bttv frame grabber card. The camera is
mounted upside down.

<!-- The video configuration section. -->
<section name="Video" >

<!-- Parameter section of the VideoService -->
<parameter name="Video" >

<parameter value="bgr" name="Palette" /> <!-- Input image palette. -->

8.4. QTVIDEO 53

<parameter value="384" name="Width" /> <!-- Input image width. -->
<parameter value="288" name="Height" /> <!-- Input image height. -->
<parameter name="Filter"> <!-- Filter tree root. -->
<parameter value="DeviceBTTV" name="Type" /> <!-- It’s a bttv device. -->
<parameter value="DeviceBTTV" name="Name" /> <!-- Params section name. -->
<parameter name="Successor" > <!-- Filter tree leafs. -->
<parameter name="Filter" >
<parameter value="FilterSwap3" name="Type" /> <!-- Byte swapping filter -->
<parameter value="FilterSwap3" name="Name" />
<parameter name="Filter" > <!-- Filter tree leafs. -->
<parameter value="FilterFlip" name="Type" /> <!-- Upside down filter. -->
<parameter value="FilterFlip" name="Name" />
</parameter>
</parameter>

</parameter>
</parameter>
</parameter>

<!-- Parameter section of the bttv device. -->
<parameter name="DeviceBTTV">
<parameter value="/dev/video0" name="Device" /> <!-- Path of the device. -->
</parameter>

<!-- Parameter section of the byte swapping filter. -->
<parameter name="FilterSwap3">
<parameter value="true" name="InterfaceInstance" /> <!-- Video interface. -->
</parameter>

<!-- Parameter section of the upside down filter. -->
<parameter name="FilterFlip">
<parameter value="true" name="InterfaceInstance" /> <!-- Video interface. -->
<parameter name="Interface"> <!-- Interface params. -->
<parameter value="Flipped" name="Name" /> <!-- Interface name. -->
</parameter>
</parameter>

</section>

8.4 QtVideo

QtVideo is a test client for the VideoService and the Video interface. It displays
an image stream from a Video interface instance and has an additional button, to
save snapshots to disk.

The QtVideo tool accepts the following command line parameters:

-n Name of the Video interface instance within the CORBA naming service. De-
fault is Video.

-r Remote access of the images. QtVideo will be using the methods for location
transparent image access of the Video interface. These are much slower,
than the methods using shared memory buffers, but are the only option when
running QtVideo on another machine.

54 CHAPTER 8. VIDEO IMAGE PROCESSING

-v Verbose mode.

-? Emitting command line help and exits.

8.5 Video Interface

The Video interface is used to manage the access of image data by client programs.
It supports location transparent as well as optimized local image access. Addi-
tionally connection management is used, to switch off filter subtrees that are not
accessed by any other program.

The general access pattern of a client of a Video object looks like follows:

1. Get a Video interface IOR from the naming service.

2. Connect to the Video object.

3. Get images until done.

4. Disconnect from the Video object.

Note that due to the performance centric design of the Video interface, the VideoSer-
vice can easily be jammed by client programs violating the access protocol of the
interface. To facilitate the correct usage, some helper classes are provided by Miro.
These are discussed in section ??.

8.5.1 Location Transparent Image Access

To access an image as a client running on a different computer than the VideoService,
the Video interface offers the methods

• exportSubImage

• exportWaitSubImage

They both return a copy of the image as return value. The first method returns im-
mediately the current image, while the second one waits until a new image becomes
available before returning. The image will be scaled down to the size specified by
method parameters.

Note, that due to the copying and network overhead of those methods, they are
only useful for debugging and monitoring purposes.

8.5.2 Local Image Access

For clients running on the same machine as the VideoService, the Video interface
offers the following methods for image access via shared memory buffers:

• acquireCurrentImage

• acquireNextImage

8.5. VIDEO INTERFACE 55

• releaseImage

While the first method returns immediately the buffer of the current image, the sec-
ond one waits until a new image becomes available before returning. Note that the
clients have to release each image buffer after processing. Otherwise the VideoSer-
vice will soon run out of buffers, to share new images with its clients.

8.5.3 C++ Helper Classes

To facilitate the usage of the Video interface and the adherence of the connect/dis-
connect, acquire/release protocol, Miro provides two simple helper classes. They
are defined in the file $(MIRO ROO)/src/miro/VideoHelper.h

Miro::VideoConnection This class connects to a Video interface instance on
construction and disconnects on destruction. The constructor takes a pointer
to the Video object, to connect to as argument.

Miro::VideoAcquireImage This class acquires an image from a Video interface
instance on construction and releases it on destruction. The constructor takes
a reference to a Miro::VideoConnection object, as first argument, the second
selects whether the current or the next image is to be acquired.

8.5.4 Example Video Client

Listing 8.1: examples/video/VideoExample.cpp

#include ”idl/VideoC.h”
#include ”miro/Client.h”
#include ”miro/VideoHelper.h”

#include <iostream>

using std :: cout;
using std :: cerr ;
using std :: endl ;
using std :: flush ;
using std :: cin ;

int main(int argc , char ∗ argv [])
{

int rc = 0;

Miro:: Client client (argc , argv);
try {

Miro::Video var video = // Get reference to video service .
client .resolveName<Miro::Video>(”Video”);

cout << ”connection” << endl;

Miro::VideoConnection connection(video. in ()); // Build up connection.

56 CHAPTER 8. VIDEO IMAGE PROCESSING

cout << ”local copy” << endl;

// Get a local copy of the current image,
// using full resolution .
CORBA::ULong x = connection.handle−>format.width;
CORBA::ULong y = connection.handle−>format.height;
Miro::SubImageDataIDL var image1 =

video−>exportSubImage(connection.handle−>format.width,
connection.handle−>format.height);

cout << ”local copy next” << endl;

// Get a local copy next image,
// scaled down somehow.
x = connection.handle−>format.width / 2;
y = connection.handle−>format.height / 3;
Miro::SubImageDataIDL var image2 =

video−>exportWaitSubImage(x, y);

cout << ”acquire current” << endl;

// Acquire the current image buffer .
Miro::VideoAcquireImage image3(connection,

Miro::VideoAcquireImage::Current);

cout << ”acquire next” << endl;

// Acquire the next image buffer .
Miro::VideoAcquireImage image4(connection,

Miro::VideoAcquireImage::Next);

cout << ”clean up” << endl;

// Automatic resource cleanup by object destructors :

// − image4 destructor releases its buffer to the VideoService .
// − image3 destructor releases its buffer to the VideoService .
// − image2 destructor releases the heap memory of its image copy.
// − image1 destructor releases the heap memory of its image copy.
// − connection destructor disconnects the client at the VideoService .
// − video destructor destroys the video interface proxy object .

}
catch (const Miro::ETimeOut& e) {

std :: cerr << ”Miro Timeout Exception: ” << e << endl;
rc = 1;

}
catch (const Miro::EDevIO & e) {

std :: cerr << ”Miro Device I/O exception: ” << e << endl;
rc = 1;

}
catch (const Miro::EOutOfBounds & e) {

std :: cerr << ”Miro out of bounds exception: ” << e << endl;
rc = 1;

}

8.6. VIDEO BROKER INTERFACE 57

catch (const CORBA::Exception & e) {
std :: cerr << ”Uncaught CORBA exception: ” << e << endl;
rc = 1;

}
return rc ;

}

8.6 Video Broker Interface

In addition to the Video interfaces of individual filters, the VideoService also offers
an interface that accesses the whole filter tree of the service. It is called VideoBroker
and also registers as VideoBroker at the NamingService. It offers methods for
synchronised simultanious access to multiple filters and for inspection of the filter
tree.

8.6.1 Synchronised Image Access

The client side evaluation of the results of the various filters often requires access to
multiple filters, that originate from the same input image. The following methods
are available in the VideoBroker interface for this purpose. They work quite like
the corresponding methods of the Video interface of the individual filters.

• acquireNextImageSet

• releaseImageSet

8.6.2 Filter Tree Meta Information

Statistical information about the filter tree can be optained at the VideoBroker
interface via the method:

• filterTreeStats

It returns the number of connections, the processing time of the filter as well as
the processing time of the corresponding filter subtree (not including the processing
time of the filter), the name of the filter, the ior and the name of its Video interface
(if available), the filter successors as well as the successor links.

8.7 Writing Filters

Sooner or later, it will become handy for a user to add custom filters to the video
image processing framework. This is a two step process. First the filter has to be
implemented as a class derived from the Filter base class. Second a customized
version of the VideoService has to be built. The later has two reasons. The first is,
that Miro currently does not contain a plug in architecture for dynamically loadable
modules. The second is, that dynamic loadable modules require the usage of shared
libraries. As this is has some runtime performance impact, that might not really
desirable for performance critical tasks like image processing. Nevertheless, patches
are welcome.

58 CHAPTER 8. VIDEO IMAGE PROCESSING

8.7.1 The Filter Base Class

The base class of all filters is Video::Filter. It provides methods for filter tree
setup and configuration, a harness for recursive filter tree processing and buffer
management in interaction with a Video interface instance.

The most important protected methods and data members for child classes are.

inputBuffer() Returns a pointer to the input buffer.

inputFormat Specifies the data format of the input buffer.

outputBuffer() Returns a pointer to the output buffer.

outputFormat Specifies the data format of the output buffer.

8.7.2 Methods to Overwrite

The most important methods for child classes are.

Constructor The constructor takes a struct of type Miro::ImageFormatIDL as
parameter. It describes the input format of the filter (hence the output format
of the predecessor filter). The constructor of the Filter base class copies this
parameter into the two member variables inputFormat and outputFormat .
The derived filter has to ensure, that the input format is a valid format for the
filter and modify the member outputFormat , to correctly describe the output
format of the filter. If the input format is not valid a Miro::Exception has
to be thrown.

process The actual filtering method. Put your filter code here.

8.7.3 Configuration and Parameter Processing

If your filter needs additional parameters for configuration, your can add them to
the configuration file framework by specifying them in a parameter file description,
deriving them from Miro::FilterParameters. You have to overwrite the factory
methods for Miro::FilterParamters in the Filter class to return an instance of
your derived parameters class. This can be automated by using the macros:

FILTER PARAMETERS FACTORY(X) For usage within the class defini-
tion.

FILTER PARAMETERS FACTORY IMPL(X) For usage within the class
implementation.

Where X is the name of your derived Filter class.

For initialization and cleanup the following two methods exist.

init Called on initialization of the filter tree. It provides a pointer to the parameters
object initialized from the configuration file. Use dynamic cast to convert it
to the type of your derived parameter class.

fini Called before destruction of the filter tree.

8.7. WRITING FILTERS 59

8.7.4 Enabling and disabling features

The interface also contains some flags that allow the derived classes to specify the
existens of certain properties for the base class. Overwrite their settings in the
constructor. Those are namely:

interfaceAllowed Specifies, whether the filter result can be exported by a video
interface. The default for Video::Filter is true. For Video::Device it is false
(see section ?? for details).

inplace Not implemented yet. (Allways false)

8.7.5 Filter Meta Information: FilterImageParameters

Sophisicated filters may also extract additional information from the images, such as
a region of interest etc. To hand this information to subsequent filters, an additional
interface does exist. It is based on the same mechanisms as the filter parameters,
except that they can’t be specified within configuration files. The base class is
empty.

The factory methods also reside in the corresponding Filter class and are wrapped
by the two macros:

IMAGE PARAMETERS FACTORY(X) For usage within the class defini-
tion.

IMAGE PARAMETERS FACTORY IMPL(X) For usage within the class
implementation.

Where X is the name of your derived Filter class. The base class is named FilterImageParameters
and the macros expect the name of any child class to end on ImageParameters.

The Filter interface provides accessor methods for the parameters of the individual
buffers:

inputBufferParameters Returns a const pointer to the parameters of the input
buffer.

inputBufferParametersLink Returns a const pointer to the parameters of the
linked input buffer specified by its index.

outputBufferParameters Returns a pointer to the parameters of the output
buffer. Note that the parameter instances is not initialized with defaults be-
fore processing of the filter. That is, the filters process method is responsible,
that all data members of the image parameters instance contain meaningfull
values on return.

8.7.6 Example Video Filters

To illustrate the framework, a simple example filter is provided under $(MIRO ROOT)/examples/videoFilter.

60 CHAPTER 8. VIDEO IMAGE PROCESSING

8.7.7 Calculating a Gray Image

FilterGray implements a simple gray filter for images in 24 bit rgb format. The
gray value is calculated as the average of the weighted sum of the three color values.
The weighting can be specified by the filters parameters.

Start the example service in the directory videoFilter with
GrayVideoService -MiroConfigFile GrayVideoConfig.xml

It registers two interfaces at the naming service: Video and Gray. To examine the
original and the filtered image, use QtVideo and QtVideo -n Gray.

8.7.8 Image time series

FilterDiff illustrates the use of multiple input filters. It calculates the difference
of two input images. For that purpose it locks images of one image source to provide
a view into the past. The number of images locked can also be specified by the filters
parameters. Note however, that it has to be less then the number of output buffers
provided by the input buffer.

Start the example service in the directory videoFilter with
GrayVideoService -MiroConfigFile DiffVideoConfig.xml
Note that the usage of an input filter link is a bit artificial in this configuration, as
both input filters are the same.

It registers two interfaces at the naming service: Video and DiffImage. To examine
the original and the filtered image, use QtVideo and QtVideo -n DiffImage.

8.8 Writing a new Input Device

The root of a filter tree is a video device. A video device is actually not an image
filter but an image producer. But as mentioned above, it is implemented as as
specialization of the video filter class. Some additional requirements and features
do exist to handle this case.

8.8.1 BufferManger

The video framework does use a buffer manager class to organize the concurrent
acces to the images of a filter by the filters and remote clients. Video devices
normally aint capable of having directly a video interaface instance attached. The
video interface uses shared memory to allow for zero copy acces to the clients. Video
devices often use memory mapped io to acquire the images. Combining the two is
at least tricky, if possible at all. So most video devices just skip it.

Instead the buffer manager class is used for synchronising the access to the mmaped
images between the filters and the hardware.

Chapter 9

Group Communication in
Robot Teams

When it comes to multi-robot scenarios, group communication becomes an issue of
interest. As Miro is designed for usage in distributed environments, most of the
prerequisites for communication in teams of robots are in place. But in the pres-
ence of WLANs, that have extremely varying bandwidth, that dependents on the
location of the computer etc. some more requirements have to be met. Especially
the TCP/IP based transport protocol can become a bottleneck, when temporary
network breakdowns can regularly happen during operation.

9.1 Event Channel Federation

The event based communication of Miro is based upon the CORBA Notification
Service. In a team of robots, one central event channel could be set up and used
for team communication. While this is most convenient from a user perspective,
it creates a single point of failure for a team of otherwise independent autonomous
robots.

Using a single virtual event channel, that is distributed over multiple channels, that
run on the different robots helps both, the programmers, as well as the systems fault
tolerance. As such an event channel federation is not part of the specification of the
CORBA Notification Service, Miro provides its own implementation. Namely the
Notify Multicast (NMC) module. Its implementation is based upon the work done
for the event channel federation of the RT-EC of TAO [2]. A successful application
of the NMC module is described in [11].

9.2 Notify Multicast

One notification service is run on each robot (computer). The NMC module attaches
one consumer and one supplier to the robots local event channel. Additionally it
subscribes at a multicast group. Events that are subscribed by other robots are
exchanged via the multicast group.

For the automatic arbitration of the set of events that need to be exchanged via the
multicast group, the offer/subscription protocol of the Notification Service is used.

61

62 CHAPTER 9. GROUP COMMUNICATION IN ROBOT TEAMS

Figure 9.1: A Federated Notification Channel Setup

Offers to and subscriptions at the event channel are determined by the domain name
and type name fields of the event header. In Miro the domain name is by convention
the name of the robot. The NMC module posts all events that subscribed for at the
local channel, but that are not offered locally to the multicast group and collects
these posts from the other robots. Events that are requested by other robots and
offered locally, are posted to the multicast group on arrival on the local event
channel. Those events, that are subscribed for at the local channel, but not offered
locally, are published to the local channel as they become posted on the multicast
group.

See also figure 9.1 for a possible configuration of subscriptions and offers in a fed-
erated event channel.

9.3 Usage

The NMC module is part of most robot servers by default. It can be enabled by
the command line option -MiroNotifyMulticast or -MNMC for short. It also exists,
as a separate program: NotifyMulticast.

9.3.1 Parameters

The parameters can be set in the robots configuration file. They are located in the
configuration group Notification. The available parameters are.

MulticastGroup The multicast group used for group communication.

Timeout The maximum age for events send over the group. This requires proper
synchronization of the team clock (i.e. by NTP [3]). A value o zero indicates,
that all events should be processed regardless of their age.

Subscription These events are shared with other robots event if no one seems
to listen. - Events that are exchanged on the bases of the offer/subscription

9.3. USAGE 63

management protocol need some time, until the request is acknowledged by
the suppliers. By providing events with this option, this time can be skipped.
Note, that only the type name is specified here. The domain name is assumed
to be the robots name.

64 CHAPTER 9. GROUP COMMUNICATION IN ROBOT TEAMS

Chapter 10

Logging

The logging of debug, information and error messages can help a great deal in the
recovery from failure situations. This is especially true for robotic applications.
Unfortunately the sheer mass of console output from the different modules can
become too complex quite fast. So Miro comes with a set of logging facilities
that cover different levels of the system functionality. The first framework, that is
introduced within this chapter is based on the logging framework provided by ACE.
It is a system log oriented framework to organize printf like output on various levels.
Chapter 11 will cover another, more sophisticated set of logging functionality.

10.1 Log Levels and Categories

Miro uses two mechanisms to customize logging output. Log levels are used to give
fine grained control over the verbosity of log output. Miro defines log levels from
0 to 9. The higher log levels are considered to be used for debugging purposes
only. They are therefore also referred to as debug levels. They usually are only
meaningful for developers. For debug levels log categories are used to restrict the
logging output to one or more subsystems of the robot application. Output from
debug levels is only displayed if its log category is enabled, too. Additional log
categories can be defined for your own programs.

The different log levels are:

0. Emergency Log level of messages reporting an emergency. Your robot is on fire
etc. This log level is not maskable, except if you turn of logging at configure
time.

1. Alert Log level of messages reporting an alert. This is when the red lights
start blinking and this unnerving honking sound is played.

2. Critical Log level of messages reporting a critical condition. This usually is
an unrecoverable error, that leads to the termination of reporting program.

3. Error Log level of messages reporting an error. This indicates a real error,
but the program will usually try to continue anyway.

4. Warning Log level of messages reporting a warning. A warning should be
fixed, but the program is likely to work anyways.

65

66 CHAPTER 10. LOGGING

5. Notice Log level of messages reporting a notice. Make a post-it and add it to
the other 500 ones.

6. Ctor Dtor Debug level of messages reporting a constructor/destructor entry.
This debug level is designed to hunt segmentation faults on startup and exit.
— This is when all the big ctors/dtors are run.

The debug levels are:

7. Debug Log level of messages reporting debug output.

8. Trace Log level of messages reporting program trace output.

9. Prattle Log level of messages reporting really verbose comments on the pro-
gram execution.

The different log categories used within Miro are the following. (All brand names
have to be marked as such, as soon as we find the time):

Miro This category is used by the Miro core components, namely those located in
the library libmiro.so

Video Used by the components of the video image processing system. See section
8 for details.

NMC The notify multicast based event channel deliberation, as used for team
communication. See section 9 for details.

B21 Used by the components exclusive to the B12 robots of RWI.

Pioneer Used by the components exclusive to the Pioneer robots or Active Media.

Sparrows The custom built Sparrows platform.

Faul The motor controllers from Faulhaber.

DP The pan-tilt unit from DirectPerception.

Sick The sick laser scanners have their own category.

Sphinx The sphinx speech components.

Dtlk The DoubleTalk speech components.

BAP The reactive control subsystem logs messages within this category. See sec-
tion 12 for details.

10.2 Run-Time Configurability

The log level and log categories that are displayed can be configured at program
startup by command line parameters.

-MiroLogLevel <n> or -MLL <n> for short, selects the log level up to which
data is logged. The log levels are referenced by number. The default log level
is 4. Log level 0 can not be masked by command line parameters, but only
by turning off logging entirely at compile time.

-MiroLogFilter <name> or -MLF <name> for short, selects a category to log.
This option can be specified multiple times to enable multiple categories. The
category enabled by default is Miro.

10.3. USAGE IN SOURCE CODE 67

10.3 Usage in Source Code

This logging facility is used extensively in the Miro sources. It can also be used and
extended for the usage in robotic projects based on Miro.

10.3.1 Miro::Log

The class Miro::Log is defined in miro/Log.h. It works mostly as a namespace for
the logging facility. It holds constants for all log levels as well as log categories. The
main method is Miro::Log::init(). This is a static method that takes argc and
argv as arguments, to parse for the -MiroLogLevel and -MiroLogFilter command
line options. Additionally, accessor methods and predicates are defined to query log
levels etc. at runtime.

10.3.2 Macros

miro/Log.h also defines a set of macros that are usable for development with, and
within Miro.

MIRO LOG Produce some log output, if the required log level is enabled. It
takes two arguments. The first is the log level, the second is a single character
string. The log level is specified by name. The canonical name format for log
levels is the log level name in capitals, prefixed by LL .

MIRO LOG OSTR Like MIRO LOG, but the second parameter is used as right
hand side argument for an output stream operator �. So it can contain some
operator � concatenated expression.

MIRO DBG Produce some log output, if the required log level as well as the log
category is enabled. It takes three arguments. The first is the log category,
the second the level, and the third is a single character string. The canonical
name format for log categories is the log category name in capitals.

MIRO DEBUG OSTR Like MIRO DBG, but the last parameter is used as right
hand side argument for an output stream operator �. So it can contain some
operator � concatenated expression.

MIRO LOG CTOR For constructor tracing. Accepts a single parameter con-
taining the class name as string. Logged with log level 6.

MIRO LOG DTOR For destructor tracing. Accepts a single parameter contain-
ing the class name as string. Logged with log level 6.

MIRO DBG TRACE For method call traces. Takes the log category as argu-
ment.

MIRO ASSERT The standard assert macro. It is provided to enable disabling
of assert macros in (inline) code of Miro without disabling them for user code
too.

68 CHAPTER 10. LOGGING

10.4 Compile-Time Configurability

Log and debug messages can be disabled entirely at compile time by two configure
flags:

–disable-DebugInfo disables debug information, that is namely log levels above
6. The MIRO DBG ... macros will be replaced by no-op implementations,
removing footprint and performance overhead of the programs, introduced by
debug information. - Especially the performance overhead is mostly negligible,
so this option might well be omitted even for release versions.

–disable-LogInfo disables log information entirely. Like above, this can save some
footprint but is hardly measurable in performance.

10.5 Test and Example Programs

The programs located at tests/log provide some testing facilities for the logging
facility and can serve as a practical example on the setup of the logging facility as
well as on the usage of the logging and debug macros. The only program currently
located there is TestLog.cpp. The source code is documented to help understanding.

Chapter 11

Event Channel logging

The acquisition of data during the run of a robot application from various levels of
sensor processing is an essential feature for debugging, evaluation and performance
assessment. The event based communication paradigm of Miro is designed to dis-
tribute raw sensor data as well as higher level system events, like the latest belief
state of the robot. The stream of events resembles therefore a quite complete trace
of the system state during the run of a robot program. Miro provides functionalitiy
to log such an event stream generically to a file. The data can not only be reread
into the system, but the events can also be redistributed over the event channel, al-
lowing for detailed offline analysis. In [10] the various configuration and application
scenarios are described along with a detailed performance analysis of the facility.
This chapter is concerned with a more technical view, like the setup of the logging
client, the replay as well as the maintenance of logged data and the file format.

11.1 Logging Client

The logging client for the notification service ist called LogNotifyConsumer and is
located in the service library libmiroSvc. It can be used as a normal event channel
client within the own application or as a standalone program.

11.1.1 Parameters

The location of the log files can be defined by the environment variable MIRO LOG.
The default file name is defined as:

$(MIRO LOG)/¡domain name¿ ¡time string¿.log

where ¡domain name¿ is the name of the robot and ¡time string¿ is the time the
recording of the log file was started in the format yyyy.mm.dd-hh.mm. An alter-
native file name can be specified at the command line or as constructor parameter
respectively.

Other parameters can be specified in the config file. They are located in the section
Notification. Those are:

MaxFileSize The maximum size of the log file. Log files can become quite large
over time. So it is good to have an upper limit. Also, the implementation

69

70 CHAPTER 11. EVENT CHANNEL LOGGING

uses a memory mapped file for maximum throughput. So the log file, along
with the application should fit into the available physical memory. Otherwise
swapping will jeopardize the overall system performance. The default is 150
MB. This is sufficient for 20 minute runs of our soccer robots, logging almost
everything that is happening.

TCRFileSize The log file contains a type code repository, that holds descriptions
for all types, stored within the log file (CORBA type codes, to be exact). The
default maximum size for the type code repository is 1 MB. As a the number
of different payload types is usually limited for one robot (about a dozend)
and the type code size is between 0.5 – 1.5 KB, this should be sufficient for
most applications.

Event A vector of domain name, type name pairs that shall be logged.

TypeName A vector of type names that shall be logged. The domain name is
supposed to be the domain name of the robot. Usually a robot only logs its
own events.

11.2 Standalone Logging Client

The LogNotify client is a standalone program, that can be used as an ad hoc
solution for logging data. It offers the possibility to connect directly to a selected
event channel, or use the IP-multicast based event channel federation described in
section 9.

11.2.1 Command Line Parameters

The command line parameters are the following:

11.3 LogPlayer

The LogPlayer is a GUI-based application for the replay of logged data. It of-
fers timely replay, slow motion and single stepping as well as simple maintenance
operations like cutting and event filtering. It can also load multiple log files and
play them synchronized, distributing the events over mutliple event channels. A
screenshot of the LogPlayer can be seen in figure ??.

The main panel consits of five button, a digital clock, a slider bar and a dail. The
clock shows the time stamp of the coursor within the file. The slider shows the
relative positon of the cursor within the log stream and can be used to repositon
the cursor. The dail resembles the replay speed. Twelve o’clock is the original
timing. Counterclockwise is slow motion and clockwise fast forward.

11.3.1 Main Panel

The buttons on the main panel do the following:

Stop Stop the replay of the log file and reset the coursor to the beginning of the
log stream.

11.3. LOGPLAYER 71

Play Play the log file from the current cursor position in the speed selected on the
dail.

Pause Pause replay. The cursor position remains unaffected.

Forward Single step one event forward.

Backward Single step one event backward.

11.3.2 Menu

The menu bar has five entries: File, Edit, Events, Tools and Settings. The file
menu offers file operations. The edit menu offers simple cutting functionality. The
events menu allows to filter certain events from the log file. The tools menu holds
tool windows for further log file event inspection and the settings menu holds the
configuration.

File Menu

Open/Close... Displays the file set dialog that allows to add and remove log files,
from the set.

Save as... Allows to save the current log file set, with event filtering and cutting
applied to a new file.

Edit Menu

Cut Front Removes everything from the beginning to the current cursor position
from the log file.

Cut Back Removes everything from the current cursor position to the end of the
log file.

Undo all Undo all logfile cutting.

Events Menu

The events menu holds an entry for every robot, that was found in the currently
loaded log file set. That is, for every distinct domain name. For each domain name
a submenu with this robots events in the event stream is available. That is, every
distinct type name. Each type name entry is checkable and can be switched on and
off. Each unchecked event type is skipped on replay of the log file.

Tools Menu

This menu offers the event view, which is a window, listing a sequence of events
around the coursor position. This is uesefull for event exact cut operations etc.

Settings Menu

The only setting currently available at the menu is the length of the history of the
event view. - More to come — promised.

72 CHAPTER 11. EVENT CHANNEL LOGGING

11.4 File Format

The file format consists of a header block of 8 bytes: The first four represent the
log format magic cooky: MLOG. The next two are the version number in intel byte
order. Followed by a two byte byte order flag, as defined by the CORBA common
data representation format.

struct LogHeader
{

unsigned long id; // MLOG: 0x474f4c4d
unsigned short version ; // Version 3: 0 x003
unsigned short byteOrder; //Host byte order

};

The current version of the log file format is 3. In basic, all following data, including
the events are stored in CORBA CDR stream format. What follows is in general a
variable length array (CORBA sequence) of type:

struct EventEntry;
{

TimeT timeStamp;
unsigned long eventSize;
CosNotification :: StructuredEvent event;

};

typedef sequence<EventEntry> EventArray;

The timeStamp field denotes the time, the event was received by the logging con-
sumer. It is used for the timely replay and synchronization of log files.

The eventSize field denotes the size of the event field within the log file. This is
used to speed up initial parsing of log files for the LogPlayer.

The event field contains the event, as delivered by the event channel. As a foot-
pring optimization, the type codes, stored with every CORBA::Any, that is, re-
mainder of body field of the events are stored as

typedef sequence<TypeCode> TypeCodeArray;

at the end of the log file, forming the type code repository. The type code in the
remainder of body field is replaced by the index of the type code within the type
code array.

The offset of the type code sequence within the log file is stored at the beginning
of the CDR stream. That way the type code repository can be read before parsing
of the events. This defines the log file format version 3, as follows:

struct LogFile
{

LogHeader header;
unsigned long tcrOffset ;
EventArray events ;
TypeCodeArray tcr;

};

11.5. TEST AND EXAMPLE PROGRAMS 73

11.5 Test and Example Programs

The programs provided in the tests directory for the LogNotification format, are in
basic two configuration files, that restrict the size of the log file and the type code
repository, to provoke overflow of the log files.

A utility program for log files is LogTruncate. If a log client dies discracefully
with a segfault, the log is still saved and usable, but has the size specified by
the MaxFileSize parameter, regardless of the actual footprint of the stored events.
LogTruncate, removes the unused 0 bytes and truncates the log file to a reasonable
size.

74 CHAPTER 11. EVENT CHANNEL LOGGING

Chapter 12

Behaviour Engine

Controlling the actuators of an autonomous mobile robot is one of the central as-
pects of mobile robot research. As Miro exposes the interfaces to the motor con-
trollers etc. of the mobile platform it enables researchers to easily evaluate new
approaches to model sensor actor control loops. Be aware that at this point the
latencies introduced by various levels of the robot architecture can become a crit-
ical issue. To eliminate the network latency and prevent yourself from occasional
network bandwidth problems we recommend that you run your control programs
collocated on the same computer with the service that accesses the actuators device.

Miro supports the behavioural control paradigm introduced by Brooks [1] by its own
behaviour engine. It is designed to allow for a quick start into behaviour robotics
writing your own behaviours. Yet, due to its open and extensible design it is also
capable of handling sophisticated control tasks as demonstrated by its use within
the RoboCup-scenario by our Sparrow an Sparrow-2003 robots.

12.1 The Concept of Behaviours

The basic idea of the behaviour approach to robot control is as follows. Instead of
the sense-plan-act paradigm of classical AI, the task is splited into a set of reactive
behaviours, that each try to fulfill a small subtask of the problem set. For each
of the tasks only a very limited part of world modeling is needed (often, even raw
sensor readings are sufficient). By combining the output of the various behaviours
by an arbiter, the emergent higher level behaviour of the system is achieved, solving
the recommended high level task.

An accepted bottleneck of this approach is the arbitration and calibration of large
sets of behaviours necessary to fulfill different aspects of a high level task. Therefore
in the Miro framework the behaviour engine also support the hierarchical decompo-
sition of behaviour sets by allowing them to be grouped in so called action patterns
that can be activated alternately by so called transition messages. A set of action
patterns is called a policy within the Miro framework.

There do exist two different kinds of transitions within the behaviour framework:
local and global transitions. Local transitions are emitted by the behaviours by
name. For example a transition named “GoalReached” might be emitted by a
behaviour when it decides, it has fulfilled its task. Within an action pattern a
transition is linked to the successor pattern, that will be activated as the transition

75

76 CHAPTER 12. BEHAVIOUR ENGINE

message occurs. That way totally different action patterns can be activated, when
the behaviour emits the “GoalReached” transition message within different action
patterns. Global transitions are somehow simpler. They contain directly the action
pattern, that is to be activated next. This mechanism is designed for modules of the
robot, that are external to the behaviour framework. For example if a task planner
decided it would be time for the robot to go home, it might activate the “GoHome”
pattern just by issuing a global “GoHome” transition. The robot will then switch
to its GoHome pattern regardless of what it was doing before.

12.2 Introductory Examples

Lets look at the simple action pattern, who’s high level task is to explore the en-
vironment by performing a random walk. This is easily splited into two distinct
behaviours. The first subtask is not to collide with the environment. This can be
achieved by an avoid behaviour, that reads the front sonar sensors to determine
how far it is away from the nearest obstacle. If the minimal distance is below
some threshold, it tells the arbiter to turn away into another direction. The second
behaviour would be a wander behaviour. It selects from time to time just ran-
domly some translational and rotational velocity, making the robot move around.
It does not have to care about obstacles, since those are taken care of by the avoid
behaviour.

The task of choosing the actual velocities to be applied to the motors is performed
by the arbiter. It therefore plays a central role in the behaviour approach. There
exist various kinds of arbiters, all choosing different policies for this task. But a
simple priority based arbiter suffices for many scenarios. In Miro there currently
just exists a priority based arbiter, but since it is an extensible framework you can
easily plug in your own one. The priorities in this example could be applied straight
forward. The avoid behaviour has higher priority as the wander behaviour.

Note the easy extensibility of this approach. For example, if we have some bump
sensors that indicate collisions with the environment. We could just add another,
let’s call it “EmergencyStop” behaviour and assign it the highest priority. If one of
the bumpers is pressed it makes the robot stop and wait for rescue by one of the
operators.

As a further extension we assume we have two tasks. The first is the random walk
described above, the second would be a wall following behaviour, that simply is
capable to drive the robot in a defined distance along a wall. The decision what
to do is provided by an external source, say, a button located on the robot and
pressed by the operator when demonstrating the management the capabilities of
the newly bought autonomous mobile robot. The second action pattern looks quite
like the first one, except that the wander behaviour is exchanged by a wall following
behaviour, that drives the robot along the wall. (Note that this behaviour does not
have to care about walls thar are blocking the way at the end of the corridor, since
this can be taken care of by the avoid behaviour.) These two action patterns now
form a policy. The pressing of the button sends a transition message, that disables
the currently running action pattern and enables the other one.

The action pattern / transition message mechanism also fits naturally for coupling
reactive behavioural control with deliberative planning architectures. The transition
could also be raised by a path planner and the corresponding action patterns could
be ’move to point’, ’drive through door’ or ’dock at power supply’. Indeed this was
already done within [9].

12.3. EXAMPLE USAGE 77

12.3 Example Usage

As an example of the behaviour framework in use, let us start the obstacle avoid
demo.

• Start all the robot main services from within $MIRO ROOT/bin/ with:
PioneerBase
This server has to run on the robot.

• Start the Behaviours, specifying the policy at the command line:
Behaviours ../examples/behaviours/PpbStraight.xml
This client can run on any computer, however, it is a good idea to run the
behaviours on the robot, to avoid that network latencies stop the control loop.

• Start the policy controller GUI from within $MIRO ROOT/bin/ with:
PolicyController
to start and stop the policy run by Behaviours. Run this from any computer.

12.3.1 The Behaviour Control Loops

The core of the behaviour framework gets instantiated and initialized in the file
Behaviours.cpp in $MIRO ROOT/examples/behaviours/ with its main() proce-
dure. It instantiates all available behaviours and arbiters starts a thread for the
timer service (ACE Reactor) needed by timed behaviours (see section 12.5.1) and
runs the CORBA event loop for its BehaviourEngine interface, as well as for the
event consumers like event behaviours (see section 12.5.2) that get pushed by
PioneerBase for instance. Behaviours themselves do not have an own main pro-
cedure. They are implemented in the action() method of ordinary C++ objects
which have to be known in Behaviours.cpp. Necessarily, all behaviours run on one
computer.

As seen in Fig. 12.1, Behaviours.cpp runs two loops synchronously: the timer loop
for timed behaviours and the CORBA loop. The timer loop is started in a separate
thread (invoked by the command ”task→open(NULL);”). It schedules the timed
behaviours by invoking their action() methods one after another.

The CORBA loop of Behaviours.cpp (invoked by the command ”server.run(5);”).
processes requests for the BehaviourEngine interface (which it registers under the
name ”BehaviourEngine” at the CORBA Naming Service) from the PolicyCon-
troller, as well as it administers all CORBA requests from PioneerBase and invokes
the event behaviours. The action() method of an event behaviour is invoked when-
ever the CORBA notification service publishes an event to which the behaviour has
subscribed. Events are subscribed to by their names, e.g. ”Tactile” or ”Sonar” (see
TactileStop.cpp or SonarNotify.cpp). The published sensory events and their
associated payload are described in section 4.3.

Invocation of an action() method by the event ”Tactile” is reminiscent of a call to
a server registered as ”Tactile” by a client, e.g. PioneerBase. However, there are a
few differences: (i) the event ”Tactile” calls not a program with its own main(), but
only an action() method, (ii) not one unique method is invoked, but all action()
methods which have subscribed to that event and (iii) unlike proper services, the
TAO nslist utility does not list these event consumers, because they cannot be
meaningfully invoked by an external program.

78 CHAPTER 12. BEHAVIOUR ENGINE

Figure 12.1: The Behaviour Architecture Overview

The Behaviour Engine Implementation loads an XML Policy File into a policy
instance and starts and stops the policy. On activation of an action pattern, all
behaviour that are part of the action pattern get connected to the event chanel or
the timer respectively.

12.4 Arbiters and Messages

Arbiters select the action from all the suggestions the behaviours of an action pat-
tern make. The behaviours make a suggestions by sending an arbitration message
to the arbiter. Each arbiter has its own arbitration message format, depending on
the arbitration scheme used and the actuatory device(s) it controls.

In Miro currently exist three arbiters. The MotionArbiter used in all examples,
the specialized PowerArbiter, that uses the SparrowMotion interface and the ex-
perimental WindowArbiter.

12.4.1 MotionArbiter

The arbiter acts only on the motor output of the behaviours: instead of sending
motor commands directly to the Motion interface, the behaviours invoke the method
arbitrate() of the arbiter, passing it a message.

The MotionArbiter uses a simple fixed priority, winner takes all, arbitration scheme.
That is, each behaviour has a fixed priority that corresponds with the order the be-
haviours are defined within the action pattern. In the MotionArbiterMessage,
that is, the parameter passed by the arbitrate() call, the behaviour can specify
whether it wants to suggest the arbiter an action or not. The action is defined by

12.5. IMPLEMENTING A BEHAVIOUR 79

the translational and rotational velocity for the motion. The arbiter then decides
whether to transform the content of the message into motor commands or whether
to issue the motor commands of another, conflicting behaviour which has a higher
priority.

Note that the arbitration of messages before conversion into motor commands,
however, is only for the wheels of the robot by the MotionArbiter. The other
actuators, for instance the camera pan-tilt unit or the grippers, are to be controlled
directly in this case. No arbiter has to be defined for them, as long as a only single
behaviour is expected to control them.

12.5 Implementing a Behaviour

All behaviours are derived from the base class Miro::Behaviour. The central
method of this class is the method action(). It is to be overwritten by the program-
mer and has to contain the behavioural code. The method becomes invoked by the
behaviour control file, i.e. Behaviours.cpp, which includes the behaviour header
files and which links the behaviours to their corresponding control loops. However,
if only a new policy is combined from existing behaviours, then Behaviours.cpp
does not need to be modified.

The behaviours’ action() method is expected to call an arbitration method or
send a transition message. Note the inversion of control flow. A behaviour is
not allowed to jump into some infinite loop, but the action() method is called
continously as long as the behaviour is active within some action pattern. So every
action() method must return quickly enough after its invocation to give time to
the others. This implements the idea of simple reactive behaviours rather than
complex strategies. If it is necessary to run a behaviour continuously in parallel to
other behaviours, then own threads have to be created, e.g. using ACE.

Only one instance of each behaviour object is used within the behaviour engine,
even for different action patterns. Therefore data that needs to be stored between
subsequent action() method invocations can be easily stored within member vari-
ables.

From an implementation perspective, there are three kinds of behaviours, depending
on how the data, the behaviour bases its decisions on, is delivered.

12.5.1 Miro::TimedBehaviour

This is the base class for a timer scheduled behaviour. A behaviour derived from
this class runs with all its brothers and sisters cooperatively multi-threaded in one
thread of control. The pace at which its action() method is called is selectable by
a parameter of the base class.

This is the most simple form of behaviour design and in many cases most straight
forward. It is especially suitable for behaviours that poll their sensory informa-
tion of the world model, like for instance the current scan of the laser range
finder for collision avoidance. Also the above mentioned wander behaviour - which
doesn’t use any sensory information would be best implemented as a child of the
Miro::TimedBehaviour class.

See $MIRO ROOT/examples/behaviours/simple/Wander.cpp|h for a complete source
code example.

80 CHAPTER 12. BEHAVIOUR ENGINE

12.5.2 Miro::EventBehaviour

This is the base class behaviours using asynchronous sensory information published
by the Notification Service. It subscribes for the events it likes to get pushed and the
action method is called whenever a new message arrives. A pointer to the current
structured event is then available as member variable.

The emergency stop behaviour described above would be a good candidate for such
a behaviour, since it would have to poll excessively as a timed behaviour in order to
minimize the latency between a bumper pressing a the actual stop, while it would
only need to call an arbitration method in very rare occasions.

See $MIRO ROOT/examples/behaviours/simple/TactileStop.cpp|h for a com-
plete source code example.

12.5.3 Miro::TaskBehaviour

Behaviours derived from this calls run within their own thread of control, not block-
ing others even if they need fairly long for their decisions. Note that such a behaviour
is likely to be miss designed, since it contradicts the behavioural approach to need
excessive time to come to a decision. But if you have need for something like this,
since you are doing something we didn’t think of, this is the class to base your
behaviour on. Note however, that since behaviours are shut down cooperatively,
also a task behaviour is not allowed to loop indefinitely within its action method. If
the behaviour is still part of the currently running action pattern, its action method
will be call immediately after giving control back to the behaviour framework.

12.5.4 Behaviour Parameters

Behaviours usually get used within different action patterns. But they are often
expected to behave slightly different within each constellation. Therefore each be-
haviour has an associated BehaviourParameters class which is designed to hold the
different parameter sets for the different use cases of a behaviour. These parameter
classes become initialized on startup of the behaviour framework and are expected
to be static and constant during the run of an entire policy. (How to handle dy-
namic parameters like destination coordinates of a ’move to position’ behaviour is
explained in section 12.5.7)

Behaviours, which subclass the BehaviourParameters class, need to have their own
BehaviourParameters subclass factory methods, for dynamic instantiation. This
is captured by the two macros:

• BEHAVIOUR PARAMETERS FACTORY(X)

• BEHAVIOUR PARAMETERS FACTORY IMPL(Y, X)

X denotes the name of the behaviour parameters class and Y denotes the name of
the behaviour class. The first macro has to be placed within the class definition
and the second within the cpp-file containing the behaviour implementation.

The behaviour parameters classes are handled by the parameters framework de-
scribed in the previous chapter. Section ?? covers the details for parameter classes
for behaviours.

12.5. IMPLEMENTING A BEHAVIOUR 81

12.5.5 Behaviour Initialization

Before an action pattern becomes activated all its behaviours init() methods are
called successively. This allows behaviours to initialize their per task parameters
(like destination coordinates) in a convenient way. Note however, that the init()
method can be called while the behaviour is already active (see section 12.5.6) and
so its action() method can be concurrently running. Therefore a mutex is needed
to avoid race conditions. For an example see:

$MIRO ROOT/examples/behaviours/simple/Timer.cpp|h

Parameters that are valid for the whole lifetime of a behaviour, such as references
to the robots services or other objects within the behaviours address space are best
to be passed during construction of the behaviour, forming a so called initializing
constructor.

12.5.6 Behaviour Activation and Deactivation

When a behaviour is to become active due to it being part of an action pattern
its open() method is called. If the behaviour is no longer part of the next to be
running action pattern its close() method is called. If a transition from one action
pattern to another is performed and the behaviour is part of both behaviour sets,
then no calls to close() and open() methods will be issued. Only the behaviours
init() method will be called, to allow it to update its parameter sets. This is
useful to avoid unnecessary behaviour shutdown.

Note also, that the close() method can be called while the behaviour is concur-
rently within the action() method. — Its call to the arbiter will then just be
ignored. On the call of open() however it is guaranteed that the behaviour cur-
rently is not running.

12.5.7 Changing Behaviour Parameters within an Action Pat-
tern

Another way for interaction with the behaviour framework from outside is by chang-
ing the parameters of a behaviour within an action pattern during execution of the
behaviour engine. In this case the behaviour name as well as the action pattern
it belongs to has to be known. You can then query as well as set the behaviour
parameters instance via the interface of the policy.

However there are some issues that have to be take care of. First, the type of the
derived behaviour parameters struct has to be known, as you get a pointer to a
BehaviourParameters instance, that has to be down casted appropriately. Second,
to avoid memory leaks and segmentation faults, the memory handling has to be
understood. When querying the parameters, the caller takes ownership of the object
returned. When setting the parameters, the action pattern takes ownership of the
passed parameters instance. - Therefore the object has to be allocated on the heap
(that is, with new). But actually that’s not too much of a problem, if you stick to
the intended protocol: If you first retrieve the parameters instance by querying the
policy, change the parameters and write them back by the set method, everything
works okay.

A similar interface exists for the behaviours themselves. But they only can query
and set the parameters of behaviours in action patterns that are linked to the current

82 CHAPTER 12. BEHAVIOUR ENGINE

action pattern by a local transition. The behaviours can therefore only query the
parameters by the transition name instead of the action pattern name.

12.6 Arbiters

The arbiter framework is similar to the behaviour classes. It will be explained in
more detail as soon as we do some more work on arbiters.

12.7 Building Action Patterns

“Now I built all my behaviours. What code do I have to write to make them an
action pattern?” Well, you don’t have to write code. Action patterns and policies
are defined within an XML file. Allowing for fast and convenient modifications.
Which is especially cool when debugging. An Instance of each arbiter and behaviour
has to be registered within repositories. Afterwards, the policy can configure the
action patterns and transitions by parsing the XML file. To make live easier, the
editing of action patterns, transitions and behaviour parameters can also be done
using the GUI based PolicyEditor (see section 12.8), but let us first take a look at
how those things are put together in the XML syntax.

12.7.1 The Policy File

A policy file can have the following tags and attributes:

<!–MiroPolicyDocument–>

policy One file always describes one entire policy. A policy defines a state machine
that consists of a set of action patterns. Each action pattern describing one
state of the machine.

actionpattern An action pattern describes a set of behaviours, that can run
simultaneously and produce some emergent higher level behaviour.
Attributes:

• name The name of the action pattern.
• start (true/false) The action pattern to be active at startup is to be

marked true, the others false or unmarked.
• x, y For GUI purpose, just ignore them.

behaviour That’s what all the chapter is about. Read it again.
Attributes:
• name Name of the behaviour.

parameter Behaviours parameters can be specified within the pol-
icy file for each action pattern.
Attributes:
• name Name of the parameter.
• value The value of the parameter.

transition Message that triggers a transition to another action pattern.
Attributes:

12.8. THE POLICY EDITOR 83

• target The action pattern to activate next.
arbiter To decide which action to choose from the different outputs of

the different behaviours one needs to arbitrate one way or the other.
Attributes:
• name The name of the arbiter to use.

12.7.2 The Repositories

A policy can be built on the basis of an XML description. For the parser of this
description to be able to construct the policy, it has to be able to refer to instances
of behaviours and arbiters that are mentioned within the XML file by their name.
For this purpose a Miro::BehaviourRepository and a Miro::ArbiterRepository
class do exist. At these Repositories an instance of each behaviour and arbiter has to
be registered. The name of the behaviour has to be reported by the behaviourName()
method. Since we only need one instance of each of these repositories, there do exist
a global instance of each. A pointer to such an instance can be obtained by the
classes static method instance().

12.7.3 The Behaviour Factory

All the initialization stuff necessary before constructing an instance of the Policy
class can be done within the main function of your program. This task consists
mostly of obtaining the needed object references, instancing behaviours and arbiters
and registering them at their respective repositories. This can be bundled within a
so called behaviour factory class as can be seen in the behaviour example at:

$MIRO ROOT/examples/behaviours/simple/BehaviourFactory.cpp|h

It uses the simple base class:

$MIRO ROOT/src/miro/BAFactory.cpp|h

12.7.4 The Behaviour Engine

There does exist a small CORBA based interface for interaction with the behaviour
framework. It is the BehaviourEngine interface and the PolicyController (sec-
tion 12.9) is a simple GUI based client for this interface. To allow your own be-
haviour sets to be controlled via this interface, the policy controller implementation
has to be instantiated within your executable. This can be seen in the example at:

$MIRO ROOT/examples/behaviours/engine/SimpleBehaviourEngine.cpp

12.8 The Policy Editor

Editing large XML files is tedious and error prone. Therefore Miro offers an GUI
based editor, with which you can build and edit your policies. You can also edit
the parameters defined within the Parameters classes of your behaviours.

The policy editor can be started with no parameters or with the policy file to edit
as first parameter. It has a menu bar and displays the policy graph within the big
scroll view area of the program.

84 CHAPTER 12. BEHAVIOUR ENGINE

12.8.1 The Menu

File

• New
Create a new policy.

• Open ...
Open a policy file. The file dialog will be displayed.

• Save
Save the current policy to disc. If no file name is yet specified, Save as will
be invoked instead.

• Save as ...
Save the current policy under a new file name. The file dialog will be displayed.

• Send to ...
Send the current policy to a robot. A dialog box will be displayed to enter
the robots name (the naming context, its behaviour engine is registered at).
The behaviours and arbiters within the policy have to be present within the
behaviour and arbiter repositories in the behaviour engine running on the
robot. - Otherwise the parsing will fail.

• Quit
Quit the policy editor.

Options

• Behaviour Descriptions
Display the behaviour descriptions dialog. The dialog consist of a listbox with
the currently loaded behaviour parameter description files. (See the chapter 7
for more details on parameter files.) Buttons for adding and deleting files are
provided. On pressing the button add, the file dialog will be displayed. Note
that the selected file has to contain a valid behaviour description. - Verifying,
whether the load was successful is currently only done on leaving the dialog.
On the positive side the currently loaded description is memorized in the file
.PolicyEditorConfig.xml file in the users home directory for further runs of
the policy editor.

Help

Currently this menu only contains two about dialogs.

12.8.2 Editing the Policy Graph

Clicking with the right mouse button into the editing area produces a popup menu
with the option to place a new action pattern. Enter the name of the new pattern
in the dialog box.

Clicking with the right mouse button into the name of an action pattern produces
a popup menu with the following options.

12.8. THE POLICY EDITOR 85

• Start pattern
Select the pattern to be the start pattern. That is the pattern, the policy will
begin with by default. Every policy has to have exactly one start pattern.
The start pattern is marked with two asterix around the pattern name.

• Add behaviour
Add a behaviour to the action pattern. A list of available behaviour will pop
up. Every behaviour can be instantiated only once per action pattern.

• Add transition
Click on another action pattern to link the two pattern with a transition. A
dialog box will appear to enter the transition name.

• Rename pattern
A dialog box will appear to enter the new name of the action pattern.

• Rename transition
A dialog box will appear with the name and the target of the transitions.
You can also delete a transition by deleting the name or the target of the
transition. - Be careful, the new entry will only be accepted, if you left the
entry field by clicking on another entry before hitting the okay button.

• Delete pattern
Deletes the pattern.

Clicking with the right mouse button into the green area of an action pattern
produces a popup menu with the following options.

• Set arbiter
Select the arbiter for to the action pattern. A list of available arbiters will
pop up. Every action pattern has to have an arbiter.

• Delete arbiter
Deletes the arbiter from the action pattern.

Clicking with the right mouse button onto a behaviour within an action pattern
produces a popup menu with the following options.

• Up
Move the behaviour up one position in the list of behaviours. The position
in the behaviour list represents the priority of the behaviour at the arbiter. -
The higher, the more important.

• Down
Move the behaviour down one position in the list of behaviours.

• Set parameters
The parameters dialog will be displayed. It has three columns. In the left one,
the parameter names are displayed as label. The middle column contains a
single line entry field for the parameter. In the right column the measure of the
parameter is displayed as label, if no measure is available the parameters type
is displayed. The default value is displayed as bubble help associated with
each entry field, if available. The parameters type is displayed as bubble help
associated with each measure label. The dialog is strictly typed. Therefore
the okay button is inactive if any of the entry fields are containing invalid
input, for instance a value bigger than 180 for an Angle type.

• Delete behaviour
Deletes the behaviour from the action pattern.

86 CHAPTER 12. BEHAVIOUR ENGINE

12.8.3 Describing the Available Behaviours

To be able to use your own behaviours within the PolicyEditor, you have to describe
their properties (name and parameters) within a parameters description file. The
parameter framework is explained in more detail in the previous chapter. Anyhow
there are some minor restrictions for behaviour parameter description files, that are
explained below:

<!–MiroParametersConfigDocument–>

config config group Attributes:

• name The name of the config group. Within the behaviour pa-
rameters framework the valid names are behaviour and arbiter.
Within each group only config items of the specified type are al-
lowed to occur. Other groups are processed by the parameter auto
code generation tool MakeParams but ignored by the PolicyEditor.

config item Attributes:
• name The name of the behaviour or the arbiter.
• parent The name of the super class. That has to correspond to

the corresponding super class of the behaviour.
• namespace

config parameter Attributes:
• name
• type No nested types are allowed!
• default
• measure
• inherited

12.8.4 Example Behaviour Description File

12.8.5 Auto-generating Parameter Class Code

Having written the description of your behaviours parameters within XML, it is pos-
sible to auto-generate the necessary code for your behaviours associated Parameters
class. See the previous chapter for details.

12.9 Policy Controller

The policy controller is some kind of remote control for the behaviour engine. It
consists of a panel with four buttons and a menu bar. The buttons allow to start,
stop, suspend and resume the behaviour engine.

12.9.1 The Menu

File

• Connect robot
Connect the policy controller with a behaviour engine of a robot. A dialog box

12.9. POLICY CONTROLLER 87

will be displayed to enter the robots name (the naming context, its behaviour
engine is registered at).

• Load policy
Load a policy file into the behaviour engine. A dialog box will be displayed
to enter the file name. The file has to be locally accessible by the robots
behaviour engine.

• Send policy
Send a policy to the robot. The file dialog will be displayed to select the
policy. The behaviours and arbiters within the policy have to be present
within the behaviour and arbiter repositories in the behaviour engine running
on the robot. - Otherwise the parsing will fail.

• Quit
Quit the policy editor.

Edit

• Send transition
Send a transition to the behaviour engine. A dialog box will be displayed to
enter the transition name. This is for debug purposes only, as the transition
will only succeed if it is registered at the currently active action pattern -
which in turn can change any time. There will be also no feedback whether
the transition succeeded or not.

• Send global transition
Send a global transition to the behaviour engine. A dialog box will be dis-
played to enter the action pattern to activate. The action pattern has to be
present within the current policy, otherwise the transition will fail.

88 CHAPTER 12. BEHAVIOUR ENGINE

Chapter 13

Writing a Miro Service

The programming of a Miro service is divided into two step: Accessing the low level
hardware device (such as the Can bus) and writing the high level interfaces. Note
that many hardware devices incorporate multiple sensor modalities.

13.1 High-Level Server Programming

Figure 13.1: Client-Server Architecture Overview

In order to write a server you have to do the following steps:

1. Describe your interface in IDL.

2. Translate the IDL description to C++ files.

3. Implement your methods.

13.1.1 Copy the Miro server template directory

- Which files are in there

89

90 CHAPTER 13. WRITING A MIRO SERVICE

13.1.2 Describing an interface in IDL

- edit interface description (.idl)
- idl/Makefile

13.1.3 Translating the IDL description to C++

- call TAO idl (in $(TAO ROOT)/TAO IDL)

13.1.4 Implementing your own methods

- in ...Impl
- don’t forget to document !!

13.2 Low-Level Server Programming

Low-Level Servers are Servers that talk to hardware devices. They usually use a
device driver that is compiled into the kernel or loaded as a module. They provide
handling for special protocols which have to be followed and provide the services of
the hardware device in an abstracted way, so that they are useful.

Hardware devices in a UNIX system are represented by file descriptors. There are
two groups, character devices and block devices, character devices are stream based
and provide for sequential reading and writing, while block based devices provide
random access to block addresses. At the moment all hardware devices used by
miro use the character device abstraction.

A useful Miro low-level server must provide two functionalities: interaction on the
CORBA level with (potential multiple) clients that use the service concurrently and
handling of all communication with the device, which may be asynchronous to the
requests. This requires a multithreaded design. Fortunately the ACE framework
provides design patterns that fulfill these needs. For a schematic view of a Miro
low-level server see figure 13.2.

13.2. LOW-LEVEL SERVER PROGRAMMING 91

13.2.1 The Device Framework

Connection

EventHandler

Consumer

13.2.2 The Configuration Framework

13.2.3 Parameter

13.2.4 XML parsing

13.2.5 The Reactor and Events

The ACE reactor class provides an abstraction of the popular select method in
common UNIX programming environments. It is able to invoke an event handler
when data is readable from the file descriptor1. It provides low latency and the
thread does not consume any CPU power while waiting for data to come. To keep
the responsiveness of this architectural element high2, only few computation should
be done inside of the event handler, usually this event handler only assembles full
packets and passes these on to a separate task which accounts for higher level
processing. It is important to note that the reactor and the event handler share a
single thread of execution, so don’t expect to get feedback from the reactor within
the event handler.

13.2.6 Using Tasks

Tasks are the second important design pattern provided by ACE that we use. A
task is an assembly of one or more threads, that share a common message queue,
which can be used to pass requests to the threads. We usually use a task for
handling of complete packets assembled by the event handler, which puts them on
the message queue. According to the type of the packet the tasks takes appropriate
action. This usually consists in retrieving data from the packet and signaling it on
a condition variable. Condition variables are the main mechanism of the (CORBA)
server implementation methods to wait for data requests or events that are provided
by the hardware. The ACE task class provides an easy scaling for multiple working
threads that concurrently work on the different requests.

13.2.7 Thread/Task Synchronization

13.2.8 ACE logging

13.2.9 A Simple Example

1it can also handle timer events and asynchronous writes, see [8] for details
2which is essential to avoid flooded input queues

92 CHAPTER 13. WRITING A MIRO SERVICE

Figure 13.2: Client-Server Architecture

Appendix A

Miro installation

This section is an extended version of the INSTALL file contained within Miro. If
you have problems installing Miro, read on. Ask your system administrator if there
exists a central installation, or whether it would be more convenient to prepare a
central installation.

A.0.10 Requirements

You need the following packages in order to compile Miro:

ACE (>= 5.4.1): We recomment using the latest bug-fix only releases for ACE
and TAO. Please refer to the installation instruction in B for building and
installing ACE. The source tarball and CVS access is available at:
http://www.cs.wustl.edu/∼schmidt/ACE.html.

TAO (>= 1.4.1): Building and installation is also described in section B. TAO
downloads are available on:
http://www.theaceorb.com/.

Qt (>= 3.1): Installation should be quite easy, as Qt uses a configure script for
automatic system checks. Qt is installed on most modern Unix/Linux systems
anyway, since KDE relies on it. Recent versions of Qt can be found at:
http://www.trolltech.com/.

If you want to compile the wrapper classes for the speech detection system, you
also need:

Speech tools: The Edinburgh Speech Tools Library is a collection of C++ class,
functions and related programs for manipulating the sorts of objects used in
speech processing. It is to provide the underlying classes in the Festival Speech
System. We use version 1.2.3 that can be retrieved from:
http://www.cstr.ed.ac.uk/projects/speech tools

Festival: The Festival Speech Synthesis System is a general multi-lingual speech
synthesis system developed at CSTR. We successfully used version 1.4.2. See:
http://www.cstr.ed.ac.uk/projects/festival/

93

94 APPENDIX A. MIRO INSTALLATION

Sphinx: The CMU Sphinx Group Open Source Speech Recognition, a real-time,
large vocabulary, speaker independent speech recognition system. We use
version Sphinx2-0.4, downloaded from:
http://www.speech.cs.cmu.edu/sphinx

Depending on your camera system, you may need libraries for the IEEE 1394 (aka
Firewire) support:

libraw1394: This library provides direct access to the IEEE 1394 bus through the
Linux 1394 subsystem’s raw1394 user space interface. It can be found one it’s
homepage:
http://www.linux1394.org/
or on SourceForge:
http://sourceforge.net/projects/libraw1394/

libdc1394: It is a library that is intended to provide a high level programming
interface for application developers who wish to control IEEE 1394 based
cameras that conform to the 1394-based Digital Camera Specification. Avail-
able via:
http://sourceforge.net/projects/libdc1394/

Both libraries are available as compiled packages for the most modern Linux systems
too.

To build the documentation, your system should provide the following tools:

Doxygen: It is a JavaDoc like documentation system for C++, C, Java and
IDL. It can generate an on-line HTML documentation extracted directly
from the sources, which makes it much easier to keep the documentation
consistent with the source code. You can download from the homepage:
http://www.stack.nl/~dimitri/doxygen/
or again from SourceForge:
http://sourceforge.net/projects/doxygen/

LATEX: The LaTeX package (either pdflatex or latex and dvips, bibtex and makein-
dex – available via one of the CTAN server, e.g. http://dante.ctan.org) and
the convert image convertsion utility from the ImageMagick package
(http://imagemagick.sourceforge.net/).

A.0.11 Download

As if you read this text, you already have a version of Miro, but if you want to
update this version, or need some additional information, please have a look at
http://smart.informatik.uni-ulm.de/MIRO/index.html

A.0.12 Compilation

Miro is now shipped with a configure script, so the package can be installed with
the usual steps:

./bootstrap (for cvs checkouts)

./ configure
make
(make install)

95

The configure script looks automatically for the necessary and optional software
packages, and will stop or print a warning if some of them are not found. If you
install e.g. ACE in an unusual place, you can pass the configure script some ad-
ditional options like for example --with-ACE=<ACE-root-dir>. For Qt, their are
more flexible command-line parameters, because Qt is often distributed over sev-
eral directories (like e.g. in a standard Debian installation). In contrast to older
version, the configure script now searches automatically for libqt or libqt-mt (the
thread-save version). A complete list of command-line options are accessible via
./configure --help.

Another way of telling the configure script where the packages are installed is the use
of environment variables. For the required packages, these are ACE ROOT, TAO ROOT
and QTDIR point to the base directory of each package. Because ACE and TAO
need this environment variables anyway, this is the most comfortable way to point
to the directories. For the speech detection wrappers classes, SPEECH TOOLS ROOT,
SPHINX ROOT and FESTIVAL ROOT are possible. It can be necessary, to let the
LD LIBRARY PATH point to all the libraries anyway.

If the configure script did not find the different packages anyhow, or if your system
require unusual options for compilation or linking that the configure script does not
know about, you can give configure initial values for variables by setting them in the
environment. Using a Bourne-compatible shell, you can do that on the command
line like this:

CFLAGS=−O2 LIBS=−lposix ./configure

Or on systems that have the ‘env’ program, you can do it like this:

env CPPFLAGS=−I/usr/local/include LDFLAGS=−s ./configure

On runtime, some applications rely on two environment variables, namely MIRO ROOT
(the base directory) and MIRO LOG (directory, where logging data is stored), so please
set these variables to the appropriate values too.

Additionally, you can enable or disable several features, like the support for different
robot platforms and for different video devices.

Supported robot platforms:

• The B21 port is the oldest one and should therefore be the most stable, re-
garding the interfaces. All of the robots hardware components are supported
by Miro.

• The Sparrow99 and Sparrow2003 robots are our soccer robots. They are our
testbed for multi-robot programming. Therefore most new technology is first
tested on this platform. So even as you do not have a Sparrow99 robot (we
built them ourselfs), it might be interesting to look at the sources for this
robot if you are looking for group communication technology etc.

• The Pioneer platform is a complete port for the ActiveMedia robot series,
based on the PSOS, P2OS and AROS protocols. But we could only test and
extend it to the platforms available to us.

– The old Pioneer1 is supported, but lacks maintenance, as our model is
not used at the lab anymore.

96 APPENDIX A. MIRO INSTALLATION

– The Performance PeopleBot is in active development and already mostly
complete. Motors, Sonars, Bumpers and Video are working. PanTilt
and Gripper are experimental, Zoom is to come next.

Supported video devices:

• Bttv Frame Grabbers: These frame grabber cards are supported via video for
Linux. This is the standard way of connecting standard analog video cameras
to the computer.

• Firewire Digital Cameras: Miro supports the fire wire digital camera protocol
using libraw1394 and libdc1394.

• Matrox Meteor Frame Grabbers: These rather old frame grabber cards are
also supported by Miro. This device however, is mostly unmaintained.

Finally, you can choose if the documentation should be build or not. Even if you
decide not to build it, but the configure script found all the necessary tools, the
Makefiles are prepared. So you can go to the doc/tex and doc/html directory later
on and build the documentation there with a simple make.

After running the configure script, Miro show up a summary of what will be com-
piled and which features will not. If this is not what you desired, please check the
messages coming up during the configure run for packages, Miro did not find.

A.0.13 Installation

Miro can be installed with the a simple:

make install

By default, the package’s files will be installed in /usr/local/bin, /usr/local/lib
etc. You can specify an installation prefix other than /usr/local by giving con-
figure the option --prefix=PATH (note: if you use the prefix-option, you should
install Miro actually, otherwise libtool may look for the library in the installation
directory and therefore do not find it).

Beside that, Miro can be used already without installation. Therefore, a make run
install the libraries and the binaries during the compilation into the lib/ and bin/
directory. This enlarges the Miro directory, but can be quite useful, if you work on
Miro itself and a derived application at the same time.

Moreover with this trick it is possible, to use different Miro versions in parallel
at the same time. Therefore the build process allow to compile the package in a
different directory. Assuming you have extracted Miro in a directory called Miro,
you can build it in two different directories with miscellaneous options:

mkdir Miro.B21
cd Miro.B21
../Miro/configure −−enable−B21
make
cd ..
mkdir Miro.Sparrow99
cd Miro.Sparrow99
../Miro/configure −−enable−Sparrow99
make

97

A.0.14 Additional make targets

Beside the already described install target and an solely make (which in fact
means make all), there are a couple of other targets, that may be of interest:

clean: Removes object files, libraries, binaries and automatically generated code,
like the parameter classes generated from the xml files and the client and
server stubs generated from the idl files.

distclean: Removes all of the above files and the automatically generated Makfiles
generated from the autotools. So you have to reconfigure the packet after this.

dist: Generates a gzipped tar-file containing a snapshot of the actual Miro direc-
tory, including all the necessary source files to configure and build Miro.

distcheck: Some as above plus a complete make of the packed tar.gz file and
finally make another tarfile to ensure the distribution is self-contained. You
can change the configure options that are used for this make run within the
toplevel Makefile.am by changing the DISTCHECK CONFIGURE FLAGS variable.

A.0.15 Developer information

The build-process within Miro is done using automake, autoconf and libtool. Nor-
mally, there is no need to use these programs, as of running the configure script is
the only thing a user have to do.

The configure shell script attempts to guess correct values for various system-
dependent variables used during compilation. It uses those values to create a
Makefile in each directory of the package. It also create one config.h file containing
system-dependent definitions that can be used in the source file to allow appropriate
compilation:

#ifdef HAVE CONFIG H
#include <config.h>
#endif
...
#ifdef MIRO HAS 1394
...
#endif

If you want to change something within Miro like for example adding additional
files or directories, you have to change the proper Makefile.am. Do not change the
Makefile.in or even the final Makefile, because changes there are getting lost at
the next automake run. The same applies, if you want to change the behaviour of
the configure script itself, for example to detect new software packages or special
version information, you have to change the configure.ac and not the configure
file itself.

Assuming that you have written appropriate Makefile.am and configure.ac files,
you should be able to build your project by entering the following commands:

aclocal −I config
autoheader
automake
autoconf
./ configure

98 APPENDIX A. MIRO INSTALLATION

For every consecutive step, you can simply call the resulting config.status script,
that rerun the configure procedure with the used configuration values.

Depending on your versions of automake, autoconf and libtool you may get some
warning messages about improper usage of LDFLAGS. Ignore this, since it is without
any influence on the final result. We tested the whole procedure successfully with
at least the following versions:

• automake 1.5

• autoconf 2.52

• libtool 1.4.2

Normally, it should be enough, to use the available examples within Miro (see sec-
tion 6.1) to add some small additions to the build process, but sometimes a deeper
understanding of the used tools might be necessary. Please have a look at the manu-
als, available e.g. directly from the GNU homepage: http://www.gnu.org/manual/
or read the freely available book on http://sources.redhat.com/autobook/.

Appendix B

ACE and TAO Installation

ACE/TAO is a large software package with many configuration options affecting
the build process as well as its runtime features. Therefore we summarize here our
experience with the ACE/TAO installation.

At the time of this writing we suggest to use the latest BFO (bug fix only) version
ACE/TAO — currently this is 5.4.1/1.4.1.

The options that should be set additionally in the platform macros.GNU file (to be
found under <ACE-directory>/include/makeinclude/) are the following:

debug=0

Debug information has a huge impact on the footprint of the libraries, so as long
as you do not really need it, disable it.

Additionally, for further footprint reduction you might also add the following:

qt reactor =0
xt reactor =0
TAO ORBSVCS= Naming Notify
DEFFLAGS= −DACE USE RCSID=0
ACE COMPONENTS= FOR TAO

The two reactors are not needed by ACE/TAO/Miro. So as long as you do not
use them yourself, they might just be left out. Also Miro only uses the CORBA
Naming Service and the CORBA Notification Service. Therefore the other services
of TAO need not to be built.

We also recommend to read the installation instructions provided by ACE carefully.
We admit, the installation isn’t entirely trivial.

To compile and run programs that use the ACE/TAO toolkit, also the environment
variables ACE ROOT and TAO ROOT need to be set to the appropriate root directories
of your ACE/TAO installation. For the bash shell the following lines in your local
.bashrc file should do the job:

export ACE ROOT=<path to the ACE directory>
export TAO ROOT=$ACE ROOT/TAO
export LD LIBRARY PATH=$ACE ROOT/ace/:$LD LIBRARY PATH

99

100 APPENDIX B. ACE AND TAO INSTALLATION

Appendix C

Project setup with
Automake and Autoconf

This chapter tries to give a short introduction on how to set up your own project
that uses Miro by the help of automake and autoconf. This text was created using
autoconf 2.52 and automake 1.5, so your local installation may differ slithly.

First describe the the mode of operation of automake and autoconf is explained by a
real-world example from the Miro source base. Afterwards the creation of the root
configuration file of the autoconf tool, configure.ac is discussed. Afterwards the
different Makefile.ac templates, shipped with Miro are introduced. After a short
survey on the actual buid directives, the chapter concludes with links to internet
resources on the auto-tools.

C.1 Introductory Example

First a short introduction into the whole structure of automake and autoconf, that
uses a two-stage process.

• With automake you can (normaly) easily describe, how the files within a
folder should be processed. The commands for this are written in a file called
Makefile.am. As a minimal example look for example in $MIRO ROOT/src/-
can/Makefile.am:

lib_LIBRARIES = libcan.a
libcan_a_SOURCES = Parameters.xml CanConnection.cpp CanMessage.cpp ...

This generates a (static) library named libcan.a, which is build from the
assigned sources Parameters.xml, CanConnection... All other stuff within
the Makefile.am is e.g. which files are installed into which directory, if the
user applies a ”‘make install”’ (can include HEADERS, note the prefix of the
macro), or which files are generated automatically during the build-process
and can therefor removed if a ”‘make clean”’ is desired (BUILT SOURCES and
CLEANFILES). These Makefile.am are converted into Makefile.in using the
automake program.

101

102 APPENDIX C. PROJECT SETUP WITH AUTOMAKE AND AUTOCONF

• autoconf generates the real Makefile for the Makefile.in files. Therefor
it has to know the paths and options necessary for the build process and
which files, libraries and programs it has to compile at all. Exactly that is,
what the configure-script tries to detect and guess automatically. Of course
no one wants to write a configure-script directly (take a look at it, it looks
really, really ugly. Moreover a program should compile on a couple of different
systems, each having their own quirks and peculiarities). Therefor one writes
a configure.ac files, that is finally converted into the configure-script. The
whole autoconf stuff is based on so called macros, from which are a lot of
them allready included:

AC_CHECK_LIB(raw1394, raw1394_get_libversion,
ac_have_libraw1394=yes, [ac_have_libraw1394=no])

AC_CHECK_HEADERS(errno.h fcntl.h stdlib.h)
AC_CHECK_PROG(ac_has_dvips, dvips, yes, no)

There are e.g. macros to test the existence of libraries, header files or exe-
cutable programs. If you need a more complicated test, you can write them
with a language called M4 (M4’s syntax is quite close to a normal shell syn-
tax). The results of all tests are written in a file called config.h additionally.
This file can be included into the C-files and are treated as normal c-defines
(e.g. #define MIRO HAS METEOR 1).

C.2 Create configure.ac

The easiest way to start with is using the autoscan program (from the autoconf-
package). This will create a file called configure.scan that you should rename to
configure.ac. (autoscan is also a good tool to check your existing configure.ac for
missing tests). Now look into your new configure.ac file. The first line (AC INIT)
describe your project, so fill it with useful values, a name for your package, your ver-
sion and an email address for bug-reports. The next two lines (AC CONFIG SCRDIR,
AC CONFIG HEADER) should be fine.

The remainder of the file is group into different parts. First part is the check for
programs. autoconf offers several ready to use checks for this, like e.g. AC PROG CC
that checks several behaviours of your installed C-compiler or AC PROG LN S that
looks how to create a symlink. The automatically included macros should be fine.

The next paragraph checks for libraries. Note, that the philosophy of autoconf is to
check for the possibility of creating and compiling a program with a certain function
using this library, not the pure existence of this library. So look for a function that
should be within the different libraries and insert them in the second field of the
AC CHECK LIB macros (the first name is the library name itself). Possibly you have
to remove lines for libraries, that are in fact builded by your project itself (Note,
that it may be difficult to use C++ specific stuff here).

Third, header files are checked. Beside some prefabed macros for standard headers
(e.g. AC HEADER STC) you can insert additional files into the AC CHECK HEADERS
macros. Insert them as a space separated list.

Next two paragraph contains checks for typedef and structures and library functions.
The automatically included macros should be fine, otherwise include additional
functions into the AC CHECK FUNCS macro. The functions here refer to standart C

C.3. CREATE MAKEFILE.AM FOR DIRECTORIES, LIBRARIES AND EXECUTABLES103

functionality, not to mix up with special functions provided by additional libraries
as described above.

The last, long macro AC CONFIG FILES contains a space separated list of all the
Makefiles the configure script has to produce. This means, if you add a directory
into your project later on, you have to insert the path here.

C.2.1 Tests for more complex packages (and facilities)

Most checks for the functionallity of your system should be covered with the above,
autogenerated checks. But to build a project that relies on other, more complex
packages (in our case Miro, ACE, TAO, Qt, etc), it is necessary to add additionally
tests to the configure script.

Additionally checks are written in a language called M4. It is up to you, where to
save these files, but I prefer to add an extra directory named config, so the following
explanation will assume this.

Miro has to check e.g. for the existence of ACE, TAO and Qt. But if you build your
own project, these packages are found allready. So during the configure run of Miro,
a small script called miro-config is generated. This script can be used not only to test
Miro’s properties (e.g. check the installation prefix using miro-config --prefix),
but also the properties of these other packages (ACE, TAO and Qt). So for example
you can easily check which C-flags are necessary to include ACE stuff (miro-config
--acetao-clags). Additionally, the script can be used to check if Miro contains all
necessary modules you may need for your own project. For example miro-config
--bttv returns yes or no, depending on the configure parameters miro is built with.

If you need a starting point on how to use this sript, have a look at $MIRO ROOT/-
templates/search miro.m4. Copy this file into your own local config directory
and add AC SEARCH MIRO (the name of the function macro) to the configure.ac
script (for example directly above the AC CONFIG FILES macro.

In the lowermost part of search miro.m4 you can see, how Miro is checked for its
conditional features. If you need more of these checks, simply add them there the
same way

If you need to write your own tests and checks, please feel free to use and modify
these files. Additional macros that can be used out of the box or as examples for
own tests, look at:

http://wwww.gnu.org/software/ac-archive/
http://ac-archive.sourceforge.net/

C.3 Create Makefile.am for directories, libraries and
executables

The next step is to prepare a Makefile.am within each directory that contain files
that need to be compiled. The easisest way is again to use the examples within
$MIRO ROOT/templates/. For example to create a Makefile.am that should call
other Makefiles in other subdirs, take $MIRO ROOT/templates/Makefile.am.dir,
rename it to Makefile.am and add the names of the subdirectories. There are also
examples for sources that should be compiled into a static library (Makefile.am.lib.a)

104 APPENDIX C. PROJECT SETUP WITH AUTOMAKE AND AUTOCONF

into a shared library (Makefile.am.lib.so) or different executables (Makefile.am.bin).
All examples contain some comments to guide you, what to fill in.

Remeber to be sure, that each directory with a Makefile.am is listed in the AC CONFIG FILES
macro in the configure.ac script.

C.3.1 Makefile.am.dir

This Makefile starts subbuilds in the specified directories. It is an example for con-
ditional compilation (depending on the configuration). If you don’t have conditional
branches, you can left the second variable empty or reduce the Makefile.am to a
single line, like e.g. SUBDIRS = firstDir secondDir.

C.3.2 Makefile.am.bin

This Makefile builds a single or several binaries. The name of the binaries to be
built are specified in the variable bin PROGRAMS. There have to be an extra line for
each binary to be build starting with the name of the binary itself and an additional
SOURCES-suffix. The sources are specified with their suffix (.cpp). Please also list
all the header files here, otherwise they don’t get distributed by an call to make
dist. If the programs need to be linked against several libraries, there is again one
line per binary containing the name of the binary plus an additional LDADD-suffix.

C.3.3 Makefile.am.qt

This is a special Makefile.am template for Qt programs. For simplicity, the Makefile
is designed for a single binary per directory, but beside that, most of the above
section also applies here. The only exception is, that we have to distinguish between
normal source files (variable sources) and files (variable tomocsources) that need
to be compiled with Qt’s Meta Object Compile (moc). Be sure to not include the
header files into the tomocsources variable, but to the sources variable, otherwise
they get ”cleaned”.

C.3.4 Makefile.am.lib.a

This Makefile builds a static library. The name of the library can be specified in the
variable lib LIBRARIES, the files building the library in the variable sources (with
the .cpp suffix; or .xml in case of an xml-file for Miro’s parameter framework). Head-
ers that are not automatically considered because they don’t have a corresponding
cpp-file should be specified in the variable extraheader. Don’t forget to name the
prefix for the SOURCES-macro with the name of the resulting library. Therefore
please substitued all occuring dots with underscores (e.g. the usual .a a the end of
an static library). Additionally, replace the prefix for the macro include HEADERS
with the name of the directory, to which the header files should be installed (see
also the description of Make-rules below).

C.3.5 Makefile.am.lib.so

Makefiles for shared libraries look quite the same as for static libraries, to most of
the above applies here too. The only difference from a users perspective is the name

C.4. BUILD THE BEAST 105

of the variable lib LTLIBRARIES where you name your library (note the LT within
the variable (and the targets at the end of the Makefile.am) which indicates that
the library is build using the libtool package).

C.3.6 Conditionally Compiled Sub-projects

If you programs or libraries need to be compiled differently depending on configura-
tion options, please have a look at an existing Makefile.am, e.g. in $MIRO ROOT/-
examples/behaviours/engine/ or $MIRO ROOT/src/miro/.

C.3.7 Create other Makefile.am

Because auto-conf/make themself are quite unflexible if you intend to do something,
that the autotools are not designed to, you can also insert an ”‘all-local”’ target into
the Makefile.am that is treated as a normal Makefile part. Although this has to
be necessarry sometimes, be careful with this, auto-conf/make may fail to calculate
the correct dependencies which in turn may lead to incomplete and corrupt builds.
Save places to write your own stuff are for example in the documentation directory.
See $MIRO ROOT/doc/html and $MIRO ROOT/doc/tex for examples on building a
doxygen or latex documentation.

C.3.8 Make-rules

Last you may have a look at the Make-rules file within the $MIRO ROOT/config/
directory. This file is included into each Makefile.am, so rules or variables that are
needed globally, can be inserted here. If you want to define additional installation
subdirectories for the header files, you can see examples here.

C.4 Build the beast

To finally build the new project, you have to call the different programs, which in
turn convert the prepared files into a real, make-based project.

Assuming that you have written appropriate Makefile.am and configure.ac files,
you should be able to build your project by entering the following commands:

autoheader Creates config.h.in.

aclocal -I config Adds aclocal.m4 to directory. Defines some m4 macros used
by the auto tools and the self-written tests from the config-directory.

autoconf Creates configure from configure.ac

automake Creates Makefile.in from Makefile.am

./configure Creates Makefile from Makefile.in

make

Just repeat the last 5 steps to completely rebuild the project. Most projects have
an autogen.sh script that runs everything up to the configure step.

106 APPENDIX C. PROJECT SETUP WITH AUTOMAKE AND AUTOCONF

C.5 Additional sources of help

In case of problems, first have a look at the offical manuals of both, automake and
autoconf. You can find them on the GNU webpage:

http://www.gnu.org/software/automake/manual/automake.html
http://www.gnu.org/software/autoconf/manual/autoconf-2.57/autoconf.html

There is also a book available under the terms of the Open Publication License:

http://sources.redhat.com/autobook/download.html

Bibliography

[1] R. A. Brooks. Intelligence without representation. Artificial Intelligence Jour-
nal, 47:139–159, 1991.

[2] Pradeep Gore, Ron Cytron, Douglas C. Schmidt, and Carlos O’Ryan. Design-
ing and optimizing a scalable CORBA notification service. In LCTES/OM,
pages 196–204, 2001.

[3] Dave L. Mills. Simple network time protocol (SNTP) version 4 for IPv4, IPv6
and OSI. Network Working Group Request for Comments: 2030, October 1996.

[4] OMG. Notification Service Specification. Object Management Group, Inc.,
Needham, MA, 2000.

[5] OMG. CORBA/IIOP Specification. Object Management Group, Inc., Need-
ham, MA, 2001.

[6] Douglas C. Schmidt. Patterns and Performance of Real-time Object Re-
quest Brokers. Distributed Object Computing Group, University of California,
Irvine, 2000.

[7] Douglas C. Schmidt. The ADAPTIVE Communication Environment. An
Object-Oriented Network Programming Toolkit for Developing Communica-
tion Software. Distributed Object Computing Group, University of California,
Irvine, 2001.

[8] Umar Syyid. An Introduction to the ADAPTIVE Communication Environ-
ment. Distributed Object Computing Group, University of California, Irvine,
2000.

[9] Hans Utz. Quo vadis? Robuste hierarchische Navigation für autonome mobile
Roboter. Diplomarbeit, University of Ulm, Ulm, Germany, October 2000. in
german.

[10] Hans Utz, Gerd Mayer, and Gerhard Kraetzschmar. Middleware logging facil-
ities for experimentation and evaluation in robotics. Workshop 27th German
Conference on Artificial Intelligence (KI2004), University of Ulm, September
2004.

[11] Hans Utz, Freek Stulp, and Arndt Mühlenfeld. Sharing belief in teams of
heterogeneous robots. In RoboCup-VIII (to appear), Lecture Notes in Artificial
Intelligence, Berlin, Heidelberg, Germany, 2004. Springer-Verlag.

107

	Introduction
	The Miro Group
	Miro Directory Structure

	Definitions
	Units
	Coordinates

	Using Miro
	Starting the CORBA Naming Service
	Naming Service Lookup by IP-Multicast
	Naming Service Lookup by Environment Variable
	Naming Contexts

	Starting Services
	Starting Client Programs

	Available Services
	Command Line Options
	Individual Interfaces
	Asynchronous Sensory Information
	B21
	Sparrow
	Pioneer
	Frame Grabbers and Digital Cameras
	SICK Laser Scanner
	Possible Problems

	DoubleTalk Speech Card
	Directed Perception Pantilt
	Global Positioning System
	Generic GPS receivers
	Star Track GPS receivers

	Test and Example Programs
	Writing Your First Programs
	Makefiles
	A Simple Sonar Client
	Using Namespaces
	Adding Exception Handling
	An Asynchronous Sonar Client

	Parameter Sets
	Overview
	End-User Perspective
	Programmers Perspecitve

	Configuration Files
	Configuration File Syntax
	Example Configuration

	Parameter Set Generation
	Description File Syntax
	Example Description
	MakeParams
	Example Header File
	Makefile magic

	Configuration Management Runtime Environment
	Config File Editor

	Video Image Processing
	Video Device Access
	Bttv Frame Grabbers
	Firewire Digital Cameras
	Matrox Meteor Frame Grabbers

	Video Filter Trees
	VideoService
	VideoService Parameters
	Video Filter Parameters
	Video Device Parameters
	Basic Video Filters and Their Parameters
	Configuration Example

	QtVideo
	Video Interface
	Location Transparent Image Access
	Local Image Access
	C++ Helper Classes
	Example Video Client

	Video Broker Interface
	Synchronised Image Access
	Filter Tree Meta Information

	Writing Filters
	The Filter Base Class
	Methods to Overwrite
	Configuration and Parameter Processing
	Enabling and disabling features
	Filter Meta Information: FilterImageParameters
	Example Video Filters
	Calculating a Gray Image
	Image time series

	Writing a new Input Device
	BufferManger

	Group Communication in Robot Teams
	Event Channel Federation
	Notify Multicast
	Usage
	Parameters

	Logging
	Log Levels and Categories
	Run-Time Configurability
	Usage in Source Code
	Miro::Log
	Macros

	Compile-Time Configurability
	Test and Example Programs

	Event Channel logging
	Logging Client
	Parameters

	Standalone Logging Client
	Command Line Parameters

	LogPlayer
	Main Panel
	Menu
	File Menu
	Edit Menu
	Events Menu
	Tools Menu
	Settings Menu

	File Format
	Test and Example Programs

	Behaviour Engine
	The Concept of Behaviours
	Introductory Examples
	Example Usage
	The Behaviour Control Loops

	Arbiters and Messages
	MotionArbiter

	Implementing a Behaviour
	Miro::TimedBehaviour
	Miro::EventBehaviour
	Miro::TaskBehaviour
	Behaviour Parameters
	Behaviour Initialization
	Behaviour Activation and Deactivation
	Changing Behaviour Parameters within an Action Pattern

	Arbiters
	Building Action Patterns
	The Policy File
	The Repositories
	The Behaviour Factory
	The Behaviour Engine

	The Policy Editor
	The Menu
	File
	Options
	Help

	Editing the Policy Graph
	Describing the Available Behaviours
	Example Behaviour Description File
	Auto-generating Parameter Class Code

	Policy Controller
	The Menu
	File
	Edit

	Writing a Miro Service
	High-Level Server Programming
	Copy the Miro server template directory
	Describing an interface in IDL
	Translating the IDL description to C++
	Implementing your own methods

	Low-Level Server Programming
	The Device Framework
	Connection
	EventHandler
	Consumer

	The Configuration Framework
	Parameter
	XML parsing
	The Reactor and Events
	Using Tasks
	Thread/Task Synchronization
	ACE logging
	A Simple Example

	Miro installation
	Requirements
	Download
	Compilation
	Installation
	Additional make targets
	Developer information

	ACE and TAO Installation
	Project setup with Automake and Autoconf
	Introductory Example
	Create configure.ac
	Tests for more complex packages (and facilities)

	Create Makefile.am for directories, libraries and executables
	Makefile.am.dir
	Makefile.am.bin
	Makefile.am.qt
	Makefile.am.lib.a
	Makefile.am.lib.so
	Conditionally Compiled Sub-projects
	Create other Makefile.am
	Make-rules

	Build the beast
	Additional sources of help

