
Distributed Modular Computer−Integrated Surgical
Robotic Systems: Architecture for Intelligent Object

Distribution

Oliver Schorr 1,2, Nobuhiko Hata1, Andrew Bzostek3, Rajesh
Kumar 3, Catherina Burghart 2, Russel H. Taylor3, Ron Kikinis1

1Surgical Planning Laboratory,
Brigham and Women´s Hospital and Harvard Medical School

Boston, MA, USA

2Institute for Process Control and Robotics
University of Karlsruhe, Germany

3Department of Computer Science
Johns Hopkins University, Baltimore, Maryland, USA

Abstract
This paper presents intelligent object distribution architecture to

maximize the performance and intelligence of a distributed surgical
robotics system and its preliminary implementation in an MR−guided
surgical robot system in an open−configuration MRI scanner. The method
enables networked integration of a robot control server and multiple clients
with minimum engineering overhead but maximum flexibility and
performance. The clients in this study include an intraoperative imager,
high−performance image processing computer(s), and surgical navigation
host. The first contribution of the paper is to propose the use of object
distribution by common object request broker architecture (CORBA), in
which a robot control object on the robot control server can be remotely
but transparently invoked from the clients regardless of their hardware,
operating systems, or programming language. Second, we propose a
technique to achieve additional flexibility by reporting the robot
configuration information, i.e. geometry and kinematics of the robot, to the
clients upon connection. Third, we ensure protection against an
unauthorized entity by introducing a security control host that authorized
the clients´ access to the robot server. In a prototype implementation of an
MR−guided surgical robot system, the robot was controlled by surgical
navigation software (the 3D Slicer) on a UNIX client by invoking the
distributed control object on a robot control server on a PC. The method
was evaluated in performance studies; and the result indicated 3.6
milliseconds for retrieving positions of the robot stages and 25.5
milliseconds to send a frame−based motion command, which are
satisfactory for surgical robot control. In conclusion, the proposed method
shows the potential usefulness of flexibly integrating the legacy software to
a surgical robot system with minimum engineering overhead, thereby
achieving highly complex and intelligent tasks in robot−assisted surgery.

1

1

2 Introduction
We have been trying to build an open architecture system for a computer−

integrated robot surgery system, which can integrate component technologies into
systems targeted at a variety of surgical tasks. This study aims to link surgical robot
technology with medical image processing and surgical navigation technology with
minimum overhead so that complex and intelligent tasks can be carried out by
surgical robot assistance.

The software and hardware for surgical robot systems are developed on a per−
clinical−application basis, thus limiting the flexibility of the hardware and software
for reuse in multiple clinical applications. These systems usually rely on a generic
computer (most likely a PC) to manage all the tasks, thereby limiting their functional
expandability. For instance, real−time elastic registration can hardly be incorporated
into a PC−based robot controller due to the requirement for computational heavy
tasks. To overcome these problems, we present our approach of modular software
architecture and networked system distribution in the associated paper [1]. The
approach separates the monolithic system into an intra−operative imager host, a user
interface host, and heavy computing hosts, so that each host can focus on dedicated
tasks while collaboratively communicating through the network. For instance, the
robot host (PC) continuously monitors actuators and sensors though real−time motion
control hardware, while the user interface host (graphics workstation) interactively
visualizes the status of the robot. By selecting the component hosts, one can flexibly
adjust the system to application−specific requirements with minimum engineering
overhead. Similar concepts can be found in intelligent manufacturing [2, 3].

While we highly appreciated the modularity and flexibility of the distributed
systems in our previous studies, we also realized that the complexity of the
communication using message−based commands is relatively limited. In addition,
the content of commands was still designed on a per−configuration basis, and
protocol definition depended on the programming language, network transport, and
other factors. Therefore, the cost for updating and synchronizing a command
receptor was still significant.

In order to overcome these shortcomings, we propose a method to achieve highly
complex and intelligent communication within the distributed system. Specifically,
the method provides the following new features: (1) the use of an object distribution
mechanism by common object request broker architecture (CORBA) [4] to implement
the software objects solely on the robot control server, while enabling clients to
calling them in a transparent manner, (2) flexible robot configuration reporting
mechanism to flexibly and automatically adjust the visualization and image−
processing clients to various surgical robots; (3) a safety control mechanism to ensure
security, manageability, and status reporting in the distributed system. The method is
implemented and evaluated in a test−bed system, MR−guided surgical robot, in which
a PC−controlled 5DOF MR−compatible robot is controlled and monitored by graphic
surgical navigation and simulation software 3D Slicer on UNIX workstations.

This study is clinically significant, as it allows a surgical robot system to
accomplish highly complex tasks controlled by intraoperative images,

2

computationally heavy image processing, and graphics visualization. The method is
significant technically because it achieves its clinical goal with minimum cost but
maximum flexibility. The use of CORBA enables high interoperability of multiple
computing hosts over different OS, hardware, and software language platforms, which
encourage bringing in expertise from various research institutions by removing the
barrier of software and hardware incompatibility.

3 Methods

3.1 System overview
In this study, we attempted prototype system development within the framework

of an MR−guided surgical robot system[5]. The robot control objects are developed
in a PC−based control server and distributed to a visualization client in a UNIX
workstation. The security−monitoring host in the center of the system monitors
connection to the robot control server. Other clients may be high−performance
computers processing computationally heavy tasks such as elastic registration.

Figure 1: Schematic overview of the system

MR−compatible robot server

The center of the MR−guided surgical robot system is a MR−compatible surgical
manipulator, referred as the MR/T robot hereafter, developed jointly by Mechanical
Engineering Laboratory of Japan and our institution [5]. The MR/T robot has four
horizontal stages and one vertical stage, each driven by ultrasonic actuators. The four
stages move two arms independently, enabling the end−effector held by the two arms
to have 5 degree−of−freedom DOF movements.

The ultrasonic actuators and linear optical encoders in the MR/T robot are
controlled by a PC (CPU Cyrix 300 MHZ, 64MB, Windows NT4.0) using a motion
control board (PCX/DSP, Motion Engineering Inc., CA). The card provides on−board

3

PID control by a 40−MHz Analog Devices ADSP−2105 processor. Software for the
robot control is built upon a modular robot control (MRC) C/C++ library providing
Cartesian control, forward and inverse kinematics, and joint control interfaces for the
MR/T robot. The MRC also includes implementation of a force sensor, and digital
and analog input/output device interfaces; thus, expansion of the functionality of the
robot can be effectively achieved with minimum cost. The library classes have a
layered structure, each new layer inheriting significant functionality from its parents.
Further detail on the MRC library including its modularity design can be found in [1].

Intraoperatve MRI scanner

The MR/T robot is designed to perform surgical assistance in an open−
configuration intraoperative MRI (IMRI) scanner (Signa SP, GE Medical Systems,
Milwaukee, WI)[6], using intraoperative MRI for monitoring and navigation. The
host computer for the IMRI is a UNIX workstation (Sparc 20, Sun Microsystems,
Moutainview, CA) in which a software offers a service to export real−time IMRI
through an Ethernet port. In our system, the 3D Slicer described below establishes
the socket connection with the IMRI front−end computer and communicates with the
IMRI host to transfer the images.

Visualization client with the 3D Slicer

The 3D Slicer is an interactive surgical navigation and planning software on the
UNIX workstation (Ultra30, Sun Microsystems, Moutainview, CA.) It was originally
developed for neurosurgical navigation with 3D interactive graphics display. We also
utilize its unique functionalities such as automatic multimodality image registration,
semi−automatic segmentation, generation of 3D surface models, and quantitative
analysis of various medical scans. The Slicer is coded in the Tcl/Tk [7] version of
the Visualization Tool Kit [8]. In this study the role of the 3D Slicer also involves
displaying the robot to simulate its motion path with respect to patient anatomy. The
robot status including the position of all the stages and end−effector is continuously
updated through CORBA−based robot control object invocation.

Security monitoring client and other clients

Another significant computer is the security−monitoring host on a UNIX
workstation (Ultra80, Sun Microsystems, Moutainview, CA). We can also include
multiple hosts for other monitoring and computing purposes, such as elastic
registration for updating pre−operative images based on IMRI, which captures the
deformed shaped of the target organs, or radiation planning server for planning
radioactive seed planting sites for brachytherapy.

3.2 Object distribution by CORBA
Selected robot control objects for MRC are distributed to the 3D Slicer by a

middleware MICO [4] which is a freely available and fully compliant implementation
of the CORBA standard. MICO intercepts robot control call and finds an object that
can implement the request, pass it the parameters, invoke its method, and return the
results. The client does not have to be aware of where the object is located, its

4

programming language, its OS, or any other system aspects that are not part of an
object’s interface. The MICO provides interoperability between applications on
different machines in heterogeneous distributed environments and seamlessly
interconnects multiple object systems. : illustrates the principle of this object
distribution mechanism.

Figure 2: Schematic view of the object distribution mechanism

Objects invoked from the 3D Slicer at the robot PC server are robot hardware and
software initialization, frame−level movement command, joint−level movement
command, and joint−level position report. CORBA defines object interfaces via
implementation language−independent hardware−independent specification, using the
interface definition language (IDL). The IDL also involves definition of complex data
types. In practice, MICO´s IDL compiler writes "wrapper" code that translates
between the standardized bus ˆORB core˜ and the objects residing in the CORBA−
interface which redirects method calls inside the MRC library.

Another unique feature of our object distribution mechanism is the Dynamic
Invocation Interface (DII). Rather than hard coding the handle in the 3D Slicer using
the prefixed standard IDL stub, the DII lets the 3D Slicer dynamically incorporate the
interface description sent from the robot server and map it to Tcl commands.

We employed TclMico [9] that plugs into MICO´s DII converts the IDL to Tcl
script which can be plugged into any Tcl application at runtime. Since the 3D Slicer
is coded by script language Tcl/Tk, which does not require compilation, this dynamic
invocation mechanism is suitable for the 3D Slicer. In the same manner as DII,
Dynamic Skeleton Interface (DSI) allows the robot server to declare accessible
objects at runtime instead of fixed IDL skeleton.

5

3.3 Flexible robot configuration report
Minimizing the robot−dependent information in the client but managing the

information in the robot control server and transferring it to the clients is suitable for
keeping the flexibility of the client software. It also helps to centralize the
maintenance of the robot in the robot server and thus reduce the cost of updating the
robot configuration. Therefore, we employed a mechanism that maintains the
configuration file of the robot in the robot control server and sends it to the clients
upon establishment of the connection.

This configuration file was originally designed for the MRC library to
accommodate various configuration settings of the robots. The MRC´s configuration
file has authentication or identification block (designating a name, kinematics, and
joint controller), followed by one kinematics and joint control block per joint of the
robot. The joint block has moving range for each joint and gain parameters for
actuators´ PID control.

In addition to parameters for joint control, the configuration file has simple
kinematic and geometric descriptions of the current robot. This robot geometry is
intercepted by the 3D Slicer to generate a graphic model of the robot (). The
geometry model is broken into the simple elements (cylinder, box, and ball) and
connected by joints (linear, rotational joints, slide or ball joints) around arbitrary axes.

Figure 3: Integrated display of robot and anatomy data from the interventional MR
scanner (left) and the robot installed in the scanner. By using object distribution (Sec−
tion 2.1) and configuration distribution (Section 2.2), the 3D Slicer can control the
MR−compatible robot (right) with minimum implementation cost., thus enabling the
highly intelligent robot control to be coordinated with original functionalities of the
3D Slicer, i.e. image processing, navigation, image retrieval from the IMRI scanner,
and more.

3.4 Safety−monitoring host
The safety−monitoring host implements a subset of three different tasks dedicated

to increase safety and simplify communication initialization. The first task is to
supervise the client´s access to robot server by registering the client hosts and
authorize the of passive and active control privilege to the robot control. For

6

instance, MR/T robot limits the access to one client with active control privilege,
while unlimited number of hosts can access with passive control privilege. The
grounds for this access limit is that the decision for control should be finalized at the
centralized in the single authorized client server, while the other client hosts should
be devoted to data processor. The second task of the safety−monitoring host is to
store Tcl files, interface description files, and configuration files from the robot
control server, which can be later transferred to the clients upon connection. Some of
the information in these files should be sent to the client when the client ˆgreets˜ the
client but before actual CORBA connection happens.

4 Performance test
In order to evaluate the feasibility of the method, the processing time of the

prototype system was measured for the elected tasks. (Task 1) is position inquiry of
five joints by one, two or three passive clients, and (Task 2) is Cartesian−level motion
command of the end−effector by an active client. Task 2 involves the inverse
kinematics computation in the robot control server. (Task 1) and (Task 2) were
invoked 100 times from 0, 1, or 5 3D Slicer clients dedicated for (Task 1), and one
client for (Task 2). Each client was connected to the 100Mbit/second fast switcher,
yet was not isolated from the rest of the hospital network. summarizes the result from
the tests.

Table 1: Processing time for invoking distributed objects

of Task 1
clienents

of Task 2
clients

Average/STD of
Task 1 time

(micorosecnds)

Average/STD of
Task 2 time

(micorosecnds)

1 0 3373/520 N/A

2 0 3636/639 N/A

5 0 3412/399 N/A

0 1 3585/304 24764/1780

1 1 3894/637 24954/1101

5 1 3678/384 26784/1502

Though it doesn´t appear in , we also found several exceptionally long processing
time in a few per 100 invocations. Those processes took about 40 milliseconds for
(Task 1) and 105 milliseconds for (Task 2), which are 5 to 10 times longer than
average processing times.

5 Discussions
The result of the performance test indicated the feasibility of the method in

computer−integrated surgical robot systems. It is conceivable that the processing of
3.6 milliseconds for passive position inquiry and 25.5 milliseconds for active motion
command are acceptable for robot control using the motion control card with on−

7

board PID control chip. The result also indicates that the number of clients accessing
the robot control server does not influence the processing time.

As of the publication of this report, only the robot control objects are distributed
by CORBA. Images are transferred from the IMRI scanner to the 3D Slicer through a
socket connection and commanded by prefixed ASCII text, but the plan is to convert
the service CORBA−based object distribution so that the image processor and other
hosts can access the scanner with more complex command. An example of such task
is image scanning with scanning parameter and sequence.

Added value of the object distribution using CORBA is the ability to incorporate
advanced image processing software, which, due to software and hardware
incompatibility, used to require significant engineering overhead to port into robot
control. The currently standarized CORBA has an interface to virtually all
programming language including C, C++ , Smalltalk, Java, Ada, Cobol, Visual Basic,
Tcl, PL/1, LISP, Python and Perl. In our testbed prototype, we linked C/C++ with
Tcl each running on a different hardware and OS platform. There is talk of making
IDL compliant with XML; thus, it may be beneficial to design robot configuration
description and patient−specific image and model entry to have synergy with XML to
prompt the smooth transition to future XML−compliant database management
systems.

6 Conclusion
We reported a method to distribute objects from robot control server to multiple

clients to achieve highly intelligent and complex task by the collaborative work of
automonous visualization, navigation, and image processing hosts. The method was
implemented MR−guided surgical robot system in which robot control objects are
transparently called from the graphical navigation software on UNIX workstation, and
executed C/C++−based robot control software on PC. The evaluation test indicated
the distributed objects can be remotely invocated in 3.6 milliseconds for passive
monitoring and 25.5 milliseconds for active control, both of which are satisfactory for
surgical robot control. The result indicated that the method is feasible to apply in
distributed modular computer−integrated surgical robot systems.

7 Acknowledgement
This study is supported by National Science Foundation´s Engineering Research

Center (grant #EEC9731478) and NAC grant P41. The authors gratefully
acknowledge the support from Dr. Chinzei of MEL for supporting MRI−compatible
robot, and Mr. Gering of MIT for supporting the 3D Slicer. We also appreciate the
technical contribution of Mr. Daniel Kacher of Brigham and Women´s Hospital.

8 References
[1] A. Bzostek, R. Kumar, N. Hata, O. Schorr, R. Kikinis, and R. H. Taylor,

ˆDistributed Modular Computer−Integrated Surgical Robotic Systems:
Implementation using modular software and networked systems,˜ presented
at Third International Conference on Medical Robotics, Imaging And
Computer Assisted Surgery, 2000.

[2] M. Lei, X. H. Yang, M. M. Tseng, and S. Z. Yang, ˆA CORBA−based

8

agent−driven design for distributed intelligent manufacturing systems,˜
Jounal of Intelligent Manufacturing, vol. 9, pp. 457−465, 1998.

[3] O. A. Suarez, J. L. A. Foronda, and F. M. Abreu, ˆStandard based framework
for the development of manufacturing control systems,˜International
Journal of Computer Integrated Manufacturing, vol. 11, pp. 401−415, 1998.

[4] A. Puder and K. Römer,MICO: An Open Source CORBA Implementation.
San Francisco, CA: Morgan Kaufmann Publishers, 2000.

[5] K. Chinzei, R. Kikinis, and F. A. Jolesz, ˆMR Compatibility of Mechatronic
Devices: Design Criteria,˜ presented at Medical Image Computing and
Computer Assisted Intervention, Cambridge, UK, 1999.

[6] J. F. Schenck, F. A. Jolesz, P. B. Roemer, H. E. Cline, W. E. Lorensen, R.
Kikinis, S. G. Silverman, C. J. Hardy, W. D. Barber, E. T. Laskaris, and et
al., ˆSuperconducting open−configuration MR imaging system for image−
guided therapy,˜ Radiology, vol. 195, pp. 805−14, 1995.

[7] J. K. Ousterhout,Tcl and the Tk Toolkit. Massachusetts: Addison−wesley,
1994.

[8] W. Schroeder, K. Martin, and B. Lorensen,The Visualization Toolkit. An
object−oriented approach to 3D graphics. Upper Saddle River, New Jersey:
Prentice Hall PTR, 1996.

[9] F. Pilhofer, ˆTclMico˜, http://www.informatik.uni−frankfurt.de/~fp/Tcl/
tclmico, 1999.

9

