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Abstract— In this paper we consider the problem of coor-
dination of large number of robots subject to low information
constraint. We solve the problem of safe–minimum time control
for robots, that are car–like modeled and have different goal
configurations, by designing two different controls: the safe
and the time–optimal ones, and by tuning them suitably. We
can see the tuning as a cooperation among the two controls.
Simulation results show that the use of cooperative controls
efficiently solves the problem of robot coordination when the
information available by one of each other is reduced to the
knowledge of their position when the distance among them is
smaller than a relatively small bound.

I. INTRODUCTION

The coordination for large number of robots is attracting
increasing attention, see [1], [2], [3], [4], [5], [6]. This is due
both to the fact that technological developments will render
soon possible the production of multi–vehicle networks and
to the consequent new challenges of control algorithms
design for such robot groups. In the typical framework, each
robot dynamic is independent but the presence of objective
functions such as robot formations, that depend on the prop-
erties of the whole network, forces to implement coordinated
motions. It is clear that communication issues play a central
role in such control problems since perfect robot coordination
is based on complete information. However limitations on
communication channels bandwidth and other constraints
impose to keep low the level of communication [1], [3]. Thus
the link between information and control seems to be crucial
as in many other control applications [7], [8], [9].

Our point of view is to consider simplified car–like robot
models but keeping to a minimum the information needed to
coordinate the robot group. Control algorithms are designed
that rely only on partial detection of robot positions and are
thus robust for failures in one or more single robot behavior
and measurement and communication errors.

For given initial position of each robot and final desired
configuration, i.e. a final network formation or final destina-
tion for each single vehicle, we consider two problems:
P.1 The motion of a single robot with final destination and
N moving obstacles in the environment.
P.2 The motion of N robots with distinct initial position and
final destinations moving at the same time in the environ-
ment.
The first problem is a key step to solve the second. Indeed,

considering all other vehicles just as moving obstacles per-
mits to construct a completely decentralized control algo-
rithm that can be seen as single robot behavoir in the worst
case.

The main technique is the use of cooperative controls.
In a general setting of our definition, a cooperative control
systems is just a system on which many controls of differ-
ent nature (open–loop, feedback, quantized, etc.) act with
non conflicting purposes, opposed to the model of game
theory. Cooperative controls seem to be natural not only
for coordination problems but also in case of competitors
as in economic problems. In fact the possibility of coordi-
nation, for better common resources usage, let competitors
move toward configurations that are not Nash equilibria as
expected by game theoretical predictions, see [10]. The term
cooperative control is sometimes used to indicate distributed
controls with common cost function and our definition is the
mathematical counterpart of such idea, the single controls
being possibly distributed or not. Other possible applications
of this methodology include air traffic management, see [11].

Both problems P.1 and P.2 can be formulated as coopera-
tive control problems. Considering the Dubins’ car–like robot
model, in the first case we design a minimum time feedback
to final destination and a time–varying feedback for moving
obstacle avoidance. The velocity of the robot is kept constant
and the robot reacts only to the presence of close obstacles.
The main mathematical problems are related to the definition
of trajectories for the resulting system because both feed-
backs are discontinuous. We overcome this difficulty first
introducing the natural definition of Krasowskii solutions to
the corresponding multifunction and then selecting the good
ones imposing robustness with respect to initial point pertur-
bations. The methodology relies on geometrical properties of
each feedback collected in the definition of Regular Stratified
Feedback.
Simulation tests show good behaviour both of total time to
final destination and minimum distance to obstacles for large
statistics. The key parameter is a radius R: the robot reacts
only if an obstacle is present at distance less than or equal
to R.

The second problem P.2 is also solved via cooperative con-
trol. Each robot acts with a control algorithm similar to that
constructed to P.1. The use of the very same control algorithm



leads to dangerous geometrical configurations in which two
or more robots enter a loop behavior. Such loops are stable
and correspond to Nash type equilibria. However, if we let
each vehicle slightly adjust its velocity, depending on the
position of robots in its forward neighborhood, the resulting
motion avoids more efficiently the previously encountered
dangerous configurations and simulations confirm it with a
good final time statistics.

II. BASIC DEFINITIONS

Given a set A ⊂ IRm we denote by by Int(A) its interior,
by cl(A) the closure of A and by co(A) (respectively co(A)
) the convex hull (respectively closed convex hull). For
compact sets A, A′ ⊂ IRm we indicate by d(A, A′) their
Hausdorff distance.
Assume that E is a multifunction from IRm′

to IRm. We say
that E is continuous if it is continuous for the Hausdorff
distance and that it is upper semicontinuous at x if for every
ε > 0 there exists δ > 0 such that E(y) ⊂ E(x) + εBm for
every |y−x| < δ. Given a multifunction E from IRm to IRm,
we consider the corresponding differential inclusion that is

ẋ ∈ E(x). (1)

A classical result, see [12], states
Proposition 1: If E is a multifunction from IRm to IRm

that is upper semicontinuous, with nonempty compact convex
values, then (1) admits local (in time) solutions for every
initial data.

III. COOPERATIVE CONTROLS

Consider the system:

ẋ = F (x) + hG1(x)s + (1 − h)G2(x)v (2)

where x ∈ IRn, F : IRn → IRn, Gi(x) ∈ IRn×pi , i = 1, 2,
h ∈ [0, 1], s ∈ IRp1 and v ∈ IRp2 . We call this system
a cooperative control system, since we interpret s and v
as two controls of different nature (or chosen by different
controllers) but with non conflicting goals. In the model of
robot coordination v represents a minimum time control to
final destination, while s a safety control that prevents from
crashes with other objects (robots or obstacles) moving in
the environment. We assume
A.1 F, G1, G2 are smooth functions,
A.2 there exists Ci > 0, i = 0, 1, 2, such that ‖F (x)‖ ≤
C0(1 + ‖x‖), ‖Gi(x)‖ ≤ Ci(1 + ‖x‖),
A.3 s ∈ Us ⊂ IRp1 , v ∈ Uv ⊂ IRp2 , where Us and Uv are
compact.
The safety control s should act (h �= 0) only when necessary,
that is when the system is close to a bad or dangerous region
B(t) of the configuration space. The aim of s is to keep the
system in a safe region S(t) in the most efficient way, that is
maximizing the distance from B(t) and possibly minimizing
some running cost. For robot coordination, keeping the
system in a safe region means avoiding the routes of other

agents.
In order to obtain this behaviour automatically we shall
design h to be a smooth feedback which is equal to 1 on
the bad region B(t) and 0 on the safe region S(t) and s(t, ·)
an optimal feedback that in general may be not continuous.
On the other hand, v is a feedback that minimizes time, or a
more complicate cost, and leads to a fixed final destination.
Also v is in general discontinuous. We thus obtain a system:

ẋ = F (x) + h(t, x)G1(x)s(t, x) + (1 − h(t, x))G2(x)v(x)
(3)

which is comprised of an ODE with a right–hand side
discontinuous both in t and x. When h is not constantly
equal to 0 or 1 we immediately face the problem of defining
a solution, see for example [13], even if both ẋ = s(t, x) (t
fixed) and ẋ = v(x) admit solutions.

IV. ROBOT COORDINATION

In both situations we consider a simple model for a car–
like robot usually called Dubins’ car. The position of the car
is identified by the coordinates (x1, x2) of its baricenter and
the angle θ with the positive x–axis. The kinematic motion
is modeled as:

ẋ1 = u1 cos(θ)
ẋ2 = u1 sin(θ)
θ̇ = u2

(4)

where u1 is the velocity control and u2 is the steering control.
Both velocities are physically bounded hence we assume 0 ≤
u1 ≤ 1, |u2| ≤ 1.

A. Problem P.1

The first problem P.1 consists in designing two cooperative
controls v and s. The first control v should lead the robot to
final destination in minimum time, thus we aim at designing
v as a (discontinuous) optimal feedback depending on the
position of the robot and the final destination. Clearly v
corresponds to maximal velocity that is |u1| = 1.
The control s is a safety control to avoid moving obsta-
cles, therefore it must be a time–varying feedback. Also
in this case we want to move at maximum velocity in
the direction opposite to the obstacle thus similarly the
control s(t, x1, x2, θ) is discontinuous in the last variables
for every value of t. However these discontinuities have good
geometrical properties as we see later.

B. Problem P.2

We then treat the second problem P.2 using the information
from P.1. In this case we have N robots whose positions are
identified by N elements (xi

1, x
i
2, θi) ∈ IR2×S1. Each robot

evolves according to equations (4).
Since we aim at a decentralized algorithm, we let each
robot act without communicating with other robots, but only
detecting the position of nearby robots. Now we can not
choose a fixed velocity u1 due to the possibility of resonant
configurations when the robots are in opposition to their final



destinations and enter a loop behaviour observed also via
simulations. We thus design v and s adjusting the velocity
u1 depending on the number and position of nearby robots.

V. GOOD DEFINITION OF SOLUTION FOR A
COOPERATIVE CONTROL SYSTEM

Given a function e : IRm′ → IRm and a subspace
Λ ⊂ IRm′

, we associate the multifunction EΛ(y) =
∩δ>0E

Λ,δ(y) = ∩δ>0co e(y + δBΛ). A Krasowskii solution
for a discontinuous ODE

ẋ = e(x), (5)

on IRm, is a solution to the corresponding multifunction E =
EIRm

. Given bounded measurable controls s(t, x) and v(x),
a Krasowskii admissible solution to equation (3) is a solution
to the differential inclusion

ẋ(t) ∈ F (x)+h(t, x)G1(x)Sx(t, x)+(1−h(t, x))G2(x)V (x)
(6)

where Sx indicates the multifunction obtained from s taking
Λ = {(0, x) : x ∈ IRn} and V the multifunction obtained
from v choosing Λ to be IRn. Even if the differential inclusion
(6) admits solutions, we need to select the “good” ones.
Indeed some Krasowskii solutions may be not optimal or
not even reach the desired target, see [13], [14], [15].

Definition 1: A Krasowskii solution x : [0, T ] → IRm to
(5) is called Krasowskii Cone Robust if there exist a constant
a > 0 and a multifunction K from [0, T ] to IRm, such that
the following holds.
1. K(t) is a closed convex cone with Int(K(t)) �= ∅,
2. the multifunction t 	→ K(t) ∩ cl(Bm) is continuous with
respect to the Hausdorff distance,
3. for every t ∈ [0, T ] and every sequence yn = x(t) +
εnw + o(εn), with εn → 0 and w ∈ K(t), if xn(·) are
Krasowskii solutions with xn(t) = yn, then xn(·) converge
to x uniformly on [t, min{t + a, T }].
ε Krasowskii Weakly Robust Solution are defined similarly
asking K(t) to be only a set of positive measure at x(t) and
the conclusion 3. to hold for at least one sequence xn (not
all sequences). Moreover, similar definitions are given for a
differential inclusion.
We can state assumptions on discontinuous optimal feed-
backs under which Krasowskii Cone Robust Solutions coin-
cide with the optimal ones. First one introduces the concept
of Regular Stratified Feedback, based on that of Regular Syn-
thesis given by Boltyanskii and Brunovsky. Then conditions
are given on the corresponding cells, that are submanifolds
on which the feedback is smooth, to ensure the conclusion.
Regular Stratified Feedbacks that satisfy such conditions
are called Krasowskii admissible. The whole construction is
developed in [15].

Theorem 1: For a Krasowskii admissible Regular Strati-
fied Feedback, Krasowskii Cone Robust Solutions coincide
with optimal trajectories.

VI. P.1: COOPERATIVE CONTROLS FOR ONE
ROBOT WITH MOVING OBSTACLES

As explained in section IV for P.1 we can set the velocity
u1 ≡ 1. Thus for a single robot, a cooperative control model
can be written as

ẋ1 = cos(θ)
ẋ2 = sin(θ)
θ̇ = hs + (1 − h)v

(7)

that is of type (2) with x = (x1, x2, θ), F (x) =
(cos(θ), sin(θ), 0), G1 = G2 = (0, 0, 1) and −1 ≤ s, v ≤ 1.
Conditions A.1–A.3 are thus verified. In the following, for
any point a = (a1, a2, ϕ) we denote by ã = (a1, a2) the
component of a in IR2, and by <, > the scalar product on
IR2.
Our aim is to let the robot move to a final destination avoiding
moving objects. Thus v is the minimum time control to a
target point x̄ = (x̄1, x̄2). Various results about minimum
time are available (see [13], [14]). We are only interested
to a region far from the final destination, hence we give a
precise description of v outside a ball B(x̄, 2) centered at x̄
and of radius 2, while some part of B(x̄, 2) is not treated. It
is easy to see that we can chose v = 0 if the robot is already
oriented in the direction toward the target point, that is when
F̃ (x) is parallel to x̄− x̃ and with the same versus. If F̃ (x)
and x̄ − x̃ are not parallel then v can be chosen as

v(x1, x2, θ) = sign(< F̃ (x), (x̄2 − x̃2, x̃1 − x̄1) >).

Finally if F̃ (x) and x̄ − x̃ are parallel but with opposite
versus, then we can chose either v = 1 or v = −1.

Proposition 2: The feedback v generates a Boltyanskii–
Brunovsky synthesis, that is v is a Regular Stratified Feed-
back.

Proof: Recall that a Boltyanskii–Brunovsky synthesis
presents cells of two types: I on which a feedback is defined
and II from which trajectories exit immediately. In this case
there are two type I cells of dimension 3 of IR2 × S1, on
which v ≡ ±1. These are formed exactly by points at which
F̃ (x) is not parallel to x̄−x̃. These two cells are separated by
other two cells of dimension 2 which are helices as in Figure
1. The first helix, which we call PI , is a cell of type I on
which the feedback v is constantly equal to zero. Trajectories
that enter this cell remain inside it reaching x̄ without turning.
The second helix, called PII is a cell of type II and the
stratified trajectories leave this cell entering one of the two
cells of dimension 3, depending on the initial choice of v to
be equal to 1 or −1.

Proposition 3: The feedback v is a Krasowskii admissible
Regular Stratified Feedback, hence Krasowskii Cone Robust
Solutions coincide with Stratified Solutions.
We assume to have N moving obstacles that represent the
other robots (or fixed obstacles) met along the trajectory to
final destination. Hence the safety control s(t, x) depends
on some parameters y1 = (y1

1 , y
1
2), . . . , yN = (yN

1 , yN
2 )



Fig. 1.

that represent the positions on the plane of the N moving
obstacles. By denoting di = (yi

1 − x1, y
i
2 − x2) and k =∑N

i=1 di/‖di‖2, we define the control s as

s(t, x) = sign(< (cos(θ), sin(θ)), (−k2, k1) >) (8)

where k1, k2 are the components of k. Hence the control
s forces the robot to escape from nearby obstacles, with
priority given to the nearest ones. Reasoning as for v we
get the following:

Proposition 4: The feedback s is a Krasowskii admissible
Regular Stratified Feedback, hence Krasowskii Cone Robust
Solutions coincide with Stratified Solutions.

We assume that the robot is able to avoid obstacles if the
distance remains big enough, i.e. if obstacles remain outside
a region described by a ball centered at x̃ and of radius R 0.
Moreover, we define an operating region described by a ball
centered at x̃ and with radius R with R0 < R. This operating
region may correspond either to limitation in the possibility
of detecting far objects or simply to an arbitrary choice for
better performance. Obstacles are not considered if outside
the ball of radius R, thus we let formally di = +∞ in the
definition of s if di > R.
Regarding h, let dmin = mini ‖di‖ and h = h(dmin) be any
smooth function that is equal to 1 on a ball of center x̃ and
radius R̃, with R0 < R̃ < R and equal to 0 outside the ball
of center x̃ and radius R.
The obtained system (7) can be treated by the theory devel-
oped in previous sections for systems of type (2).

Proposition 5: For the feedbacks s and v, there exists C >
0 such that for each ε Krasowskii Weakly Robust Solution
γ to (7) there exists a Stratified Solution γ̄ such that ‖γ −
γ̄‖C0 ≤ Cε.

In particular the above Proposition implies that ε Krasowskii
Weakly Robust Solutions are almost optimal with an error
proportional to ε.

VII. P.2: COOPERATIVE CONTROLS FOR N
MOVING ROBOTS

We now consider N moving robots whose cooperative
dynamics are given by

ẋi
1 = ui cos(θi)

ẋi
2 = ui sin(θi)

θ̇i = hisi + (1 − hi)vi.
(9)

For minimum information constraint we let each u i, vi, si

and hi depend only on the position of nearby robots, that
is on (xj

1, x
j
2) such that d((xi

1, x
i
2), (x

j
1, x

j
2)) < R (d is the

Euclidean distance of IR2). Thus from now on we fix an index
i and describe the cooperative control for the i–th robot. We
implement two algorithms:
A1 We define vi, si and hi as done for the problem P.1,
considering the other robots as moving obstacles, and let
ui ≡ 1.
A1 We define vi, si and hi as for P.1 and let ui depend on
robot seen forward.
The algorithm A1 is immediately obtained by the description
given for P.1. Let us illustrate A2: we have only to specify
ui. We let si depend only on the position of robot that are
on the forward half ball, that is, indicating by d the distance
on IR2:

Bf ((xi
1, x

i
2), R) = {(x1, x2) : d((xi

1, x
i
2), (x1, x2)) < R,

〈(cos(θi), sin(θi)), (x1 − xi
1, x2 − xi

2)〉 ≥ 0},
Recalling the definition of k and equation (8), this is done
replacing, in the definition of s, the vector k by that obtained
counting the robot j only if its plane–position (x j

1, x
j
2) is in

the ball Bf ((xi
1, x

i
2), R).

Let us now describe the function ui. Define for each robot j
the quantities: Dij = d((xi

1, x
i
2), (x

j
1, x

j
2)) that is the distance

between robot i and robot j, and

cij =
〈(cos(θi), sin(θi)), (x

j
1 − xi

1, x
j
2 − xi

2)〉(
(xj

1)2 + (xj
2)2

) 1
2

that is the cosine of the angle formed by the orientation of the
i–th robot and the oriented distance between the two robots.
Let J(i) = {j : (xj

1, x
j
2) ∈ Bf ((xi

1, x
i
2), R)} and denote by

Card(J) its cardinality. We set

ui = 1 − α

∑
j∈J h(Dij)cij

Card(J)

where 0 ≤ α < 1. Thus robot i decreases its velocity
depending on the number of robots in its forward ball and
their positions with respect to its orientation: robots that are
more in front count more. The parameter α measures the
decrease rate in the velocity u1.
Since the structure of singularities for these new cooperative
controls are the same as those described for problem P.1,
the set of Krasowskii Cone Robust solutions coincide with
optimal ones.
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Fig. 2. Robot trajectory.

Remark 1: Notice that the number of operations to com-
pute controls ui and vi is quite limited. Moreover, the
complexity increases linearly with the number of robots.

VIII. SIMULATIONS

A. Cooperative controls for P.1.

We fix the maneuver radius R0 = 4, set R̃ = R − 4 and
consider the trajectory of a robot in presence of 10 moving
obstacles with velocity around 1/2 of that of the robot, whose
trajectories are represented in Figure 2. The thickest one is
the trajectory of the robot while the others are trajectories of
some obstacles met.

The outputs, we are interested in, are the effective time
to final destination and the minimal distance to an obstacle
reached during the execution of the trajectory. Statistics is
developed with random initial and final positions of moving
obstacles for ten thousands realizations and obstacles trajec-
tories almost perpendicular to that of the robot. Figure 3
represents time to destination as function of the parameter R
that measures the operating region. The time to destination
without obstacles is around 565, notice that the time to
destination behaves linearly with respect to R. The same
happens for the minimal distance and Figure 4 shows the
minimal distance as function of R.

B. Cooperative controls for P.2.

We consider both algorithms A.1 and A.2 for the problem
of five robots that start at random initial positions on the
boundary of a circular region of radius 100 and with final
positions on points symmetric with respect to the center. Thus
robots enter in conflict near the center.
First we show the presence of resonant configurations: some
robots are in opposition to their final destination and enter
loops. In Figure 5 we show an example with two robots for
algorithm A.1. Initial and final configurations for one robot
are circles and squares for the other.

Then we pass to compare algorithms A.1 and A.2 for
statistics with ten thousands realizations. We measure two
key outputs: the time to final destination for the first arriving
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Fig. 4. Minimal distance for single robot.

robot and for the last arriving robot. The difference between
the two algorithms is striking. We represent the comparison
for first arriving robot time in Figure 6 and for last arriving
robot time in Figure 7 again as functions of the operating
radius R.

IX. CONCLUSIONS

In this paper, two cases of robot coordination are il-
lustrated: that of a single robot with N moving obstacles
and N moving robots with given initial positions and final
destinations. We developed cooperative control algorithms in
case of minimum communication: each agent can only detect
positions of nearby agents. For both cases it is considered the
model of Dubins’ car–like robot. The mathematical problems
are related to the definition of solutions in presence of
discontinuous feedbacks and are solved via the geometric
theory of stratified feedbacks.
For a single robot a satisfactory behaviour is reached with
fixed velocity, while for N robots a variable velocity is
introduced to avoid resonant configurations. Simulation tests
confirm theoretical predictions.
The dependence of performance from communication should
be subject of future investigations.
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